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Abstract 
Water resources are Ukraine's strategic environmental asset. As a result of the destruction caused by the 
Russo-Ukrainian War, critical water infrastructure has been severely damaged. This makes it essential to 
effectively manage and conserve water resources in the face of increasing anthropogenic impact. The use 
of machine learning methods to monitor water bodies' conditions based on optical and Synthetic Aperture 
Radar (SAR) satellite images allows for automating analysis processes and providing more accurate and 
timely results, which is important for making reasonable management decisions. In this study, information 
tools for mapping and assessing the dynamics of surface water body changes were developed based on 
Sentinel-1 and Sentinel-2 data using a convolutional neural network. They were used for the mapping of 
surface water bodies in the Lower Dnipro sub-basin affected by the destruction of the Kakhovka 
Hydropower Plant dam. To improve the result of satellite image mixed pixels classification in shallow areas 
of swampy water bodies at the bottom of the destroyed Kakhovka Reservoir, it is proposed to use a block 
data model and a probabilistic approach to assess the presence of "water" and "ground" class objects in the 
images, which allows to achieve mapping accuracy of up to 96%. 
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1. Introduction 

Surface water resources play a key role in the functioning of human society and ecosystems 
worldwide [1]. In Ukraine, water bodies are increasingly threatened by pollution and degradation as 
a result of military operations and unsustainable management practices and require the introduction 
of modern information technologies to detect changes in their condition in a timely manner and to 
support management decisions. 

According to the Water Code of Ukraine, the Law of Ukraine on Environmental Protection, the 
Water Strategy of Ukraine until 2050 and other legislative acts, all water resources are subject to 
protection from pollution, contamination, depletion and other impacts that may affect water supply 
conditions, harm human health, reduce fish stocks, worsen the living conditions of some animals, 
reduce soil fertility and other adverse effects due to changes in the physical and chemical properties 
of water, reduce its capacity for natural purification and disrupt the hydrological and 
hydrogeological regime. The Russian invasion of Ukraine caused significant and sometimes 
irreparable damage to the critical infrastructure of centralized water supply and sewerage, 
hydrotechnical structures for flood control, as well as hydropower facilities and the hydrotechnical 
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network of irrigation and drainage systems. The Association Agreement between Ukraine and the 
EU requires Ukraine to implement the provisions of Directive 2000/60/EC (Water Framework 
Directive) [2]. It requires Member States to take the necessary measures to prevent the deterioration 
of all surface water bodies [3]. According to the Association Agreement with the EU, Ukraine must 
also implement relevant measures in practice [4]. 

Due to the destruction of ground-based monitoring stations as a result of military operations, 
satellite imagery is the main source of data on the surface water bodies condition. Water bodies are 
characterized by enhanced absorption of solar radiation in the optical, near and shortwave infrared 
regions of the electromagnetic spectrum and are clearly distinguished from other classes of the 
Earth's surface by their low reflectance values [5, 6]. Among the freely available optical satellite 
images, the best spatial resolution of 10 and 20 m and the highest revisit frequency (5 days in the 
absence of cloud cover) are provided by the Sentinel-
Copernicus Earth Observation Programme implemented in partnership with the European Space 
Agency. Images can be downloaded from the EO Browser (https://apps.sentinel-hub.com/eo-
browser), Copernicus Browser (https://browser.dataspace.copernicus.eu/), Alaska Vertex 
(https://search.asf.alaska.edu/), etc. platforms. Sentinel-2 spectral bands and spectral indices 
calculated from them, such as Normalised Difference Water Index (NDWI), Modified Normalised 
Difference Water Index (MNDWI), Automated Water Extraction Index (AWEI), etc. are input data 
for surface water body classification and identification tasks [7, 8]. 

Synthetic Aperture Radar (SAR) satellite observations allow the dynamics of water surface 
changes to be monitored regularly and independently of weather conditions. The interaction of the 
radar signal with the surface is characterized 0), the value of which depends 
on surface properties, in particular relief, texture, moisture and surface conductivity [9]. Since a 
smooth water surface is a specular reflector, a significant portion of the reflected signal does not 
reach the radar sensor, so water objects are characterized by a very low backscatter value and are 
represented by a dark color in SAR images [10]. The freely available Sentinel-1A Ground Range 
Detected (GRD) SAR images (Sentinel-1B has been decommissioned in December 2021) at a spatial 
resolution of 10 meters and a revisit frequency of 12 days allow regular all-weather monitoring of 
surface water bodies. 

