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Abstract 
The work is devoted to the problem of weighing vehicles in motion as part of modern information 
technologies and automated intelligent systems of managing urban resources and infrastructure. The 
purpose of this work is to improve the measurements accuracy of weight-in-motion systems under heavy 
traffic conditions by developing an innovative weighting system based on dynamic neural networks as an 
integral part of intelligent urban infrastructure management systems, thereby contributing to the efficiency 
and sustainability of urban processes. Scientific novelty consists in the use of models in the form of time 
delay neural networks to process data from weighing sensors. The application of this approach allows 
increasing the accuracy of mass measurement in weight-in-motion systems in conditions of heavy traffic 
by taking into account the dynamic and nonlinear properties of the weighing process. The practical 
usefulness of the developed method lies in the development of new innovative weighing systems as part of 
modern information technologies and automated intelligent systems for managing urban resources and 
infrastructure. The application of dynamic neural networks for determining the mass of a vehicle in motion 
is a promising approach that allows to significantly increasing the speed of vehicle while maintaining the 
accuracy and reliability of mass determination. 
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1. Introduction 

Nowadays, accurate and efficient weighing plays a key role in various fields such as transportation, 
logistics, construction and industry. Particularly important are weight-in-motion (WIM) systems, 
which allow controlling the weight of goods on transport routes without stopping them, thus 
ensuring smooth movement and optimization of transport processes [1]. 

Recently, WIM technologies have been increasingly used as part of modern information 
technologies and automated intelligent systems for managing urban resources and infrastructure. 
With the use of accurate and up-to-date information about moving cargoes today it is possible to 
solve such urgent problems as [2, 3]: 

• controlling the load on road infrastructure and preventing its overloading to maintain road 
condition and ensure traffic safety; 

• Optimizing transport routes to reduce travel time, fuel costs and the load on road 
infrastructure; 

• control over the transportation of dangerous goods to ensure compliance with safety rules 
and regulations for their transportation; 

• improving the environmental situation to reduce pollutant emissions and improve the 
environmental situation in the city. This is especially important in the context of modern 
urban development, when environmental problems are becoming more and more urgent. 
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For example, WIM technologies play an important role in the tasks of intelligent urban 
management, helping to solve urgent problems related to transportation logistics, traffic safety and 
environmental sustainability. 

In this context, the use of modern WIM technologies becomes a key element of intelligent urban 
management systems. Accurate data on the weight of vehicles and cargoes allow solving urgent 
tasks related to transportation logistics, road safety and environmental sustainability [4, 5]. However, 
existing WIM technologies are developed mainly for industrial and transportation and logistics 
enterprises and are not designed for operation in urban conditions. In this regard, the application of 
WIM technologies in urban areas under heavy traffic conditions faces certain difficulties [3, 6, 7]:  

• Limited measurement speed, which may lead to errors when collecting load weight data. 
• Limited measurement accuracy due to vibrations and other factors affecting the operation 

of sensors and equipment. 
The purpose of this work is to improve the measurements accuracy of weight-in-motion systems 

under heavy traffic conditions by developing an innovative weighting system based on dynamic 
neural networks as an integral part of intelligent urban infrastructure management systems, thereby 
contributing to the efficiency and sustainability of urban processes. 

2. Literature Review 

Modern WIM systems based on several different implementations, depending on the principles of 
collecting information from the measuring sensors. Taking into account the peculiarities of operation 
in urban conditions, the most suitable of them are systems based on load sensors installed on the 
road surface [1, 2, 7] and systems based on resistive and deformation sensors, which register changes 
in the deformation of the road surface under the influence of transport [3, 8, 9]. 

The advantages of both approaches to mass measurement are high measurement accuracy, the 
ability to use in different weather conditions and for various types of transport, ease of maintenance 
and installation. Both WIM approaches use deterministic methods to filter, process, and calibrate 
signals to determine mass based on sensor readings. In this case, the accuracy of the weighing 
depends on a number of factors, such as the type of sensors used, the operating conditions, the 
quality of the calibration, and the data processing algorithms used.  

