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Abstract 
In this paper we presented the usage of OpenAPI specification in distributed microservices-oriented 
information system for astronomical data processing. A common goal of all scientific and technological 
algorithms and methods is to automate as much as available processes without any human actions. In 
general cases it can be done by the different astronomical distributed microservices-oriented information 
system. In these pipelines the various data mining and knowledge discovery in databases (KDD) tasks are 
used for speeding up and optimizing the astronomical data processing. Suggested using of the OpenAPI 
specification in a distributed microservices-oriented information system for astronomical data processing 
significantly improves the system's interoperability, scalability, and maintainability. The developed 
skeleton of the real example of astronomical data-processing system is implemented using .Net Core 
framework and C# programming language. Implementing Swagger in a microservices architecture presents 
numerous benefits, significantly enhancing both the development and maintenance phases of service-
oriented applications. The developed skeleton and the proposed approach will be useful for the different 
microservices-oriented information system for astronomical data processing. It can be used for all kind of 
processing astronomical images using the different mathematical methods and algorithms implemented as 
a tool, module, or service. Another one good example of application the proposed skeleton is a realization 
of the Virtual Observatory (VO) concept or integration with CI/CD tools. 
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1. Introduction 

The asteroid-comet hazard becomes a huge potential problem in the XXI century [1], which can 
cause the global destructions, collisions with geostationary artificial satellites [2], space debris, etc. 
To avoid such situation the humanity is continuously developing and improving mathematical 
methods [3] and algorithms for the astronomical scientific direction like an astronomical image 
processing and computer vision [4], which includes the background alignment [5], brightness 
equalization [6], astrometric reduction [7], photometric reduction [8], detection of moving objects in 
series of frames, or even discovery of the Solar System objects (SSOs) [9], like comets, asteroids [10], 
small planets, galaxies, stars, etc. 

All astronomical scientific observations are created by the charge-coupled device (CCD) [11] that 
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are used as a main equipment in telescopes or any other optical system at the observatories. Such 
astronomical scientific observations are collected during the specified observational period of the 
investigated small celestial SSOs [12], as well as the artificial satellites. After performing the series 
of observations of the investigated SSOs it is required to analyze the results of observation, which 
can include the period and shape of rotations determining of such investigated SSOs. It means that 
there are a lot of astronomical big data and to process it we need to apply the different approaches 
of the information technologies. 

The astronomical scientific information is also can be collected from the different historical 
clusters, archives, Virtual Observatories [13], data clouds, astronomical astrometric and photometric 
catalogues [14], different servers and other storages. 

A common goal of all scientific and technological algorithms and methods is to automate as much 
as available processes without any human actions. In general cases it can be done by the different 
astronomical scientific information systems. In these information systems the various data mining 
[15] and knowledge discovery in databases (KDD) [16] tasks are used for speeding up and optimizing 
the astronomical data processing. 

In case if the astronomical scientific information system is a very complex and consists of the 
different mathematical modules and libraries it becomes distributed microservices-oriented 
information system for astronomical data processing. 

Microservices, also known as the microservice architecture, is an architectural style that 
structures an application as a collection of loosely coupled services, each of which implement 
business capabilities. The microservice architecture enables the continuous delivery and deployment 
of large, complex information systems. It also enables an organization to evolve its technology stack, 
scale and be more resilient with time. Microservice architecture advocates for developing a single 
information system into a collection of loosely associated services. These units also enable the 
continuous delivery and deployment of large, monolithic information systems with minimal need 
for centralization. 

As microservices architecture [17] continues to grow in popularity, the complexity of managing 
multiple, interrelated services increases. Documentation becomes essential not just for external users 
but also for internal developers who need to understand the APIs provided by each service. That's 
where Swagger comes into play. Swagger, now known as the OpenAPI Specification, is a powerful 
tool for describing, producing, consuming, and visualizing RESTful web services. 

Swagger simplifies API development and maintenance by providing a language-agnostic interface 
to REST APIs [18]. With Swagger, you can generate client libraries, server stubs, and API 
documentation that facilitates clear communication amongst your development team and beyond. It 
ensures that all microservices speak the same 'language' when it comes to API endpoints, parameters, 
and data models. 

