
LINE: Cryptosystem based on linear equations for 
logarithmic signatures 

Gennady Khalimov1, Yevgen Kotukh2, Maksym Kolisnyk1, Svitlana Khalimova1, Oleksandr 
Sievierinov1 and Maksym Korobchynskyi2  

1 Kharkiv National University of Radioelectronics, Kharkiv, 61166, Ukraine  
2 Yevhenii Bereznyak Military Academy, Kyiv, 04050, Ukraine 

Abstract 
The discourse herein pertains to a directional encryption cryptosystem predicated upon logarithmic 
signatures interconnected via a system of linear equations (henceforth referred to as LINE). A logarithmic 
signature serves as a foundational cryptographic primitive within the algorithm, characterized by distinct 
cryptographic attributes including nonlinearity, non-commutativity, unidirectionality, and factorizability 
by key. The confidentiality of the cryptosystem is contingent upon the presence of an incomplete system 
of equations and the substantial ambiguity inherent in the matrix transformations integral to the algorithm. 
Classical cryptanalysis endeavors are constrained by the potency of the secret matrix transformation and 
the indeterminacy surrounding solutions to the system of linear equations featuring logarithmic signatures. 
Such cryptanalysis methodologies, being exhaustive in nature, invariably exhibit exponential complexity. 
The absence of inherent group computations within the algorithm, and by extension, the inability to exploit 
group properties associated with the periodicity of group elements, serves to mitigate quantum 
cryptanalysis to Grover's search algorithm. 
LINE, predicated upon an incomplete system of linear equations, embodies security levels ranging from 1 
to 5, as stipulated by the National Institute of Standards and Technology (NIST), and thus presents a 
promising candidate for the construction of post-quantum cryptosystems. 
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1. Introduction 

Computationally complex problems, commonly referred to as "hard problems," encompass a wide 
array of issues for which a substantial, preferably insurmountable, allocation of resources is 
necessitated for resolution. Within the realm of cryptography, these problems serve as the 
foundational bedrock for secure cryptographic schemes. Typically, this is achieved by establishing a 
correlation between the scheme's security and the infeasibility of solving the associated complex 
problem. Historically, two predominant complex problems, or their derivatives, have held sway in 
public-key cryptography: integer factorization and discrete logarithmization. RSA integers and 
discrete logarithms within finite cyclic groups (DLOG) form the corner-stone of numerous 
cryptographic constructions [1,2,3,4,5]. Practical implementations of cryptographic schemes reliant 
on RSA and DLOG dilemmas are orchestrated such that the selection of parameters introduces 
convolution into the corresponding crypt-analysis endeavor. In 1994, Shor [6] elucidated that these 
conventionally arduous problems can be effortlessly resolved through the utilization of large-scale 
quantum computers. The trajectory of quantum computing development has increasingly 
materialized, with prognostications from entities such as Microsoft and IBM anticipating the advent 
of large-scale quantum computers boasting several thousand qubits by 2030. Such advancements 
portend a tangible menace to the efficacy of contemporary public-key cryptography in upholding 
security. Consequently, the cryptographic community, industry stakeholders, and numerous 
standardization bodies have initiated strategic maneuvers toward the adoption of a quantum-
resistant alternative: post-quantum cryptography. Post-quantum cryptography, also known as 
quantum-resistant cryptography, emerges as a pivotal response to the impending vulnerability of 
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classical cryptographic systems in the face of quantum computational prowess.  We delve into the 
fundamental principles, challenges, and promising avenues of post-quantum cryptographic research, 
elucidating its pivotal role in fortifying the security posture of digital communications and 
transactions. Amidst the exigency posed by the impending advent of quantum computing, the quest 
for cryptographic primitives impervious to quantum attacks has garnered substantial impetus. The 
landscape of quantum-resistant cryptographic primitives, spanning lattice-based, code-based, hash-
based, and multivariate polynomial cryptographic schemes is changing almost day by day. Through 
a comprehensive analysis of their underlying mathematical structures, security properties, and 
implementation considerations, we aim to furnish readers with insights into the diverse arsenal of 
cryptographic tools poised to withstand the disruptive potential of quantum adversaries. 

 

