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Abstract 
The key aspects of web services development, administration structures, and the use of machine learning 
technologies for server optimization are explored. The tendencies of web services development, scaling 
options, importance and basic concepts of microservice architecture are considered. 
The article highlights the general principles of artificial intelligence, machine learning, and deep learning 
and their impact on the functionality of web services. To enhance the operation of web services, an 
architecture of an intelligent system for automatic scaling is presented and machine learning algorithms 
with increased reliability are elaborated. The article optimizes the performance of such a system. Methods 
for detecting abnormal system behavior are proposed, which allows preventing failures or a decrease in 
overall performance. 

Keywords  
Microservices architecture, scaling, artificial intelligence, machine learning, deep learning, pattern, API, 
DevOps, CI/CD, PBW, PAD, Docker, One-Class SVM.1 

1. Introduction 

The research deals with the issue of developing effective models, methods, and algorithms for 
scaling web services in modern information systems based on machine learning to ensure stable 
operation of servers when the load changes.  

A detailed analysis of the relevance of the problem, the task statement, and the main research 
directions were defined by the authors in their previous work [1]. In particular, this article presents 
the necessary architectural and algorithmic solutions. 

The development trends of web services at the present stage have been significantly influenced 
by the following events: 

- emergence of cloud platforms (2010s): In the 2010s, cloud-based platforms for developing web 
services, such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform, were 
launched. These platforms provide infrastructure and tools for deploying, managing, and scaling 
web applications. Web analytics and performance optimization services, cloud storage, mobile 
applications, etc. have also appeared; 

- spread of microservice architecture (since the 2010s): One of the current trends in web 
development is the use of microservice architecture for web services. Instead of creating monolithic 
applications, developers break down functionality into small, independent components that can be 
deployed, scaled, and managed separately. This allows for greater flexibility, faster development 
and deployment, and easier integration with other services; 

- expansion of the capabilities of artificial intelligence and the Internet of Things (since the 
2010s): Recently, web services have started to use artificial intelligence to automate routine tasks, 
analyze data, and improve user experience. Web services are also being developed to connect to the 
Internet of Things, allowing physical devices to be controlled over the network. 

Preliminary analysis [2-8, 15-17] shows that there is a lack of research in this area. This is 
especially true when it comes to identifying effective models, methods, techniques, and algorithmic 
hardware and software for reliable management of servers on the global Internet. With this in 
mind, the purpose of this article is to justify the choice of a rational architecture and develop 
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algorithms for an intelligent web service scaling system based on Microservices Architecture 
(MSA). 

The observed literature thoroughly discusses the architectural patterns in MSA and common 
machine learning models. However, there is a significant gap in research regarding the application 
of machine learning techniques specifically for scaling Docker-based microservices within MSA. 
This article aims to address this gap by developing and justifying an intelligent system architecture 
and algorithms focused on optimizing the performance and reliability of such systems. 

Traditional scaling methods for web services typically rely on threshold-based policy rules. 
While effective, these methods have limitations. Incorporating machine learning into the scaling 
process offers significant benefits, including improved adaptability, more efficient resource 
management, and better performance prediction. 

2. Types Of Scaling 

There are two main types of scaling that are used to provide growth in resources and system 
performance (Figure 1): 

- Vertical Scaling: This type of scaling involves increasing the capacity of hardware such as 
processors, memory, and disk. With vertical scaling, one single server can handle more tasks or 
process more data. For example, increasing the amount of RAM or upgrading to a more powerful 
processor. 

- Horizontal Scaling: This type of scaling is adding other servers or nodes to the system. It 
spreads the load across many physical or virtual servers to provide more processing power and 
availability. Horizontal scaling is often used in cloud environments and distributed computing 
systems. 