This paper aims to the analysis of main focuses and features of OpenAPI specification for 
microservices development. Real examples of astronomical data-processing system are implemented 
using .Net Core framework and C# programming language, which is perfectly designed for the 
developing of distributed microservices-oriented information system. Section 2 presents the several 
technologies related to our work for solving of API documentation task. Section 3 elaborates the 
system architecture based on microservices architecture style, presents the integration of Swagger 
OpenAPI specification in real microservice implementation. Integrated data models for astronomical 
data-processing system are also presented in this section as well as the result of execution is 
illustrated in it.  This section aldo aims to the discussions about advantages of the proposed usage of 
OpenAPI specification in distributed microservices-oriented information system for astronomical 
data processing. The paper ends with a conclusion in section 4, which illustrates the conclusions and 
outlines of future work as well as possibilities for future investigations and enhancements. 

2. Related Works 

Each SSO in a digital frame has a typical form of its image [19]. The common methods for the image 



processing [20] and machine vision [21] are developed for detection/recognition such images of SSOs 
and an estimation of their positional and motion parameters [22]. Such methods are based on the 
analysis of only those pixels that potentially belong to the investigated object. The disadvantages of 
such methods are very low accuracies when the typical form of object has a different shape [23]. 

The methods for assessing the aperture brightness [24] will work only with a 
single image of each SSO. Any methods for the matched filtration [25] and high-frequency filtration, 
which are devoted to the improving the quality of corrupted images are very resource consuming. 
The disadvantages of the methods are the big complexity and low accuracy during the astronomical 
data processing, when an image has a several peaks of magnitude. 

Methods for the Wavelet analysis [26] or even time series analysis [27] are not so effective, 
because we do not have a big volume of the input data to be analyzed. Also, the disadvantage of such 
algorithms is the corrupting of the general statistics and possibility to process only clear 
measurements without any deviations in the typical form of image. 

Any methods for the deep learning and pattern recognition [28] also require a big amount of 
astronomical data for training. The problem of such methods that astronomical image has a lot of 
artifacts, so there are a lot of false objects are detected in series of frames. 

Almost all information systems related to the astronomical image processing are desktop 
applications with monolith structure. They require very careful installation, dependencies on 3rd 
party libraries, operational systems, frameworks, drivers. The processing time is fully depending on 

have scalability and splitting on processes, so if any algorithm fails the whole system will be stuck. 
In this case to work with resource consuming mathematical algorithms, methods, and modules, 
which implement them, the distributed microservices-oriented information system architecture for 
astronomical data processing is required. And OpenAPI specifications is a good approach for such 
purposes. 

There are several alternatives to Swagger for implementing OpenAPI specifications, each offering 
unique features and benefits that might be more suitable depending on your specific requirements. 
Here are some notable alternatives mentioned below. 

Postman is a versatile tool for API development and testing [29]. Postman enables automated 
testing, team collaboration, and integration with various CI/CD tools. It also includes features like 
mock servers and interactive API documentation, making it a comprehensive solution for managing 
the API lifecycle. Author describes microservice architecture as a scalable method for designing and 
implementing online applications. Due to their network-based nature, microservice applications 
require testing within a network environment. Automating these tests involves generating artificial 
network traffic, typically in the form of HTTP requests to APIs such as REST APIs. These topics are 
explored from the perspectives of test design and implementation, alongside key features of 
microservice architecture and automated testing in general. The core of this thesis details the process 
of designing and implementing a test automation framework for Intel Insight, an automatic image 
storage and photogrammetry processing platform built as a microservice system. 

The Stoplight platform excels in the areas of API design, documentation, and governance [30]. It 
features a user-friendly interface for creating API specifications with OpenAPI or RAML, and 
includes capabilities such as interactive documentation, code generation, and API governance tools. 
Notably, Stoplight stands out for its strengths in visual API design and its integration with 
development tools like GitHub and Jira. In the mentioned article author covers the problem occurring 
during creation and maintaining of OpenAPI standards for REST API testing. 

A special tool called Respector was introduced as a first technique to employ static and symbolic 
program analysis to generate specifications for REST APIs from their source code [31]. Provided 
experiments showed that Respector successfully detected numerous missing endpoint methods, 
parameters, constraints, and responses, as well as identified several discrepancies between 
developer-provided specifications and actual API implementations. Moreover, Respector 
outperformed other techniques that deduce specifications from API annotations or by invoking the 
APIs. 