2. Motivation 

Quantum-resistant cryptosystems, predicated on lattice-based structures, error-correcting linear 
codes, multidimensional polynomial equations, one-way functions, elliptic curve isogenies, and non-
commutative groups, actively leverage computationally complex problems. This mosaic of 
cryptographic techniques engenders resilience against quantum threats, underpinning a diverse 
array of cryptographic schemes. The first category encompasses schemes such as FrodoKEM, Kyber, 
Saber, along with Dilithium, Falcon, and qTESLA signatures, which hinge on the arduous task of 
training with LWE errors and the short integer solution of SIS. These schemes find application in 
key encapsulation and directed encryption scenarios. The complexity of decoding linear noisy codes 
with a secret code is pivotal in schemes like BIKE, Classic McEliece, HQC, NTS-KEM, ROLLO, and 
CFS, Durandal, WAVE signatures. These schemes rely on the intricate process of deciphering linear 
noisy codes, thereby fortifying their cryptographic underpinnings [7,8,9,10]. Furthermore, the 
complexity inherent in solving multidimensional equations forms the cornerstone of signature 
schemes such as LUOV, MQDSS, Rainbow, and GeMSS. These schemes exploit the intricacies of 
multidimensional equations to bolster cryptographic robustness. Likewise, the challenges posed by 
unidirectional functions are harnessed in signature schemes like XMSS, SPHINCS+, and Picnic, 
contributing to their quantum resistance [11,12,13].  Moreover, the complexity entailed in searching 
for isogenic elliptic curves underscores the security of directional encryption schemes like SIKE and 
CSIDH, along with signature schemes such as CSI-FiSh and SQISign. Lastly, the complexity arising 
from the group factorization problem serves as a linchpin in directional encryption schemes. These 
schemes, spanning from [17,18,19,20,21,22,23,24], derive cryptographic strength from the 
intractability of the group factorization problem. The evaluation of quantum security for 
cryptosystems, submitted to the NIST competition and earmarked as candidates for post-quantum 
cryptography, undergoes continuous scrutiny and refinement. Recent advancements, detailed in 
literature [25], elucidate the construction of polynomial quantum algorithms for solving the LWE 
problem with polynomial modulus-noise relations. Despite identified algorithmic flaws, novel 
insights into leveraging complex Gaussian functions and windowed quantum Fourier transforms 
portend promising avenues for quantum computing applications or novel LWE problem-solving 
methodologies. As underscored by Bart Prinell's commentary, while the absence of large-scale 
quantum computers impedes empirical validation of quantum algorithms, the imperative of post-
quantum encryption remains paramount to ensuring resilience against prospective quantum 
adversaries [26]. The current slate of NIST-standard candidates appears robust, albeit subject to 
refinement through parameter optimization and technological advancements. A fundamental 
reimagining of cryptosystem design is proposed, wherein the traditional paradigm of leveraging 
hard-to-solve problems is supplanted by a novel approach predicated on problems boasting a 
constellation of equivalent solutions devoid of regularities. Such a framework obviates vulnerability 
to quantum cryptanalysis, relegating adversaries to Grover's algorithm with exponential complexity. 
Exemplifying this approach, the Shamir threshold secret sharing scheme capitalizes on classical 
algebraic principles, wherein secrecy is predicated on the unavailability of a critical mass of function 
values required to reconstruct the overarching secret. 

 



3. Our contribution 

3.1 Definition of an incomplete cryptosystem of linear equations  

The construction of the cryptosystem is predicated upon a well-established algebraic problem, 
wherein the existence of a unique solution is contingent upon a fully defined system of linear 
equations. However, when confronted with an incompletely defined system of equations, the 
enumeration of solutions is governed by the cardinality of the set of potential solutions. In our 
formulation, we establish linear equations relative to unknowns, utilizing values denoted by 
logarithmic subscripts. Notably, the number of equations pertaining to secret values of logarithmic 
signatures is typically fewer than the total number of unknowns. Consequently, this engenders an 
incomplete system of linear equations vis-à-vis the unknowns, precluding polynomial-time 
resolution. The crux of any potential attack on such a cryptosystem boils down to the task of sorting 
and defining variables. The security of a cryptosystem hinged upon a problem featuring incompletely 
defined equations is contingent upon the robustness of the set of solutions. Central to the algorithm 
is the concept of logarithmic signature, serving as a foundational cryptographic primitive imbued 
with distinctive cryptographic attributes, including non-linearity, non-commutativity, 
unidirectionality, and factorizability by key. Subsequently, we shall delve into a comprehensive 
exposition elucidating the salient aspects of cryptosystems integrating logarithmic signatures. 

 
3.2 Logarithmic signature  

The representation of logarithmic signatures is intricately linked to the positional numbering system, 
wherein the data array, constituting the logarithmic signature, is structured into subblocks. Each 
subblock comprises vectors or strings, which can be construed as numerical entities. The encryption 
process, or cryptogram, is determined by the summation of vectors selected by a designated key 
(numeric value). The computational security of the cipher hinges upon the formidable challenge of 
decomposing the cryptogram into constituent vectors in the absence of knowledge regarding the 
correspondence between vector positions and their respective values. An early instantiation of 
logarithmic signatures for finite permutation groups was introduced in [18] within the context of 
constructing a symmetric cryptosystem. A defining characteristic of such constructions lies in their 
susceptibility to factorization by key. Subsequent discourse on the algebraic properties of logarithmic 
signatures and associated cryptosystems was deliberated in depth in [19,20]. In 2002, Magliveras et 
al. [21] devised two public key cryptosystems, MST1 and MST2. Building upon this foundation, 
Lempken et al. [22] leveraged logarithmic signatures and random coverages to devise a generalized 
MST3 encryption scheme. Notably, the public key in this scheme encompasses ordinary logarithmic 
signatures alongside random numerical entities, while the secret key is constituted by random 
coverages and sandwich transformations [21]. The presumed intractability of this scheme hinges 
upon the group factorization problem within non-Abelian groups. Furthermore, spurred by insights 
gleaned from attacks detailed in [23], Svaba and van Trung refined an extended variant of the 
generalized scheme [24], denoted as eMST3 cryptosystems. This iteration incorporates a clandestine 
homomorphism to obfuscate the secret logarithmic signature via a random cover transformation. 
Subsequent advancements in the MST3 cryptosystem were predicated upon high-order groups 
encompassing generalized Suzuki groups, small Ree groups, three-parametric groups, automorphism 
groups of the Suzuki functional field, and automorphisms of the Ree functional field 
[27,28,29,30,31,32,33,34]. The efficacy of logarithmic signatures lies in their simplicity, as the 
computation of text ciphers is facilitated through elementary addition operations utilizing bitwise 
XOR. However, a notable drawback is the substantial size of logarithmic arrays, necessitating the 
employment of masking arrays to ensure a commensurately high level of secrecy. 