The simplest approach to surface water mapping is threshold segmentation. The "water" class 
includes Sentinel-2 pixels with positive NDWI and MNDWI values [11]. In the case of SAR data, 

0 threshold, 
0 histogram and its approximation by Gaussian or gamma 

distributions [12]. The optimal threshold can be determined based on the principle of maximum 
similarity of the resulting water mask obtained from SAR data to the reference mask [13]. In this 
case, the maximum accuracy of the result is achieved for the data in VH polarization, and the data 
in VV polarization are the most resistant to threshold variations [14]. However, such approaches 
have not been sufficiently studied in areas of waterlogged soils and wetlands, which are 
characterized by the presence of mixed pixels in the images. In this situation, it is preferable to use 
a probabilistic approach and machine learning methods.    

Machine learning approaches are widely used in the mapping of water bodies [15]. Convolutional 
Neural Networks (CNN) provide high accuracy results, provided a representative sample of reference 
areas of the Earth's surface is available [16]. Algorithms such as decision trees, random forests and 
support vector machines have proven highly effective in detecting pollution and predicting water 
quality [17]. Linear regression, decision tree regression and multivariate regression help to predict 
quantitative indicators such as the level of pollution or the concentration of certain chemicals in 
water [18]. K-means, hierarchical clustering and DBSCAN algorithms allow water bodies to be 
grouped by similarity of condition, helping to identify areas with similar environmental 
characteristics [19].  

The peculiarity of mapping the water surface of hydrotechnical facilities destroyed by war is the 
presence of numerous shallow water bodies or swampy areas, which produce mixed pixels on satellite 
images and cause an additional error in the mapping results. Shallow surfaces can be misclassified as 



ground, contributing to inaccuracies in water mapping. This requires finding new classifiers capable 
of correctly separating mixed classes.  

Therefore, the aim of this study is to develop new information tools for the mapping of surface 
water bodies, based on machine learning methods, which will also ensure the correct detection of 
pixels of the "water" class in swampy areas. 

2. Materials and Methods 

2.1. Study area 

The study area of about 8 thousand km2 is located in southern Ukraine at the intersection of 
Dnipropetrovsk, Kherson and Zaporizhzhia Oblasts, and includes a fragment of the Lower Dnipro 
Basin, the Dnipro, Tomakivka, Solona, Kinska, and Kamianka rivers, Belozersky Liman, the 
Zaporizhzhia Nuclear Power Plant (ZNPP) pond and the Kakhovka Reservoir, destroyed by the 
occupiers as a result of the Kakhovka Hydroelectric Power Plant (HPP) dam collapse during the 
Russian invasion of Ukraine on 6 June 2023 (Fig. 1).  

The dam's explosion caused a rapid water outflow from the Reservoir. Before the disaster, its area 
was about 2.2 thousand km², and by 11 June 2023, the water level in the Reservoir had dropped by 
73%.  

The destruction resulted in the creation of 5-8 large reservoirs connected by the old Dnipro 
riverbed, and 15-20 medium and large reservoirs that lost their direct connection to the river [20]. 
The irrigation and drinking water supply systems in both the occupied and Ukraine-controlled 
territories were destroyed. 
 

 

Figure 1: Study area in Dnipropetrovsk, Zaporizhzhia and Kherson Oblasts of Ukraine. Sentinel-2 
image, 25 May 2024. Basemap: Here Wego Terrain (EPSG:4326 WGS 84). 

2.2. Satellite data 

Cloud-free Sentinel-2 images and Sentinel-1 images close in acquisition time were used as input data 
for surface water detection.  

Three observation periods were selected: before the Kakhovka HPP dam collapse, two weeks and 
one year after the collapse.  

The observation periods were chosen at a time when the water surface of the Kakhovka Reservoir 
was not changing too rapidly, allowing the joint use of Sentinel-1 and Sentinel-2 images with a slight 
time lag. Satellite image acquisition dates are shown in Table 1. 