 
Figure 1: The main types of web service scaling 

3. Web Service Architecture 

Web service architecture can be organized using two main approaches: monolithic architecture and 
microservice architecture (Figure 2). Monolithic architecture is a traditional approach to web 
application development in which all application features are located in a single software module, 
usually a monolithic application or a monolithic server. In a monolithic architecture, all code, 
database, and logic are located in a single application, which facilitates development and 
deployment. 

The advantages of a monolithic architecture include ease of development and testing, no 
problems with interactions between components, and reduced infrastructure costs. However, 
monolithic applications can become difficult to scale and develop in large projects, and they can be 
less flexible in introducing new features. 



 
Figure 2: Monolithic and Microservices Architecture [9] 
 

Microservice architecture (Figure 3) is an approach where a large web application is broken 
down into small, independent services that work together using lightweight communication 
mechanisms such as APIs. Each service is responsible for limited functionality and has its own 
database.  

Microservice architecture provides greater modularity, scalability, and flexibility in web 
application development. Each service can be independently developed, scaled, and maintained. In 
addition, microservices can use different technologies and programming languages, which gives 
developers more freedom to choose technologies. 

However, the microservice architecture also has its challenges, including the complexity of 
interactions between services, configuration, and monitoring management, and greater complexity 
in implementing and managing multiple services. 

 

 
Figure 3: Example of Microservices Architecture 

 



The advantages and disadvantages of MSA compared to monolithic architecture are discussed in 
more detail in Table 1. 
Table 1 
Comparison of MSA with monolithic architecture 

Characte
ristic  

MSA - architecture 
Monolithic 
architecture 

 

Structure 

The high degree of autonomy. The 
system functions are divided into 

independent, slightly connected parts 
with a smaller code volume. 

Lack of autonomy. 
System functions are 
tightly coupled in one 

large block of code. 

Portability Very high. Very limited 
portability. 

Reusability Highly reusable. Very limited code 
reusability. 

Modularity 
and 

scalability 

Highly modular and scalable. Limited modularity 
and difficult to scale. 

 
Time to 
market 

The start time to market depends on the 
readiness of individual services.  

The more code is reused, the shorter the 
time. 

If the system's microservices are 
developed from scratch, the time is 
usually longer than for a monolithic 

architecture. 

Long time to market, 
especially in large 

systems. 
Shorter time to 

market in small and 
simple systems. 

 
Release cycle 
and updates 

Very short release cycle, rapid 
implementation of changes and updates. 

The long and typically 
very laborious release 
cycle for new versions 

and updates. 

Initial costs 

Usually high. It depends on the size of the 
system. 

Initial costs are offset by operational cost 
savings. 

Typically low. They 
become larger in large 

corporate systems. 

Operational 
costs 

Low. Easier to maintain and operate. High. Difficult to 
maintain and operate. 

 
Complexity 

High Low 

API control High Low 

Structural data 
integrity 

Decentralized databases, so maintaining 
data integrity is more challenging. 

Centralized database, 
making it easier to 

maintain data integrity 
throughout the system. 

Performance Typically lower. Typically higher. 

Security More security issues Less security issues. 

Implementation 
in software 

development 
organization 

Hard to implement depending on the 
organizational structure. Requires 

adoption of flexible development and 
DevOps (CI/CD, etc.). Organizational 

transformation may be needed, which can 
take a long time to achieve. 

Easy to implement. 
Minimal organizational 

transformation is 
required, if any at all. 

Fault tolerance Typically higher. Typically lower. 

 



Microservice architecture (Figure 3) is better designed for scaling than monolithic architecture 
for the following reasons: 

- Decentralization. Microservices are distributed across multiple servers, which makes them 
more scalable than monolithic applications that run on a single server. This means that you can 
easily add or remove servers as needed to maintain the desired performance. 

- Isolation. Each microservice is isolated from the others, which means that you don't need to 
scale the entire application if there is a significant load on just one microservice. This also means 
that you can scale microservices independently of each other, which can be useful for cost 
optimization. 