Within the purview of the presented cryptosystem, the logarithmic signature assumes a pivotal 
role as a fundamental cryptographic primitive facilitating keyless encryption and factorization by 
means of the logarithmic signature's key. 

 
3.3 Our proposal  

Let's consider the main steps of the algorithm. 
Step 1. Here we construct of a secret logarithmic signature over a field (2 )mF . The 

implementation of secret homomorphic transformations with calculations over the field (2 )mF  



presented in [35] . Let's construct a logarithmic signature using the following set of secret 
homomorphic transformations: 

3 51 2 4

1 2 3 4 5

        ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→ , 
where 1 - simple factorization logarithmic signature type ( )

1
1 ,..., sr r


; 

Transformation 1 ( 1 ). In this step we make a noise of s  blocks of the 1  signature. In this case 
the signature type does not change. As a result, we get 2  signature. Transformation 2 ( 2 ). Next, 
we shuffling secretly all blocks of 2  signature. As a result, we get 3  signature. Transformation 3 (

3 ). Then, we mix all records in signature blocks 3 . As a result, we get 4  signature. 
Transformation 4 ( 4 ). Next, we proceed with secret homomorphic transformation of array strings 

in this way: 4 3( ) ( )i i  =  , 1 21, ... si r r r= + + + , (2 )mF  . As a result, we get 5  signature. 
Transformation 5 ( 5 ). Finally, we use secret homomorphic transformation of string array 

4( ) ( ) m mi i   =  , 
1 21, ... si r r r= + + + . As a result, we get   signature. Note, that m m   is an invertible 

binary matrix of dimension m m . 
We have a logarithmic signature ( )i =  over m - bit strings as a result of all steps. The security 

estimation is determined taking to the account a high entropy of secret transformations. These 
estimates are discussed in [24,35 ÷ 37]. 

Step 2. Here we construct general parameters, public and secret keys. Let's construct K k k= 

logarithmic signatures K . We present logarithmic signatures K in the form of a two-dimensional 

set of arrays with index 
1 2,k k K  , 

1 1,k k= , 
2 1,k k= for given types ( )

1 2 1 2
1 2

, 1 ( , )
,

,...,k k s k k
k k

r r r= , 
1 2,k k Kr r . 

1 2 1 2 1 2 1 2, 1 2 ( , ) , , ,[ , ,..., ] : ( )k k s k k k k i j k kB B B = = , 
1 21, ( , )j s k k= , 1, ji r= . 

The index j determines the number of the block and the index i determines the number of the 
record in j the block. Records of arrays ,i j are defined m - bitwise strings that we identify with the 

elements of the finite field (2 )mF . Let the set K consist of L  factorizable logarithmic signatures L

, L K i K L−  non-factorizable signatures K L − . Factorized logarithmic signatures L will be 
constructed using secret transformations 1 5  . In two-dimensional indexing 

1 2,k k , 1k y 2k we 

determine whether the logarithmic signature belongs to the set 
1 2,k k L  . We construct non-

factorizable logarithmic signatures K L − for type (2, 2,..., 2)

m

 by filling them with random m -bit strings

1( )j and 2 ( )j , 1,j m= of each block of the logarithmic signature 
1 2,k k K L  − . Values and indexes 1k

and 2k determine belonging to a set of non-factorizable logarithmic signatures K L − . For logarithmic 
signatures 

1 2,k k L  , we generate arrays 
1 2,k k L  with random records 

1 2 1 2 1 2 1 2, 1 2 ( , ) , , ,[A ,A ,...,A ] : ( )k k s k k k k i j k ka = = , 
, (2 ) / 0m

i ja F , 
1 21, ( , )j s k k= , 1, ji r= , ( )

1 2
1 2

1 ( , )
,

,..., s k k
k k

r r . 

the values of the string 
1 2

1 2
1, 2, ,,

,j j k kk k
      , ( )

1 2
, ,

(2 ) / 0m

i j k k
F  1,j m= , 1 2,k k  for each block in 

1 2,k k K L  − satisfy the following conditions: ( )
1 2

1, 2, ,j j k k
  + = , where 1,2i = , 1,j m= , (2 ) / 0mF  . 