Table 1 
Sentinel-1 and Sentinel-2 image acquisition dates 

 
 
 
 
 
 
 

Sentinel-2 L2A images resulting from atmospheric correction contain Bottom of Atmosphere 
(BOA) reflectance were taken from the Copernicus Open Access Hub (https://scihub.copernicus.eu). 
Bands "B02" (490 nm), "B03" (560 nm), "B04" (665 nm), "B05" (705 nm), "B08" (842 nm), "B11" (1610 
nm)  were used in each acquisition date. 

Sentinel-1A GRD Interferometric Wide (IW) images were acquired from Path 167: Flight Direction 
 Descending, Frames  431, 437. The Sentinel-1 GRD datasets were converted to SAR 

-processed using ESA SNAP 8.0 software 
(https://step.esa.int/) in the following main stages [14, 21]: Apply Orbit File, Remove Thermal Noise, 
Remove GRD Border Noise, Calibration, Speckle Filtering, Terrain Correction (Copernicus 30 m 
Global DEM), Linear-to-dB. 

2.3. Water Body Detection Methods 

2.3.1. Convolutional neural network 

Satellite images were classified using a CNN with a logistic activation function, using the Adaptive 
Moment Estimation (Adam) Optimizer and the categorical cross-entropy loss function [22]. The 
neural network architecture consists of three convolutional layers, each accompanied by a 
dimensionality reduction layer followed by a layer that converts 2D data to 1D and two fully 
connected layers. 

The neural network model is implemented in two ways: using the Keras library (Python 
programming language) and using ML.Net (C# programming language) [23].  

2.3.2. Block data model 

Some fragments of the input images contain swampy areas at the bottom of the destroyed Kakhovka 
Reservoir, which are either shallow water or wet soil, and can be classified as "ground" or "water" 
with almost equal probability. This factor adds uncertainty to the model and reduces the accuracy of 
the binary classification. To improve the classification accuracy of mixed pixels, a physical data 
model is proposed that divides the input image into blocks and estimates the homogeneity of each 
block and its belonging to the "water" or "ground" class (Fig. 2). The combination of mowing scanning 
area method and binary CNN classification allows to obtain statistical characteristics for two classes 
("ground" and "water") within mixed image fragments (blocks). 

The model combines the following operations [24]: 
 
1. Analysis of standard deviations and average values: for mixed blocks, the standard deviations 

0 of the pixels are calculated for both classes. This allows 
to determine which class dominates in the image block. 

2. Splitting into sub-blocks: significantly heterogeneous blocks can be split into sub-blocks for 
more detailed analysis. Each sub-block is classified again. 

3. Analyzing of adjacent blocks: 

Observation period Satellite Acquisition date 

Before dam collapse 
Sentinel-1 
Sentinel-2 

03.05.2023 
06.05.2023 

Two weeks after dam collapse 
Sentinel-1 
Sentinel-2 

20.06.2023 
20.06.2023 

One year after dam collapse 
Sentinel-1 
Sentinel-2 

21.05.2024 
25.05.2024 



• Scanning with a mowing window: the scanning window is shifted by half a block to analyze 
neighboring blocks. This allows to get additional information about the change in characteristics 
in adjacent areas and better understand their class distribution. 

• Detection of blocks with a predominant class: after scanning, it is possible find blocks where, 
for example, ground predominates. To do this, we analyze the statistical characteristics of the 
blocks and determine which of them have a significant probability for one of the classes. 

• Calculation of statistical characteristics: for each block, statistical characteristics (mean value, 
standard deviation) are calculated for pixels of "ground" class. Similar calculation is 
performed for blocks with a predominance of "water" class. This allows to obtain statistical 
characteristics for two classes within one disputed block. 

 

 

Figure 2: Physical data model in a surface water body mapping system. 

The statistical characteristics obtained allow a more accurate classification of disputed blocks. If 
the probabilities for both classes in a disputed block are similar, additional statistical data can be used 
to make a final decision as to whether the block belongs in one class or another. 

2.3.3. Classification accuracy assessment 

Binary raster water masks are groups of adjacent or separate pixels that represent water bodies on 
the Earth's surface.  

True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) indicators can 
be used to evaluate the effectiveness of the classification model in correctly and incorrectly 
identifying water bodies. 