The main disadvantage of this approach is the complexity of setting up algorithms for processing 
data received from sensors to measure mass in a wide range of changes in vehicle speed, traffic 
intensity, weather conditions, etc. [4, 9] This, in turn, gives rise to the problem of regular adjustment 
of algorithms and software updates. In cases where there is a large number of input parameters and 
a complex relationship between them and the output parameter that cannot be expressed 
analytically, approaches based on the use of machine learning methods, in particular, neural 
networks, demonstrate good results [10, 11]. In recent years, increasing attention has been paid to 
the use of neural networks to improve measurement accuracy in complex and changing 
environments. Dynamic neural networks, capable of adapting to changing input data and learning 
on the fly, offer significant advantages over traditional methods. These networks can take into 
account not only the current sensor values but also their temporal changes, allowing more accurate 
determination of the object`s weight in motion. Signal processing methods based on neural networks 
have a number of important advantages for solving the WIM problem [9]: 

• detection of complex patterns, which makes it possible to model nonlinear dynamical 
systems, which include WIM systems; 

• flexibility and adaptability to different types of data and changing conditions; 
• the ability to generalize knowledge and apply it to new, previously unknown data. 

Neural networks are a powerful tool for solving problems related to real-time data processing and 
analysis. In WIM systems, they can be used to improve measurement accuracy by taking into account 
multiple factors such as movement speed, changes in object position and dynamic loads. Thus, neural 
networks are a successful solution for improving the accuracy of WIM by taking into account the 



nonlinear and dynamic properties of the system, ensuring the reliability of the weighing process due 
to the adaptive properties of the system to data and operating conditions. 

It should be noted that the idea of using neural networks in WIM systems is not new. There is 
significant work in this area [3, 9]. Convolutional neural networks (CNN) are used to identify hidden 
patterns and feature in the data, allowing for more accurate determination of the weight of an object 
moving on a platform [11, 12]. Feed Forward neural networks (FFNN) allow efficient processing of 
spatial data, providing high accuracy and reliability of measurements [12, 13]. 

However, related works are focused on the usage of neural networks of direct signal propagation, 
which do not take into account dynamic weighing processes [9], or on improving the quality of 
filtering and processing of signals from sensors. At the same time, the direction of using neural 
networks for modeling nonlinear dynamic properties of the WIM system is practically not developed 
[12, 13]. The approach based on the use of dynamic neural networks to the construction of WIM 
systems can be developed in several promising directions, allowing to significantly improve the 
accuracy, speed and reliability of measurements [14, 15]. 

Development of specialized neural network architectures: recurrent neural networks (RNNs) and 
their variants such as long short-term memory (LSTM), gated recurrent units (GRU), time delay 
neural networks (TDNN) [17, 18]. In the context of on-the-go weighting, they can use to predict 
weights based on a sequence of measurements, taking into account temporal dependencies and 
correlations, while having a significantly simplified architecture compared to FFNNs, CNNs. For 
more accurate processing of both temporal and spatial data, specialized neural network architectures 
in the form of combinations of neural networks such as convolutional (CNN) and recurrent (RNN) 
can be successfully applied. Development of training algorithms with small amount of data: for neural 
networks with specialized structure, it is much easier to develop algorithms that can effectively train 
on small data sets or with partial labeling, as well as to improve algorithms for noise filtering and 
elimination of artifacts caused by dynamic changes and external influences [19, 20]. 

Development of data preprocessing algorithms: for neural networks with specialized structure also, 
the task of noise filtering and removing artifacts caused by dynamic changes and external influences 
is simplified. Increasing computational efficiency: development and application of more compact and 
fast models based on recurrent neural networks allows building WIM systems on devices with 
limited computational resources, which reduces the cost of solutions, allows the realization of WIM 
systems within the IoT concept. 

As a result of an analytical review of the current state the problem of improvement measurement 
accuracy of WIM, a promising direction based on the use of dynamic neural networks in the 
processing of data from weighing sensors has been identified. Using this approach, it is possible to 
ensure both high accuracy and speed of mass measurement in WIM systems in heavy traffic 
conditions. 