We generate random sets 

1 2,k k Kt t
, 1 2 1 2 1 2, 1 ( , ) ,( ,..., ) (2 ) / 0m

k k s k k k kt t t F= 
 

1 2,k k K 
, 1 2 1 2 1 2, 1 ( , ) ,( ,..., ) (2 ) / 0m

k k s k k k k F  = 
 

and let ( ) ( )
1 2 1 2

, ,, ,i j i jk k k k
t  , 

1 2,( ) 0j k kt  , 
1 2,( ) 0j k k  , 1, ji r= - the number of the record in 

1 21, ( , )j s k k= the block of the array, for the logarithmic 
1 2,k k type signature ( )

1 2
1 2

1 ( , )
,

,..., s k k
k k

r r  

Let's set a secret binary matrix  with m m  dimensions and let's determine the arrays 
1 2,k k K 

and 
1 2,k k K  . For factorizable logarithmic signatures, 

1 2,k k L  we define arrays 
1 2,k k L  and 

1 2,k k L  by following expressions: 

1 2 1 2 1 2 1 2, , , , , , ,( ) ( ) ( ) ( )i j k k i j k k j k k i j k kt   = + + ,
1 2 1 2 1 2, , , , ,( ) ( ) ( )i j k k i j k k j k k  = +  



and similarly, for non-factorable 
1 2,k k K L  − we define the arrays 

1 2,k k K LG − and
1 2,k k K L − by 

following expressions: 

1 2 1 2 1 2, , , , ,( ) ( ) ( )i j k k i j k k j k kt  = + ,
1 2 1 2 1 2, , , , ,( ) ( ) ( )i j k k i j k k j k k  = +  

for 
1 21, ( , )j s k k= , 1, ji r= . All calculations by 

1 2,k k K  and 
1 2,k k K  are determined by the rule 

below. Let the argument for 
1 2,k k be m -bit string R . Let's decompose the string R into values 

according to the type ( )
1 2

1 2
1 ( , )

,
,..., s k k

k k
r r  

1

1 2

11 1 2

1 2

( , ) log
log log0

1 2 ( , ) 1 2 3 1

2

( , ,..., ) 2 2 2 ... 2

j

i

i

s k k r
r r r

s k k j

j

R R R R R R R R R

−

=

=


= = + + + = + 

. 
The values 

jR show the number of the record in j the block of the array 
1 2,k k K  . Calculations 

for the argument R are determined by bitwise summation of the array of strings
1 2,k k K    

1 2

1 2 1 2 1 2

( , )

, , 1 2 ( , ) ,

1

( ) ( , ,..., )
j

s k k

k k k k s k k R j

j

R R R R  
=

= = 
. 

As a results we obtain general parameters and cryptosystems K k k=  , L K , m , 
Kr , secret keys 

K , Kt , K ,   and public keys K , K . 
Step 3. On this step we construct of a cryptosystem based on an incomplete system of linear 

equations for logarithmic signatures 
1 2,k k K  . The fundamental objective underlying the 

construction of the cryptosystem is to compute L linear sums 
1 2 1 2, ,( )k k k k lR U = by values 

1 2 1 2, ,( )k k k kR

. 1,l L= . Let's determine the sums lU by expressions of the form 

( )
1

k

ij ij i

j

R U
=

= , 1,i k= , 

( )
1

k

ji ji k i

j

R U +

=

= , 1,i k= , 

( ) 2

1

k

j j k i

j

R U  +

=

= , ( )mod 1k j i k = − + + , 1,i k=  

( ) 3

1

k

j j k i

j

R U  +

=

= , ( )mod 1k i j k = − + + , 1,i k=  

Values ( )ij ijR are calculated by ijR . 

All expressions for lU include only one value 
1 2 1 2, ,( )k k k kR from string and/or array column 

1 2,k k K  . The number of such expressions equal to 4k . Relatively to ( )ij ijR we get a system of linear 

equations. Since the number of unknowns 
1 2 1 2, ,( )k k k kR is equal to 2K k= , and the number of knowns 

lU is equal to L K , the system of linear equations will be incomplete with respect to the unknowns 

1 2 1 2, ,( )k k k kR . For K values of logarithmic signatures, 
1 2 1 2, ,( )k k k kR it is easy to calculate L K the values 

of lU . The solution of the inverse problem regarding the finding 
1 2 1 2, ,( )k k k kR has an uncertainty of 

( )2 K L m− possible solutions. The cryptosystem has potential ( )K L m− bit security. 

Example. Let 4k = . The arrays 
1 2,k k  which define expressions for iU  1,4i k=  are marked in 

orange. Please see Fig. 1.). We form L equations of LU that are linearly independent relative to the 
desired ones 

1 2,k k L  . We do it to construct the cryptosystem with ( )K L m− bits security. Let 8L =

. Let's choose the following eight equations  1 2 3 5 9 12, , , ,LU U U U U U U=  . 