- Layer architecture. Microservices are often built using a layered architecture, which allows 
you to scale the application using different technologies for each layer. For example, the storage 
tier can be scaled horizontally and the processing tier can be scaled vertically. 

4. Microservice Architecture (MSA) 

MSA is a technique for creating a complex system from a set of smaller applications, each of which 
is designed to perform a specific limited function. 

These minor applications (or services, or microservices) are developed independently of each 
other and can function independently of each other. Each microservice has an API interface to 
communicate with other microservices in the system. 

The way these individual microservices are organized together determines the functionality of 
the larger system.  

To comprehend the value of microservices and the challenges that come with developing an 
MSA, it is important to understand how microservices interact and communicate with each other.  

This interaction can be linear or non-linear.  
In a linear interaction (Figure 4), microservices transfer data to each other sequentially, 

processing it in the system. Input data is always transferred to the first microservice, and output 
data is always generated by the last microservice in the system. 

 
Figure 4: Linear interaction of microservices 
 

In almost most existing systems, the interaction is non-linear (Figure 5). 
In a nonlinear microservice interaction, data is distributed among different functions in the 

system. Input data can be passed to any function in the system, and output data can be generated 
by any function in the system.  

Let's consider nonlinear interaction using a practical example in a typical e-commerce system 
(Figure 6). 

save or 
update customer information. This microservice is solely responsible for managing customer 
information based on the data it receives from the API call. 

 

 
Figure 5: Nonlinear interaction of microservices 



 

microservice, depending on the type of payment specified in the API call. It's worth noting here 
how the payment verification process is split into two different microservices, each of which is 
specifically designed for a specific payment function. 

This provides flexibility and portability of these microservices to other parts of the system or 
another system if necessary. 

After the payment is processed, other microservices in the system receive API calls to fulfill the 
order. 

This example shows how modular and flexible the MSA system design could be. 

 
Figure 6: An example of a nonlinear interaction of microservices 

5. Artificial Intelligence (AI), Machine Learning (ML) And Deep 
Learning (DL) 

Despite the recent rise in popularity of Artificial Intelligence (AI) and Machine Learning (ML), the 
field of artificial intelligence has existed since the 60s of the XX century. With the emergence of 
various AI subfields, it is important to be able to distinguish them from each other and understand 
what they mean and include. 

First, AI is a general field that encompasses all the subfields we see today, such as ML, Deep 
Learning (DL) (Figure 7), and others. 

Any system that perceives or receives information from the environment and performs actions 
to maximize rewards or achieve its goal is considered an AI system. 

This is very common in robotics today. Most of our machines are designed so that they can 
collect data through their sensors, such as cameras, sonars, or gyroscopes, and use the collected 
data to perform a particular task efficiently. 

This concept is very similar to how humans behave. Humans use their senses to gather 
information from the environment and, based on the information they receive, perform certain 
actions. 

AI is a vast field, but it can be broken down into different subfields, one of which we know 
today as ML. What makes ML unique is that this field works to create systems or machines that 
can learn and improve their models without explicit programming. 

ML does this by collecting data, known as training data, and trying to find patterns and 
regularities in that data to make accurate predictions without being explicitly programmed to do 
so. ML uses different methods to learn from data, and these methods are chosen depending on the 
problems to be dealt with. 

The approaches used in ML are traditionally divided into three broad categories:  
1. Supervised Learning (SL); 
2. Unsupervised Learning (UL); 
3. Reinforcement Learning (RL). 
SL helps to understand the relationship between input and output data. One typical example of 

SL is predicting the price of a house in a certain city. 



Data is collected on existing houses, namely their characteristics and current prices (training 
set), and then the patterns between the characteristics of these houses and their prices are studied. 

After that, you can take a house that is not part of the training set and use the model you built 
to predict its price based on its characteristics. 

UL involves learning the structure of data using grouping or clustering methods. This method is 
often used for marketing purposes. 

For example, a store wants to divide its customers into different groups to effectively tailor its 
products to different demographics.  