3. Problem statement 

A meaningful formulation of the problem of improving the accuracy of WIM systems in conditions 
of heavy traffic is to build a neural network model based on the data received from weighing sensors, 
reflecting the nonlinear and dynamic properties of the weighing process. Formally, the statement of 
the problem is as follows. Suppose a set of signals from a weighing sensor is given: 

x(t)=[x1(t), x2(t), xn(t)], (1) 
and a set of labels (weighing results) corresponding to these signals: 

y=[y1, y2, yn]. (2) 
Let's also have a training dataset 

D=[(x1(t), y1), (x2(t), y2 xn(t), yn)], (3) 
where each pair (xi(t), yi) is a description of the object xi(t) and the corresponding label yi 

(i=1,2,...,n). 
The task of improving the accuracy of WIM systems in conditions of heavy traffic is to build a 

dynamic neural network F( , D), where  is a set of hyperparameters (set of factors), which are 



determined by the current requirements for the weighing system. At the same time, the F( , D) model 
should provide a minimum error between its output i and the experimental data yi for xi(t) input: 

F( , D): arg min Q(yi, ), i n, (4) 
where Q is the quality criterion of the model. The mean absolute error (mae) and mean square 

error (mse) can be used as a Q criterion [7, 9, 10]: 

𝑚𝑎𝑒 =
1

𝑛
∑ |𝑦𝑖 −  ŷ𝑖|𝑛

𝑖=1 , (5) 
 

𝑚𝑠𝑒 =
1

𝑛
∑ (𝑦𝑖 −  ŷ𝑖)2𝑛

𝑖=1
. (6) 

The Huber Loss function, which is a hybrid between mae and mse, has also been successfully 
applied to estimate regression models. Huber Loss calculates as follows [7]: 

ℎ = {

1

2𝑛
∑ (𝑦𝑖 −  ŷ𝑖)2𝑛

𝑖=1
, |𝑦𝑖 −  ŷ𝑖| ≤ 𝛿 

1

𝑛
∑ 𝛿(|𝑦𝑖 − ŷ𝑖| − 𝛿/2)

𝑛

𝑖=1
, |𝑦𝑖 − ŷ𝑖| > 𝛿

, 
(7) 

w mae and mse. 
If condition (4) is satisfied, we get a model F( , D) that most accurately maps the set of x(t) signals 

to the set of y labels. Thus, the problem of improving the accuracy of WIM in conditions of heavy 
traffic lies in the formation of a dataset based on expression (3) and training on its basis a dynamic 
neural network F( , D) that satisfies condition (4). 

4. A Method for Improving Weighing Accuracy Using Neural 
Network Models 

4.1. Time delay neural networks 

Today, there are several common methods for modeling nonlinear dynamical objects using NM: 
dynamic neurospatial mapping (Dynamic Neuro-SM), dynamic neural networks of the veneer type 
(Wiener-type DNN) and neural networks with time delays (TDNN). Among these variants of 
nonlinear dynamic neural network models, TDNN is the most common structure, consisting of 
several layers with direct signal propagation [11, 12]. Such models can improve the accuracy of WIM 
systems by taking into account the dynamic behavior of a system with nonlinear characteristics [10
12], as well as adapting to data and external conditions. Due to its simplicity and versatility in 
modeling nonlinear dynamic objects, TDNNs have become the most widespread. There are many 
structures of TDNN neural networks, differing in the number of hidden layers, activation functions, 
and topology. To simplify the description of the TDNN-based model, the most commonly used TDNN 
structure, consisting of three layers: input, hidden, and output, is considered further [13]. In this 
structure, the input layer TDNN includes M neurons, the hidden layer includes K neurons, the output 
layer includes 1 neuron. Fig. 1 shows the TDNN architecture as a three-layer network with direct 
signal propagation with M inputs, a hidden layer with K neurons, and one output neuron [14, 15]. 