Expressions for relatively unknown amounts 
1 2,k k K  have the following form 

( ) ( ) ( ) ( )11 11 21 21 31 31 41 41 1R R R R U   + + + =  
( ) ( ) ( ) ( )12 12 22 22 32 32 42 42 2R R R R U   + + + =  
( ) ( ) ( ) ( )13 13 23 23 33 33 43 43 3R R R R U   + + + =  
( ) ( ) ( ) ( )11 11 12 12 13 13 14 14 5R R R R U   + + + =  



( ) ( ) ( ) ( )11 11 24 24 33 33 42 42 9R R R R U   + + + =  
( ) ( ) ( ) ( )12 12 21 21 34 34 43 43 10R R R R U   + + + =  
( ) ( ) ( ) ( )13 13 22 22 31 31 44 44 11R R R R U   + + + =  
( ) ( ) ( ) ( )14 14 23 23 32 32 41 41 12R R R R U   + + + =  

 
Figure 1: The arrays 

1 2,k k  

The solution for the unknowns 
1 2,k k L  can be expressed in the following expressions: 

( ) ( ) ( ) ( )11 11 9 24 24 33 33 42 42R U R R R   = + + +  

( ) ( ) ( ) ( ) ( ) ( )12 12 3 5 9 12 24 24 32 32 41 41 42 42 43 43( )R U U U U R R R R R     = + + + + + + + +  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

13 13 1 2 9 10 11 24 24 32 32

33 33 34 34 41 41 43 43 44 44

( )R U U U U U R R

R R R R R

  

    

= + + + + + +

+ + + + +
 

( )

( ) ( ) ( )

14 14 1 2 3 9 10 11

12 24 24 34 34 44 44

(

)

R U U U U U U

U R R R



  

= + + + + +

+ + + +
 

( ) ( )

( ) ( ) ( ) ( )

21 21 3 5 9 10 12 24 24

32 32 34 34 41 41 42 42

( )R U U U U U R

R R R R

 

   

= + + + + +

+ + + +
 

( ) ( ) ( ) ( )22 22 2 3 5 9 12 24 24 41 41 43 43( )R U U U U U R R R   = + + + + + + +  

( ) ( )

( ) ( ) ( ) ( )

23 23 1 2 3 9 10 11 24 24

32 32 34 34 41 41 44 44

( )R U U U U U U R

R R R R

 

   

= + + + + + +

+ + + +
 

( ) ( ) ( ) ( )31 31 1 3 5 10 12 32 32 33 33 34 34( )R U U U U U R R R   = + + + + + + +  

Thus, to calculate the values,  11 12 13 14 21 22 23 31, , , , , , , L         one should define 

 24 32 33 34 41 42 43 44, , , , , , , K LG        − . 

Step 4. Encryption. To implement encryption we consider the following input parameters: x

long Lm bit message, public keys K , K , hash function h . Encryption step consists of the following 
routines. We divide the message x  into m -bit strings, which are converted into a set of L input 
parameters ijR for L  factorizable logarithmic signatures 

1 2,k k L  according to their type 

( )
1 2

1 2
1 ( , )

,
,..., s k k

k k
r r . Next, we calculate the hash value ( )h x for Lm the bit string of the message x that 

can be present with K L−  m -bit strings with subsequent transformation 
1 2,( ( )) k kh x R = into a set of 

input parameters ijR for K L− non- factorable logarithmic signatures 
1 2,k k K L  − in accordance with 

the type (2, 2,..., 2)

m

. The hash function ( )h x is unidirectional and sensitive to bit changes in the 
message x . We can also add a session key to the display 

1 2,( ( )) k kh x R = to randomize the cipher text 

in the case of low entropy of the message x . Then, we calculate the values of 
1 2 1 2, ,( )k k k kR and

1 2 1 2, ,( )k k k kR  
1 1,k k= , 

2 1,k k= . Then, we calculate L the values of linear sums for 
1 2 1 2, ,( )k k k k lR U = , 

l LU U . Finally, we calculate L sums of 
1 2 1 2, ,( )k k k k lR V = , l LV V using similar expressions for LU . 

The encryption result is recognized as a L  m -bit values l LU U and l LV V . 



Step 5. Decryption. To implement decryption we consider the following input parameters: a 
cipher text l LU U , l LV V , secret keys K , Kt , K , . It is necessary to calculate 

1 2,k k L  and to 

calculate 
1 2,k k LR R and restore x  through the factorizable signatures 

1 2,k k L  . To calculate, 

( )
1 2 1 2k k k k LR  you need to subtract the values 

1 2,k k K LG − from the sums of the set LU . Decryption 

consists of the following steps. First, we calculate l l l l lD U V t  = + + + , 1,l L= . The values lU

contain sums for subsets of factorizable and non-factorizable signatures
1 2,k k L   

1 2,k k L   

1 2 1 2 1 2 1 2

, ,1 2 1 2

, , , ,( ) ( )
k k L k k L

l k k k k k k k kU R R
   

 
 

= + 
. 

The values lV contain similar sums for subsets 
1 2,k k L  and

1 2,k k L   

1 2 1 2 1 2 1 2

, ,1 2 1 2

, , , ,( ) ( )
k k L k k L

l k k k k k k k kV R R
   

 
 

= + 
. 