It can obtain the purchase history of its customers; study this data to determine purchase 
patterns, and recommend certain products or services that might be of interest to them, thereby 
maximizing its profits. 

Before looking at DL, which is a subfield of ML, it is important to understand what Artificial 
Neural Networks (ANN) is. 

Taking the neurons in the brain as an example, ANNs are models that consist of a network of 
interconnected nodes, also known as artificial neurons. They contain a set of inputs (Input), hidden 
layers (Hidden Layer) connecting the neurons, and an output node (Output) (Figure 8). [10] 

Each neuron has an input and an output that can be transmitted throughout the network. To 
calculate the neuron's output, the weighted sum of all inputs is taken, multiplied by the neuron's 
weight, and usually a shift parameter is added. 

This process continues until the last layer is reached, which is the output neuron. A nonlinear 
activation function, such as a sigmoid function, is applied to obtain the final prediction. 

The resulting predicted value is input into the cost function. This function shows how well our 
network is learning. 

The value of the cost function is used to backpropagate errors through all layers back to the 
first layer by adjusting the weights of the neurons. This allows us to create powerful models that 
can perform tasks such as handwriting recognition, gaming AI, etc. 

In some cases, ANNs can be very powerful, but there are serious drawbacks that limit their 
application: 

- Black Box: ANNs can be hard to interpret, making it complicated to understand how they 
work and why they make certain predictions. This can make it difficult to debug ANNs and trust 
their results. 

- Computational cost: Training an ANN can be computationally expensive, especially for large 
and complex networks. It may require specialized hardware such as GPUs and can take a long time 
to train. 

- Overfitting: ANNs are prone to overlearning, which means they can learn the training data too 
well and fail to generalize to new data. This can lead to poor performance on real-world examples. 

 

 
Figure 7: Relationship between AI, ML, DL 



 
Figure 8: Artificial Neural Networks - ANN 
 

This is where DL comes into play. 
DL can be categorized according to the following key features: 
- Hierarchical composition of layers: Instead of having only fully connected layers in the 

network, we can create and combine several different layers consisting of nonlinear and linear 
transformations. These different layers play a role in extracting key features in the data that would 
otherwise be difficult to find in an ANN. 

- End-to-end training: The network starts with a method called feature extraction. It analyzes 
the data and finds a way to group redundant information and identify important features of the 
data. The network then uses these features to learn and make predictions or classifications using 
fully connected layers. 

Distributed representation of neurons: With feature extraction, the network can group neurons 
to encode a larger feature of the data. Unlike ANNs, no single neuron encodes everything. This 
allows the model to reduce the number of parameters it has to learn from while retaining key 
elements in the data. 

DL is widely used in computer vision. Due to advances in photo and video capture technology, 
it has become very difficult for ANNs to learn and recognize images with high accuracy. The 
reason is that when using an image to train a model, you need to consider each pixel as an input 
parameter of the model. For example, a 256x256 image has more than 65,000 input parameters. 
Depending on the number of neurons in a fully connected layer, the number of parameters can 
reach millions. With such a large number of parameters, there is a chance of overfitting and 
training can take a very long time. With DL, you can create a group of layers called Convolutional 
Neural Networks (CNNs). These layers are responsible for reducing the number of parameters that 
the model needs to learn while preserving the key features of our data. With these additional 
elements, we can learn how to extract certain features and use them to train our model with high 
efficiency and accuracy (Figure 9). 

 
Figure 9: Convolutional Neural Networks  CNN 



6. Algorithms of AI Web Service Scaling System Based on MSA 

Commonly used for web service autoscaling is the Threshold Rules Policy, which consists in 
setting certain thresholds or limits that, when exceeded or reached, cause resources to 
automatically scale to ensure optimal system performance and reliability. 

The use of ML techniques can greatly improve web service autoscaling strategies, especially for 
large and complex systems, as such systems often have a large number of parameters and loads 
that change in a very dynamic way. 