 
Figure 1: TDNN architecture as a three-layer network with direct signal propagation 
 



The use of this structure gives a less complex expression for the NN output compared to other 
structures. The signal y(tn) on the output layer at time tn depends on the values of the input signal 
x(tn) and is determined by the expression [15, 16]: 

𝑦(𝑡𝑛) = 𝑏0 + 𝑆0 ∑ 𝑤𝑖𝑆𝑖 [𝑏𝑖 + ∑ 𝑤𝑖,𝑗𝑥(𝑡𝑛−𝑗)
𝑀

𝑗=1
]

𝐾

𝑖=1

. (8) 

where b0, bi are the displacements of the neurons of the original and hidden layers, respectively; 
S0, Si  functions of activation of neurons of the original and hidden layers, respectively; wi, wi, j  
are the weighting coefficients of the neurons of the original and hidden layers, respectively. 

4.2. Definition of TDNN Structure 

The layers present in the network are: input (receives input), output (forms the final result), and 
hidden (processes data from the input layer). 

Determining the size of the model memory. The input layer in the defined TDNN structure includes 
M neurons, where M is the memory length of the object model. The number of neurons M is chosen 
in such a way as to best reflect the dynamic properties of the object. The size of the input layer of a 
neural network M when modeling a dynamic object depends on many factors, including the amount 
and type of input data that describe the state of the object and its environment. In the case when 
information about the transient process is available, the determination of the model memory size 
comes down to the determination of its duration. This value implies taking into account the temporal 
dynamics of the input data and the state of the model. Thus, as the memory size of the system (the 
number of neurons in the neural network input layer) is taken as the number of time steps or the 
number of previous states that the model must take into account to accurately predict the current 
state. 

The following algorithm quantifies the memory size of the system, which will be useful for 
determining the structure of the neural network model. 

1. Determination of the time sampling step 𝑡 that will be used to discretize the data. It is 
important to choose a step small enough to capture the dynamics of the system, but not too small so 
as not to excessively increase the amount of data. 

2.  Transient data acquisition: representation of input signals in discrete form x(t): 
x(t)=[x1(i 𝑡), x2(i 𝑡), xn(i 𝑡)], (9) 

where i n, n 𝑡  signal observation time. 
3. Determining the transient time: obtaining the time interval Tp, during which the system 

response enters and remains within a certain range around the steady-state value for the first time 
(in practice, 1-5% of the steady-state value).  

This time correspond
and stabilizes. 

4. Determining the memory size: obtaining the number n of neurons in the neural network input 
layer: 

M= Tp/t. (10) 
Determining the size of the hidden layer of the model. The hidden layer includes K neurons with a 

nonlinear activation function. The number of K neurons is chosen in such a way as to best reflect 
the nonlinear properties of the object. 

The output layer of the network in the simulation problem is equal to the number of outputs of the 
weighing system and is equal to one. To reflect the dynamic characteristics of the system, the output 
signal of the network y(tn) at time tn must depend not only on the input signal x(tn) at a given time, 
but also on the input signals operating at previous moments of time tn-1, tn-2, ..., t0, tn=n t, n=1, 2, ..., 
M. In this case, a neural network with time delays must receive specially prepared input data: 

x(tn)=[x(tn), x(tn-1 x(tn-M-1)]. (11) 
or in matrix form: 

xn, xn-1 xn-M+1 (12) 



xn-1, xn-2 xn-M 

 

xM, xM-1 x1 
 

4.3. TDNN Construction Method for Estimating the Mass of Vehicles in Motion 

The method of constructing a TDNN model for estimating the mass of moving vehicles is as follows. 
Inputs: Data coming from the sensors of the WIM system, such as pressure or strain signals, road 

conditions. 
Output: Real-time estimation of the weight of the cargo carried by the vehicle based on the 

analysis of the input data using a trained neural network. 
Quality assessment metrics: root mean square error. 
Algorithm of improving the accuracy of WIM systems using time delay neural network: 
1. Formation of a dataset D based on expression (3) using data from sensors x(t) and labels y 

(weights of test objects). 
2. Determination of the time sampling step 𝑡 that will be used to discretize the data; formation 

of a discrete dataset Dd=[(x1(i 𝑡), y1), (x2(i 𝑡), y2 xn(i 𝑡), yn)]. 
3. Preprocessing the data Dd: clean the data, remove noise and outliers. Normalize x(t) to ensure 

uniformity of value ranges. 
4. Determination of the three-layer structure of the neural network F Dd): initialization of the 

number of input layer neurons M to display the dynamic properties of the system; the number of 
hidden layer neurons K to represent the nonlinear properties of the system [15, 16]. 