Indices 1 ( , )k j l= are 2 ( , )k j l= determined by the serial number j of the logarithmic signature 
in the equation for lU and the number of the equation l . Substituting lU and lV into the expression 
for lD , we get 

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

, , , ,1 2 1 2 1 2 1 2

1 2 1 2 1 2

, ,1 2 1 2

1 2
1 2 1 2

1 2 1 2

, , , , , , , ,

, , ,

,
, ,

, ,

( ) ( ) ( ) ( )

( )

(

k k L k k L k k L k k L

k k L k k L

l k k k k k k k k k k k k k k k k

k k k k k k

k k
k k k k

k k K k k K

D R R R R

R t

t

       

   

    



 

   

 

 

   
= + + +   
   
   

+

+ + =

+

   

 

  1 2

1 2 1 2

, 1 21 2

, ,1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

, 1 2 , 1 21 2 1 2

1 2 1 2

1 2 1 2

,

, ,

,

, , , , , ,

, ,

, ,

, ,

)

( )

( ) ( )

k k L

k k L k k L

k k L L k k L L

k k

k k k k

k k

k k k k k k k k k k k k

k k k k

k k k k

k k K k k K

R

R
t

R R

t

 

   

     



 

    

 



 

   

 

 
 
 
  +
 
 +
 + 

 
+ + + 

 
 

+ + =


 

   

  1 2 1 2

,1 2

, ,( )
k k L

k k k kR
 






 

As a result, we get L equations relative to the unknowns
1 2 1 2, ,( )k k k kR  

1 2 1 2

,1 2

, ,( )
k k L

k k k k lR D
 




= , 1,l L= . 

Then, we solve the system of linear equations relatively
1 2 1 2, ,( )k k k kR  

1 2 1 2

,1 2

, ,( )
k k L

k k k k lR D
 




=
, 1,l L= . 

Finally, we find factorization 
1 2 1 2 1 2

1

, , ,( )k k k k k kR R −= and restore the message x . 

3.4 Security analysis 

There are several brute force attacks are considered as follows. First one is a brute-force of the input 
message x  within an encryption and verification for the coincidence of ciphertexts. The complexity 
of this attack equals 1 2LmN = . Next is a brute-force of ciphertexts lU , lV , 1,l L=  via solving of a 
system of linear equations relative to logarithmic signatures and the subsequent attack on 
logarithmic signatures. The complexity of this attack equals 2

2 2 LmN = . Then, we consider brute-force 
of a secret homomorphic transformation  , calculation lD and attack on logarithmic signatures. The 
secret transformation  is based on matrix multiplication. A brute force attack by selection  has a 

complexity 
2

2m where m the dimension of the matrix is m m  . Also, analytical attacks on secret 
transformation   can be proposed as follows: Arrays of 

1 2,k k L  and 
1 2,k k L   for factorizable 

logarithmic signatures 
1 2,k k L  are defined by expressions: 

1 2 1 2 1 2 1 2, , , , , , ,( ) ( ) ( ) ( )i j k k i j k k j k k i j k kt   = + +
, 1 2 1 2 1 2, , , , ,( ) ( ) ( )i j k k i j k k j k k  = +

 



where 
1 2, ,( ) 0i j k k  , 

1 2,( ) 0j k kt  , 
1 2,( ) 0j k k  1, ji r= is the record`s number in 

1 21, ( , )j s k k= the array 

block, for a logarithmic signature 
1 2,k k of the type ( )

1 2
1 2

1 ( , )
,

,..., s k k
k k

r r . Let 
1 2 1 2, , ,( ) ( ) 0i j k k j k kt +  . The 

values 
1 2, ,( )i j k k , 

1 2,( )j k kt , 
1 2,( )j k k are considered secret and there is no mapping 

1 2 1 2 1 2 1 2, , , , , , ,( ) ( ) ( ) ( )i j k k i j k k i j k k j k kt   = + +
 

and it is impossible to construct equations relatively  

1 2 1 2 1 2 1 2, , , , , , ,( ) ( ) ( ) ( )i j k k i j k k i j k k j k kt   = + + . 

It is possible to try to strengthen the attack based on the addition of records 
1 2, ,( )i j k k within 

1 2, ,( )i j k k the block of arrays. Since the value of the secret parameter 
1 2,( )j k kt is constant for the entries 

1 2, ,( )i j k k in j the block of the array 
1 2,k k and the secret parameter 

1 2,( )j k k is constant for the entries 

1 2, ,( )i j k k in the corresponding j block of the array, 
1 2,k k it is possible to consider the sums 

1 2, ,( )i j k k

and
1 2, ,( )i j k k  

( )
1 1 2 2 1 2 1 1 2 2 1 2 1 1 2 1 1 2, , , , , , , , , , , ,( ) ( ) ( ) ( ) ( ) ( )i j k k i j k k i j k k i j k k i j k k i j k k      + = + + +  without

1 2,( )j k kt , 

 

1 1 2 2 1 2 1 1 2 1 1 2, , , , , , , ,( ) ( ) ( ) ( )i j k k i j k k i j k k i j k k   + = +  without
1 2,( )j k k . 