In such systems, patterns emerge that are the result of recurrence or similarity in the data, 
interactions between system components, or the way the system processes the data. 

These patterns can be detected using various machine learning algorithms, which can 
significantly improve the efficiency and scalability of the system, as well as ensure that the system 
as a whole performs more optimally. 

As mentioned, there are many areas in the MSA system where artificial intelligence can be used. 
The focus will be on two main potential areas of improvement (Figure 10), which are 

implemented by individual additional AI services. The first is to increase the system's response 
speed in the event of microservice failure or performance degradation. The second area of 
improvement is the introduction of the proactive role of the Circuit Breaker. 

 
Figure 10: PBW and PAD - Artificial Intelligence Microservices for Enhancing Reliability and 
Manageability of MSA System 
 

The first AI microservice is called Performance Baseline Watchdog (PBW). PBW is an ML 
microservice that determines whether the performance of each microservice in the system meets 
expectations. If the performance of a microservice falls below the expected level by a certain 
amount, PBW sends an alert to operations support or network management systems. If 
performance falls even further, PBW sends an alert to the Operation Support System (OSS) or 
Network Management System (NMS) and can take action to automatically correct the problem. 

The second artificial intelligence microservice is the Performance Anomaly Detector (PAD). 
PAD is a machine learning service that covers the entire MSA system. It analyzes MSA 
performance patterns and tries to detect any unusual behavior. PAD finds problematic patterns in 
the behavior of microservices, automatically detects problems before they occur, and proactively 
acts to resolve them. 

The PBW algorithm calculates the expected performance based on the collected performance 
statistics. The collected performance statistics include API response time statistics, errors or error 
rates of individual microservices, API response codes, and the load applied to the microservice 
itself. Predefined actions are triggered depending on how much the microservice deviates from the 
calculated performance indicator. Based on the PBW configuration, the larger the deviation, the 
more likely it is that a proactive action will be initiated to try to self-heal. However, in the case of a 
minor deviation, no self-healing action should be triggered - a system warning informing the 
system administrator is sufficient. 



Table 2 
Challenges of the MSA System and PBW. 

Problem Action triggered by PBW 

Slow response or 
timeouts 

Scaling microservice vertically or horizontally or restarting 

microservice 

HTTP response 
errors 

Checking the status of Apache, Flask, JVM, Docker 
volumes, SQL service, etc. Restarting the service if 

necessary. 
Microservice does 

not respond (turned 
off). 

Restarting the microservice container. 

 

 
Figure 11: Self-healing Microservices Algorithm 
 

Table 2 shows some of the possible system problems [11-12] that can be encountered during 
system operation and the actions that the PBW service will take to try to fix the problem, and 
Figure 11 and Table 3 show the microservice self-healing algorithm. 
 
Table 3 
Explanation of Terms for Figure 11. 

Term Description 

Healing Action Action taken to fix a failure.  

Healing Lock State State of the microservice where only the self-healing algorithm 
can interact with the problematic microservice. 

Retry Wait Period The time to wait when a treatment fails before retrying. The 
default timeout period before retrying is 2 minutes. 

Unhealable State The state in which the microservice is marked as unhealable after 
its failed attempt to heal itself. 

Maximum Healing 
Attempts 

The maximum number of attempts made to rectify the 
microservice before marking it as unhealable.  

 



PBW uses a linear regression model for training and prediction, while PAD uses a One-Class 
Support Vector Machine (One-Class SVM [13-14]). 

Compared to traditional support vector machines, which are used for classification tasks where 
the data is labeled, One-Class SVM is designed for situations where only one class of data is 
available (unlabeled data). Its main goal is to identify and classify normal data points from outliers 
or anomalies [15-17]. 

Conclusion 

The paper researches the main aspects of web services development, their structure, and the 
impact of ML on this field. In particular, the paper considers web services development trends, 
scaling options, importance, and basic concepts of MSA architecture. 