5. Training a neural network on a prepared dataset Dd using the backpropagation method. 
6. Estimating the quality of the model on a test dataset using a criterion in the form of a mean 

square error. 
The block diagram of TDNN is shown in Fig. 2. In this figure, the value None in the data 

dimensionality vector means the variable number of rows in the dataset. 

 

Figure 2: Structure diagram of the TDNN with M inputs and K hidden neurons 

5. Experimental setup 

Testing of the proposed method for improving the accuracy of WIM is carried out using an imitation 
model, with the help of which the training dataset is formed. The simulation model of the WIM 
system designed to collect statistical data on the signals from piezo sensors about the mass of vehicles 
received during their movement. Creating a simulation model of the WIM system in the form of a 
stand in miniature allows visualizing and testing the system operation in a controlled environment. 



Such a model can be used for preliminary testing of hardware and software. The main components 
and stages of creating a simulation model of the WIM system: 

1. Weight sensors installed in the road surface, measuring the weight of vehicle axles as they 
pass: x(t) signals. 

2.  A database where the collected data from the sensors x(t) and the actual vehicle weight y are 
accumulated. 

3. Software that collects data from the sensors and stores them in the database. 
Based on the simulation model of the WIM system, a set of signals x(t) from the piezo sensors of 

the WIM system for different loads and different vehicle speeds, and a set of labels y in the form of 
exact vehicle mass values for each experiment are obtained. 

A three-layer neural network is used to build a neural network model of the WIM system. The 
input layer size is taken as M=15 ( t=0.05 s) to represent the dynamic properties of the system; 
the hidden layer size K=50 to represent the nonlinear properties of the system.  

As a result, a three-layer neural network was created and trained. The input signal x(t) is fed to 
M neurons of the input layer.  

The hidden layer consists of K neurons. The output layer consists of one neuron with a linear 
activation function. The TDNN was trained using data collected using a simulation model of the 
WIM system.  

The Levenberg-Marquadt algorithm was used for training. The training time of the neural 
network averaged 25-35 minutes on a dataset of 2000 vehicle passages, which is acceptable for 
practical applications. 

In this paper, the obtained experimental data was processed by two models: using Kalman 
filtering and using a TDNN.  

The dependence of the accuracy of weighing results (metrics mse and Huber loss) on vehicle speed 
investigated for both models is shown in Fig. 3 and Fig. 4 accordingly. 

 

Figure 3: Comparison of weighing accuracy (metric mse) using Kalman filtering and a neural 
network with time delays 



 

Figure 4: Comparison of weighing accuracy (metric Huber loss) using Kalman filtering and a 
neural network with time delays 
 

The Keras software tool (keras.io) used to create a neural network. It is one of the key Python 
libraries for efficient API organization when modeling neural networks of any complexity. The 
library is most effective when building small networks with a sequential structure, where layers 
follow each other, as well as with one input and one output layer. Although it is possible to model 
more complex neural network structures with feedbacks, multiple inputs and outputs. To build 
feedforward networks in Keras, we can use any number of successive layers of predefined types: 
Input, Dense and Activation. The library has a ready set of loss functions and optimization 
algorithms that allow us to quickly train the model and avoid local minima if possible. 

6. Results 

The results shown in Fig. 3 demonstrates the advantages of using the proposed WIM method based 
on a neural network with time delays compared to the method based on the use of Kalman filtering 
at traffic speeds from 15 km/h to 11% and from 25 km/h to 16%. At speeds of up to 15 km/h, the 
accuracy of both methods is comparable. At the same time, the accuracy of measurements in 
traditional methods that use static models and linear algorithms to determine the weight of vehicles 
demonstrates a root-mean-square error (rmse) [7, 10] at the level of 12-15% of the true weight. The 
application of dynamic neural networks reduced the RMS error to 10-12%. 