Binary similarity coefficients are measures of the similarity of two or more sets/objects by 
calculating the ratios of the combination and intersection of their elements or areas. In the case of 
water detection, the pixels of the class "water" of the resulting mask are compared with the water 
bodies of the reference mask. The Jaccard Index or Intersection-Over-Union (IoU) is a binary measure 
of similarity between the reference and the resulting water masks [14, 25]: 

𝐼𝑜𝑈 =
𝑆𝐵,𝑅

𝑆𝐵 + 𝑆𝑅 − 𝑆𝐵,𝑅
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
, 

(1) 

 
where 𝑆𝐵  water bodies area on the reference mask, 
𝑆𝑅  water bodies area on the resulting mask, 
𝑆𝐵,𝑅  area of water bodies intersection on two masks. 



IoU is calculated as the quotient of the intersection area of the reference and result masks divided 
by the area of their merging. Its value ranges from 0 to 1, where 0 means that the masks do not 
overlap and 1 means that the masks overlap completely. 

The approach to statistical analysis of image blocks is more localized and specific to solving the 
problem when both classes are present in the block. It differs from IoU, which is used to evaluate the 
accuracy of object detection in general and does not include analysis of the behavior of neighboring 
areas or calculation of statistical characteristics of classes. IoU is used to assess the accuracy of the 
resulting water mask. 

3. Results 

3.1. Water bodies identification 

To implement the neural network classification models, and the proposed block model of data 
representation and statistical analysis, information tools were developed using the .NET Framework 
platform. It consists of the following modules: 

 Modelling: neural network models and their integration. 
 Image processing: image upload, pre-processing and block representation using the OpenCV 

library. 
 Classification: uses neural network models to classify and statistically analyze each image 

block, determining the probability of fragments belonging to different classes of "ground" 
and "water" and storing the results for further analysis. 

 Visualization: is responsible for displaying the classification results on the original image, 
adding appropriate labels and indicators to the image fragments to clearly present the 
processing results to the user. 

Figure 3 shows an example of an image block model. Each block is estimated to belong to the 
class "ground" (g) or "water" (w). The decision to belong to one or the other class is made based on 
the maximum probability given in the top line of each block label. 

  

 

Figure 3: Estimation of the probability of image blocks belonging to the classes "ground" and "water". 
Base image: Sentinel-2 from 25 May 2024. 

The red shading in Figure 3 shows misclassified blocks corresponding mainly to the coastal areas 
of the Kakhovka Reservoir with shallows and swamps. For such blocks, the homogeneity of the 



classes was assessed by calculating the mean and standard deviation of the integral indicator, which 
is a combination of normalized input datasets (Fig. 4). 

 

 

Figure 4: Estimation of the mean and standard deviation of the integral indicator for pixels of the 
classes "ground" and "water" in blocks with classification errors: (a) investigated area; (b) statistical 
characteristics of the distribution of classes within the blocks; (c) the resulting pixel-by-pixel 
classification of the analyzed blocks. Base image: Sentinel-2 Natural Colour, 25 May 2024. 

Figure 5 shows an example of the estimated classification error for one of the image blocks. For 
this block, the CNN model estimated the probability of the ground to be 0.46 and the probability of 
the water to be 0.54.  

 

 

Figure 5: Distribution of the integral indicator in the image block of mixed pixels: (a) white color 
indicates the location of the analyzed image block; (b) bimodal histogram of the integral indicator 
value distribution; (c) histogram approximation by Gaussian distribution. Base image: Sentinel-2 
Natural Colour, 25 May 2024. 

Consider the frequency distribution of the integral indicator, which is a bimodal histogram, where 
the low-value mode corresponds to pixels of the "water" class (W), and the high value mode 
corresponds to pixels of the "ground" class (G) (Fig. 5b). The bimodal histogram for each class is 
approximated by a Gaussian distribution with the mean and standard deviation parameters 
determined empirically for the pixels of the corresponding classes of the analyzed image block (Fig. 
5c), for example: 

𝑓(𝐼𝑤) =
1

𝜎𝑤√2𝜋
𝑒
−
(𝐼𝑤−𝑚𝑤)

2

2𝜎𝑤
2

, 
(2) 

where 𝐼𝑤  pixels of the "water" class, 
𝑚𝑤  mean value determined empirically for the pixels of the "water" class, 
𝜎𝑤  standard deviation value determined empirically for the pixels of the "water" class. 
 