Since 
1 1 2 2 1 2, , , ,( ) ( )i j k k i j k k  , there is no mapping 

( )
1 1 2 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2, , , , , , , , , , , ,( ) ( ) ( ) ( ) ( ) ( )i j k k i j k k i j k k i j k k i j k k i j k k      + = + + +

 
and it is impossible to obtain a solution to the equation 

( )
1 1 2 1 1 2 1 1 2 2 1 2 1 1 2 2 1 2, , , , , , , , , , , ,( ) ( ) ( ) ( ) ( ) ( )i j k k i j k k i j k k i j k k i j k k i j k k      + = + + +  

relatively to  . Also, there are following analytical attacks on  non-factorizable logarithmic 
signatures 

1 2,k k L   are considered. The first attack on  is based on the analysis of records in arrays 

1 2,k k L  and
1 2,k k L    

1 2 1 2 1 2, , , , , ,( ) ( ) ( )i j k k i j k k i j k kt  = + , 
1 2 1 2 1 2, , , , , ,( ) ( ) ( )i j k k i j k k i j k k  = + , 1,2i = . The values 

1 2, ,( )i j k kt and 
1 2, ,( )i j k k are considered as a secret ones 

1 2 1 2 1 21, , 2, , ,( ) ( ) ( )j k k j k k j k kt t t= = , 

1 2 1 2 1 21, , 2, , ,( ) ( ) ( )j k k j k k j k k  = =  and it is impossible to obtain ratios 

1 2 1 2 1 2 1 2, , , , , , , ,( ) ( ) ( ) ( )i j k k i j k k i j k k i j k kt    + = +  to compute  . The second attack on  is based on the 

observation that the values of the secret parameters 
1 2,( )j k kt and 

1 2,( )j k k are constant in each j block 

of the array of records 
1 2, ,( )i j k k and 

1 2, ,( )i j k k . It is possible to strengthen the attack on  , if we 

consider the sum of records 
1 2 1 21, , 1, ,( ) ( )j k k j k k + and 

1 2 1 21, , 2, ,( ) ( )j k k j k k + within blocks of arrays 
1 2, ,( )i j k k

and
1 2, ,( )i j k k   

( )
1 2 1 2 1 2 1 2 1 2 1 21, , 2, , 1, , 1, , 1, , 1, ,( ) ( ) ( ) ( ) ( ) ( )j k k j k k j k k j k k j k k j k k      + = + + +

, 

1 2 1 2 1 2 1 2 1 2 1 21, , 2, , 1, , 1, , 1, , 1, ,( ) ( ) ( ) ( ) ( ) ( )j k k j k k j k k j k k j k k j k k     + = + + +
. 

It is possible to obtain an equation for calculation  

( )
1 2 1 2 1 2 1 21, , 2, , 1, , 2, ,( ) ( ) ( ) ( )j k k j k k j k k j k k    + = +

. 
Taking into account the requirement ( )

1 2
1, 2, ,j j k k

  + = for the values of the strings 

1 2
1 2

1, 2, ,,
,j j k kk k

      , 1,j m= , 1 2,k k we obtain a unique equation for all blocks of the array of records

1 2, ,( )i j k k  

1 2 1 21, , 2, ,( ) ( )j k k j k k z  = + . 

Since the equation is written only for one m bit string, and the number of required values of the 
binary matrix  is equal to 2m , there remains uncertainty in 2m m− bits regarding the coefficients 

of the matrix  . Complexity of the attack 
2

3 2m mN −= . 



The third attack on  is determined by the possibility of constructing sums from 2n  entries on 
arrays of logarithmic signatures 

1 2,k k L  , so that 
1 2

1

, ,

1,2, ( ,..., )

( ) 0
n

i j k k

i j j j

t
 

= and 
1 2

1

, ,

1,2, ( ,..., )

( ) 0
n

i j k k

i j j j


 

= , 

then we obtain a relatively solvable  equation 

1 2 1 2

1 1

, , , ,

1,2, ( ,..., 0 1,2, ( ,..., )

( ) ( )
n n

i j k k i j k k

i j j j i j j j

  
   

=  , 

1 2 1 2

1 1

, , , ,

1,2, ( ,..., 0 1,2, ( ,..., )

( ) ( )
n n

i j k k i j k k

i j j j i j j j

 
   

=  . 

A system of m linear equations allows you to find a solution relatively  

1 2 1 2

1 1

, , , ,

1,2, ( ,..., ) 1,2, ( ,..., )

( ) ( )
n n

i j k k i j k k

i j j j i j j j

  
   

=  . 

The system of equations is based on the selection of m bit records from the arrays of values of 
logarithmic signatures in the sets 

1 2, ,( )i j k k
1 2, ,( )i j k k , the sums of the entries in which contain 

1 2

1

, ,

1,2, ( ,..., )

( ) 0
n

i j k k

i j j j

t
 

= 1 2

1

, ,

1,2, ( ,..., )

( ) 0
n

i j k k

i j j j


 

= . Since the values of 
1 2, ,( )i j k kt and 

1 2, ,( )i j k k are considered 

secret, the values of the sums 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j

t
 

 cannot 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 be predicted and can be 

assumed with probability 22 m− , what the selected entries in sets 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 and 

1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 will be equal to zero. To build a system of equations,  it is necessary to have m

cases of equality of zero 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j

t
 

 both 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 in the sums 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 and 

1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 for each calculation  . The probability of such an event can be estimated by the 

value of 
222 m− . An important issue is establishing the fact that the matrix calculated  by the system 

of equations for a random set 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 is 
1 2

1

, ,

1,2, ( ,..., )

( )
n

i j k k

i j j j


 

 the desired one. 