Dynamic neural networks showed a high ability to adapt to different road conditions and vehicle 
types. Experiments were conducted under varying traffic speeds, different road conditions. The 
neural networks successfully trained on data obtained under different conditions and showed more 
stable measurement accuracy when these conditions changed. After training, the model 
demonstrated high performance in real-time data processing, providing fast and accurate estimation 
of vehicle weights. 

As a result of the experiment, it was found that the accuracy of weight determination was 
significantly influenced by the speed of vehicles: Dynamic neural networks showed the ability to 
better adapt to changes in vehicle speed, which is critical for measurement accuracy. 



Advantages of the proposed model. The advantages of the proposed approach for weight 
determination in WIM systems are high measurement accuracy, ability to adapt to changing 
operating conditions, and high speed of data processing and prediction generation. 

Disadvantages of the proposed model. As limitations of the application of dynamic neural networks 
in WIM systems is the dependence of the model on the quality and amount of data used for training 
[20 22]. Insufficient data or low quality data can significantly reduce the accuracy of the 
measurements. 

In addition, to maintain high accuracy, the model needs regular updating and calibration, which 
may require additional resources and effort. This problem can be partially solved by using real-time 
reinforcement learning algorithms. 

Recommendations for practical application. Integration of dynamic neural networks into existing 
WIM systems to improve measurement accuracy can be accomplished through software upgrades 
and additional sensor calibration to ensure high accuracy and reliability [23, 24]. 

7. Conclusions 

As a result of the work, the problem of increasing the accuracy of measurements in WIM systems 
under heavy traffic conditions has been successfully solved, and a method of processing the initial 
data from sensors based on machine learning model in the form of TDNN has been proposed. The 
developed method allows building neural network model of WIM processes, taking into account their 
nonlinear and dynamic characteristics, which makes it possible to increase the accuracy of weight 
estimation of railroad cars and motor vehicles. 

The method was tested on a simulation model of the WIM process. Compared to traditional 
methods using static models and linear algorithms, dynamic neural networks showed a significant 
improvement in accuracy. Experimental data showed a reduction of mean squire error up to 16% 
compared to the traditional method used in WIM systems based on Kalman filters, which confirms 
the effectiveness of the proposed approach. The study established the area of effective use of the 
proposed method in the range of speeds from 15 to 35 km/h. 

The dynamic neural networks underlying the proposed WIM method are able to adapt to various 
factors affecting the measurements, such as vehicle trajectory, road surface condition, changes in 
vehicle characteristics, etc. This makes them particularly useful for long-term use in real-world 
applications. At the same time, the trained neural network in operation mode allows real-time data 
processing that is as fast as traditional weighting methods in processing sensory information, which 
is crucial for WIM systems. 

The research has opened new opportunities for further improvement of WIM systems. Thus, 
research aimed at improving the architecture of neural networks is promising: the use of RNN and 
LSTM, which can better account for temporal dependencies and vehicle dynamics with less 
complexity of the network. Also of interest is the use of hybrid models that combin neural networks 
with traditional data processing methods to improve the accuracy and reliability of measurements; 
the study of additional parameters such as pavement vibration data, atmospheric conditions, and 
vehicle condition information that can be included in the model to improve the accuracy, and 
reliability of measurements. 

In conclusion, the use of dynamic neural networks to determine the weight of vehicles in motionis 
is a promising approach that can allow to significantly increase the speed of vehicle movement while 
maintaining the accuracy and reliability of determining their weight. This, in turn, makes it possible 
to obtain prompt and accurate information on traffic flows and contributes to more efficient 
management of transportation infrastructure and cargo flows. 

The obtained results can serve as a basis for the development of new innovative weighing systems 
as part of modern information technologies and automated intelligent systems for managing urban 
resources and infrastructure. 
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