If the classes do not overlap, the threshold can be calculated based on the Otsu method using the 
local minimum of the bimodal histogram. In the case of overlapping classes, it is important to choose 
the correct threshold value to separate the "ground" and "water" classes. In our case, the threshold 
value was chosen according to the criterion of minimizing the first-order error, minimizing standard 
deviation within the and maximizing the TP indicator (Fig. 5c): 

𝑡ℎ𝜎0 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡ℎ
𝜎0
∈𝛺(𝐾(𝑡ℎ𝜎0)), (3) 

 
where 𝑡ℎ𝜎0  𝜎0 threshold value,  
𝛺  the set of all permissible 𝜎0 thresholds, 
𝐾(𝑡ℎ𝜎0)  threshold selection criterion. 
 
The statistical analysis for the selected image block estimated the probability of correct detection 

of water areas TP=0.99, probability of error FP=0.17 (probability of classifying ground as water), 
probability of missing water FN=0.01, IoU=0.846. This indicates a significant improvement in 
classification accuracy compared to the initial results of the neural network model (Fig. 3). 

To visually assess the result, a binary classification was performed for the selected heterogeneous 
blocks (Fig. 4c), for which statistical analysis was applied to improve the class separability. Visual 
analysis of Figure 4c shows that the classification result is consistent with the Sentinel-2 base image. 
The ground contours are clearly visible in the classified image, demonstrating the accuracy of the 
method. 

3.2. Monitoring changes in the water surface area 

The dynamics of water surface changes in the study area is analyzed. Figure 6 shows the multi-
temporal water masks generated using the information tools proposed in this paper.   

Before the destruction of the Kakhovka HPP dam, the estimated water surface area over 
investigated site (Fig. 6a) was maximum and amounted to 23% of the image fragment area (about 1.8 
thousand km2). It includes the area of the Kakhovka Reservoir and adjacent water bodies. Shortly 
after the dam's destruction (Fig. 6b), in June 2023 the percentage of water surface decreased to 11.2% 
(about 900 km2) and in May 2024 was 8.8% (about 700 km2) (Fig. 6c). According to ground-based 
observations, it is known that before the destruction, the total surface area of the Kakhovka Reservoir 
was 2155 km2 (the length of the reservoir was 230 km, and the maximum width was 25 km) [26]. 
Two months after the dam breach, the area of the fragmented Dnipro riverbed was about 120 km2; 
isolated shallow water bodies covered about 307 km2, but continue to decrease due to evaporation 
and drainage, so it is unlikely that any aquatic bioresources will be preserved there [27, 28]. 
 

 

Figure 6: Multi-temporal surface water masks generated using the information tools proposed in 
this study: (a) before Kakhovka HPP dam collapse on 3 and 6 May 2023. Base image: Sentinel-2 
Natural Colour acquired on 06 May 2023; (b) shortly after Kakhovka HPP dam collapse on 20 June 
2023. Base image: Sentinel-2 Natural Colour from 20 June 2023; (c) one year after Kakhovka HPP 
dam collapse on 21 and 25 May 2024. Base image: Sentinel-2 Natural Colour from 25 May 2024. 



Hence, the study results confirm the importance and effectiveness of applying modern machine 
learning methods to assess water bodies' state for their management. The use of these methods is 
critical for ensuring sustainable development and preserving ecological balance in Ukraine. 

4. Discussion 

4.1. Influence of Sentinel-1 flight direction 

The appearance of water bodies on SAR images depends on the orientation of the Earth's surface and 
objects adjacent to water bodies relative to the direction and incidence angle of radar signal.  

Depending on the flight direction (ascending, descending) and the incidence angle, radar shadows 
may appear or disappear on the image, and the nature of wave scattering may change, especially at 
water/forest and water/artificial object boundaries. Gulácsi and Kovács [29] compared the results of 
mapping water bodies using ascending and descending orbit data and concluded that there was no 
significant difference in the results. Kavats et. al [14] investigated the effect of the flight direction 
and confirmed the conclusion that there was no significant difference in the area of water bodies for 
ascending and descending orbits. Irrespective of flight direction, the water masks contain correctly 
highlighted water surfaces. Depending on the incidence angle of the radar signal, the radar shadow 
area includes various areas of the Earth's surface slopes, which can be misinterpreted as water bodies. 
The water masks for the different orbits contain different percentages of noise in vegetation areas 
and show some differences in the texture of gaps in water areas, but these do not affect the final 
mapping result. 