Representations of arrays 
1 2,k k L  and 

1 2,k k L  do not allow verification 
1 2 1 2, , , ,( ) ( )i j k k i j k k  = due to 

secrecy 
1 2 1 2, , , ,( ) , ( )i j k k i j k kt  . 

Finally, we can evaluate of the quantum secrecy of directional encryption based on a 
cryptosystem with an incomplete system of linear equations. The cryptosystem security for 
directional encryption is based on the secrecy of the homomorphic matrix transformation and the 
incompleteness of the linear equations relative to the values of the logarithmic signatures. The 
impossibility of an algebraic solution regarding the uncertainty of the matrix transformation is 
determined by the incomplete definition of systems of linear equations for matrix equations and a 
probabilistic assessment of the possibility of constructing such a system of equations. The absence 
of a mechanism for verifying the truth of solutions for an attack on a secret matrix transformation 
based on random samples of records of logarithmic signatures indicates a probabilistic assessment 
of the success of the attack. It is not possible to formulate a target function for a quantum algorithm 
for such an attack. A similar attack on the algebraic solution relative to the values of the logarithmic 
signatures due to the indeterminacy of the linear equations also cannot be formalized with a target 
function for the quantum algorithm. A quantum attack based on Grover's algorithm with exponential 
complexity is possible for the search attack of the input text based on the given cipher text. It appears 
that polynomial attacks on the algorithm are not possible, since the data in the algorithm (records of 
arrays 

1 2,k k and 
1 2,k k ) are structured as random sets without regularities. Simple logarithmic 

signatures are well structured, however, secret transformations used to construct protected 
logarithmic signatures introduce strong randomization in array records. 
 
3.5 Security parameters evaluation 

We consider the general parameters of the cryptosystem as follows: m -bit length of logarithmic 
signatures; K as a number of logarithmic signatures in the cryptosystem; L as a number of 
factorizable logarithmic signatures in the cryptosystem; 

Kr types of logarithmic signatures. Below 



are the sizes of keys for building a cryptosystem with parameters 4k = , 16K k k=  = , 8L = , 

1 2, (2,2,..., 2)

m

k kr = .  

 
Table 1 
Secret keys costs 

 
m  

Costs for secret keys 
2K Km =  

byte 
Kt Km=  

byte 
K Km =  

byte 

2m =

byte 
K K Kt  + + + byte 

8 256 128 128 8 520 
16 1024 512 512 32 1080 
32 4096 2048 2048 128 8320 
64 16384 8192 8192 512 33280 

 
Table 2  
Public keys costs 

Public key costs 

K K =  byte K K =  byte K K + byte 

256 32 288 
1024 32 1056 
4096 32 4128 
16384 32 16416 

 
Table 3  
Decryption costs  

m  The 
size of 
the 
cipher 
text is 
U  

beat 

The 
size of 
the 
cipher 
text is V  

beat 

The 
number is 
multiplied 

K by the 
binary 

dimension 
matrix
m m   

The 
number is 
complex

K K +  
m - 
everyday 
words 

L  

Number 
added 

K K +

with words 

K Kt +  

The number is 
added when 
reducing the 
system of linear 
equations 

( ) / 2L K L−  

The 
number is 
calculated

1

K
−  

8 64 64 8 8 8 32 8 
16 128 128 8 8 8 32 8 
32 256 256 8 8 8 32 8 
64 512 512 8 8 8 32 8 

 
Table 4  
Security estimation 

m  Guessing 
attack through 
selection of 
input text 

2 Lm−  

A brute force 
guessing attack   

2

2 m−  

A brute force guessing 
attack  through entries in a 
block 

2( )2 m m− −  

Attacking the matrix 

through a system of 
equations 

222 m−  

8 642−  642−  562−  1282−  
16 1282−  2562−  2402−  5122−  
32 2562−  10242−  9922−  20482−  
64 5122−  40962−  40322−  81922−  

It should also be noted that the arrays K are generated as random entries and can be generated 
based on the initial value. 

The secret keys of the cryptosystem are K , Kt , K ,  . 
Public keys are defined as K , K . 
 



4. Conclusions 

A cryptosystem based on an incomplete system of linear equations with respect to logarithmic 
signatures is a good candidate for post-quantum cryptography. The incompleteness implemented in 
the algorithm for systems of linear equations guarantees undecidability with respect to secret 
logarithmic signatures and secret matrix transformation. Quantum secrecy is based on the high 
randomization of records in arrays of logarithmic signatures and the absence of regularities in the 
structured data of the algorithm. The directional encryption algorithm is well-scalable with respect 
to computing costs, memory, and limitations of hardware platforms without reducing the high level 
of secrecy. Due to the selection of the general parameters of the cryptosystem, the declared NIST 
levels of secrecy of 128, 192, 256 bits are realized. The cost of public keys when calculating over 
words of 16, 32 bits is in the range of 1 ÷ 4 Kbytes and is comparable to implementations for the best 
candidates for post-quantum cryptography. The basic computational operation of the algorithm is 
bitwise XOR over the words of logarithmic arrays. 
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