The general principles of artificial intelligence, machine learning, and deep learning and their 
impact on the functionality of web services are also covered. This helps to understand what 
technological innovations are used to improve the performance of web services and how machine 
learning changes their capabilities. 

The described approach provides a general idea of the basic principles and trends of web 
services development and the impact of machine learning on this industry. This is an important 
basis for further research and implementation of innovations in the field of web services and their 
connection with machine learning. 

Implementation of ML methods in web service autoscaling can provide significant benefits and 
improve the efficiency of the MSA system.  

ML is especially useful for large and complex systems, as it enables the detection of patterns in 
data and the interaction of system components. 

The proposed PBW and PAD algorithms provide the following advantages: 
1. Improved system reliability: These algorithms allow the system to respond to deviations in 

microservice performance and detect anomalies, even before they occur. This allows system 
operators to take action to fix problems faster and more efficiently, increasing overall system 
reliability. 

2. Performance optimization: Rapid problem detection and automatic correction avoids loss of 
productivity. Timely response to abnormalities helps maintain system stability and optimal 
performance, which in turn improves productivity. 

3. Preliminary detection of problems: PAD helps detect anomalous patterns or unusual 
behavior before they can cause serious problems. This allows the system to prevent failures or 
performance degradation, enabling operators to prepare for potential problems and prevent them 
from spreading. 

References 

[1] S. Semerikov, D. Zubov, A. Kupin, M. Kosei, V. Holiver, Models and Technologies for 
Autoscaling Based on Machine Learning for Microservices Architecture (2024), in: CEUR 
Workshop Proceedings, 2024, 3664, pp. 316 330. URL: https://ceur-ws.org/Vol-
3664/paper22.pdf 

[2] P. Raj, A. Raman, H. Subramanian, Architectural Patterns. Packt Publishing, 2017.  
[3] S.Newman, Building microservices: Designing fine-

, 2021.  
[4] M. Bruce, P. Pereira, Microservices in action. Shelter Island, NY: Manning Publications Co., 

2019.  
[5] A. Müller, S. Guido, Introduction to machine learning with python: A guide for data scientists. 

, 2018.  
[6] J. Mueller, Machine learning security principles: Use various methods to keep data, networks, 

users, and applications safe from Prying eyes. Birmingham: Packt Publishing, 2023.  
[7] S. Raschka, Y. Liu, and V. Mirjalili. Machine learning with pytorchand Scikit-Learn: Develop 

machine learning and deep learning models with python. Birmingham: Packt Publishing, 2022.  



[8] M. Abouahmed, and O. Ahmed. Machine learning in microservices: Productionizing 
Microservices Architecture for Machine Learning Solutions. Birmingham: Packet Publishing, 
2023.  

[9] Ubuntu server - for scale out workloads  Ubuntu, 2023. URL: https://ubuntu.com/server/ 
[10] A. Kupin. Application of neurocontrol principles and classification optimisation in conditions 

of sophisticated technological processes of beneficiation complexes (2014), in: Metallurgical 
and Mining Industry, 2014, 6(6), pp. 16 24. ISSN: 20760507. 

[11] J. Brains, PyCharm: The python IDE for professional developers by jetbrains, JetBrains, 2021. 
URL: https://www.jetbrains.com/pycharm/ 

[12] DBeaver Community, 2023. URL: https://dbeaver.io/ 
[13] MySQL, 2023. URL: https://www.mysql.com/ 
[14] Accelerated Container Application Development, 2023 Docker. URL: https://www.docker.com/ 
[15] A. Davis, Bootstrapping Microservices with Docker, Kubernetes, and Terraform: A project-

based guide. Manning, 2021.  
[16] S. Wells, Enabling Microservice Success: Managing Technical, Organizational, and Cultural 

 
[17] C. Richardson, Microservices Patterns: With examples in Java. Manning, 2018.  

https://www.jetbrains.com/pycharm/
https://www.docker.com/