4.2. Comparison with Otsu method 

The proposed information tools for mapping surface water bodies were compared with existing 
methods, namely, SAR water masks generated by the Otsu method based on Sentinel-1 
backscattering coefficient data in VH and VV polarization and optical water masks based on the 
NDWI spectral index from Sentinel-2 data (Fig. 7) [14]: 

𝑁𝐷𝑊𝐼 =
(𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅)

(𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅)
, 

(4) 

 
where 𝜌𝐺𝑟𝑒𝑒𝑛 and 𝜌𝑁𝐼𝑅  reflectance in the green or NIR spectral region. 
The analysis was performed for the Zaporizhzhia NPP cooling pond, Bilozersky Liman, and the 

Dnipro River near the southern part of Zaporizhzhia, which are well visualized on satellite optical 
images and do not contain mixed pixels. We used the survey date of 20 June 2023, shortly after the 
Kakhovka HPP dam collapse, for which optical and SAR images are available, allowing for a reliable 
comparison. The reference water surface mask was created based on the visual interpretation of the 
Sentinel-2 Natural Colour image. The metric of correspondence between the reference and the 
resulting water masks was IoU. 

Water mask based on NDWI data (Fig. 7b) shows the presence of water in the areas of the 
Zaporizhzhia NPP cooling pond, Bilozersky Liman, the main Dnipro riverbed and the full-flow areas 
of small rivers. The "water" class also includes pixel values close to zero for open ground and artificial 
surfaces in residential areas. There are many missing "water" class pixels in the main Dnipro riverbed 
and small swampy areas at the bottom of the destroyed Kakhovka Reservoir. The mask IoU accuracy 
is 0.876. 

0 VV -18.1 dB is 
characterized by a smaller number of water pixel gaps in the areas of the main water bodies and 
shallow swampy areas at the bottom of the Kakhovka Reservoir, but such gaps are still present at 
the water/ground boundary. There are gaps in the water class pixels, for example, on the surface of 
the Mykolaiv Reservoir. At the same time, the disadvantage of SAR data is the presence of speckle 
noise on agricultural fields, slopes of ravine structures, and the sides of the Hrushevsky open pit. 



The percentage of speckle noise in a SAR image depends on the type and size of the filter kernel, 
which is the subject of a further study. The mask IoU accuracy is 0.843. 

 

Figure 7: Comparison of surface water mapping results using different methods based on Sentinel-
1 and Sentinel-2 data from 20 June 2023: (a) NDWI map; (b) water mask generated from positive 
NDWI values; (c) backscattering coefficient in VV polarization; (d) SAR water mask generated from 

0 VV using threshold determined by the Otsu method; (e) pseudo-colour synthesis of Sentinel-2 
bands B8-B11-B3; (f) water mask generated using the tools proposed in this study. Base image: 
Sentinel-2 Natural Colour, 25 May 2024. 

The surface water mask generated by the information tools developed in this study, which is 
based on neural network classification and statistical analysis of image blocks, is characterized by 
the lowest number of data gaps on the water surface (Fig. 7f). At the same time, there are some 
misclassified water pixels in the ground areas. The mask IoU accuracy is 0.961, confirming the 
advantage of the proposed information tools over existing methods. 

5. Conclusions 

Novel approach to mapping surface water from SAR data is proposed. It is based on machine learning 
methods and a block physical data model, allowing to study statistical characteristics for two classes 
("ground" and "water") within disputed image fragments. Information tools for mapping surface 
water bodies are proposed and developed using convolution neural networks, which includes the 
functionality of analyzing classification errors based on the assessment of the probability of correct 
detection of the "water" class pixels in swampy areas. Their peculiarity is the use of a block data 



model and the analysis of the distribution of the "soil" and "water" classes within each block, which 
makes it possible to increase their separability based on the principle of minimizing the type I error.   

The water masks generated by the proposed tools outperform the optical and SAR masks 
generated by thresholding methods based on the NDWI spectral index and the Otsu method. The 
resulting IoU accuracy of 0.961 indicates the applicability of this approach and the possibility of 
obtaining a reliable result. 

The information tools can be easily adapted to changes in the input dataset and the number of 
classes. The practical significance of the results consists in the possibility of detecting problems in a 
timely manner and taking the necessary measures to solve them by integrating machine learning 
into the processes of monitoring and managing water resources. Additional opportunities may arise 
from the use of effective speckle noise filtering methods, which could also reduce the Type II error. 
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