With the rise of object-oriented languages and the portability of Java APIs, the development and 
utilization of reusable software components are becoming increasingly feasible [32]. The 
effectiveness of component reuse relies heavily on the reliability of these components, which is 
achieved through comprehensive testing. However, the literature lacks practical approaches for 
generating inputs and verifying outputs for the numerous test cases required. Author introduces the 
"Roast" tool and associated techniques for testing Java APIs. The practicality and effectiveness of 
these methods are demonstrated using two complex components, with quantitative results provided 
to validate the approach. Each of these papers describes different strengths, whether it's in 
collaboration, integration, interactive documentation, or API management. Depending on the 
astronomical project specific needs for astronomical data processing, one of these alternatives might 
serve as a better fit than Swagger for implementing OpenAPI specifications. 

3. Distributed microservices-oriented information system for 
astronomical data processing 

3.1. System design and architecture 

Designing a HTTP API service related to astronomical data processing involves creating endpoints 
that allow clients to interact with and retrieve data about celestial objects, astronomical phenomena, 
and other relevant information. On the diagram below high-level architecture of designed system is 
presented. It consists of multiple architectural components including client applications, back-end 
API aggregators and domain microservices. 

Microservices provides multiple communication channels including asynchronous and 
synchronous ways. Synchronous communication channel is implemented via exposing HTTP APIs 
for reading data model. Any data model is performed in asynchronous way via message bus 
(RabbitMQ in a current case). Since data fetching is performed via HTTP request, we can see the 
importance of OpenAPI and Swagger instrument. Once data is updated via message broker in 
asynchronous way, Swagger allows to access HTTP REST API in synchronous way by making a 
direct HTTP call to the microservice accessing the data storage and checking its saved information. 
The provided diagram in Figure 1 illustrates a high-level architecture for an astronomy-related 
system using microservices. 

 

 
Figure 1: High-level architecture for an astronomy-related system using microservices 

 
Here's a detailed description of each component and their interactions: 

1. Client Apps: 



a. WebApp: A traditional web application interface that interacts with the API 
Gateway. 

b. WebSPA: A Single Page Application (SPA) that provides a more dynamic user 
experience, also interacting with the API Gateway. 

2. API Gateways / BFF (Backend for Frontend): 
a. OcelotApiGw: Ocelot is an API Gateway that handles requests from client 

applications and routes them to the appropriate microservices. It provides 
functionalities like authentication, authorization, request aggregation, and more. 

b. Aggregator: This component aggregates data from multiple microservices into a 
single response, optimizing the number of calls needed by client applications. 

3. Microservices: 
a. Distance.API: Handles operations related to astronomical distances. It uses 

MongoDB for data storage, providing flexible and scalable storage of distance data. 
b. Planets.API: Manages data related to planets. It leverages Redis, an in-memory data 

store, to enhance the speed of data access and caching. 
c. Scattered.API: Likely deals with scattered objects in space such as asteroids or 

comets. It uses PostgreSQL, a powerful, open-source relational database. 
d. Space.API: Manages general space-related data. It relies on SQL Server, a robust 

relational database system from Microsoft. 
4. RabbitMQ as a message broker used for asynchronous communication between 

microservices. It enables event-driven architecture, where services can publish and subscribe 
to events without tight coupling. 

5. Additional Components: 
a. WebStatus (HealthChecks): A service that monitors the health status of various 

microservices, ensuring they are running optimally. It can provide insights into 
service uptime and performance. 

b. gRPC: A high-performance, open-source RPC framework that can be used for 
communication between microservices, offering advantages such as language-
agnosticism, low latency, and efficient data serialization. 

c. Polly: A .NET resilience and transient-fault-handling library that allows developers 
to express policies such as Retry, Circuit Breaker, Timeout, Bulkhead Isolation, and 
Fallback. 

d. ELK Stack (Elasticsearch, Logstash, Kibana): A set of tools for logging, searching, 
and visualizing data: 

i. Elasticsearch: A search and analytics engine. 
ii. Logstash: A data processing pipeline that ingests data from multiple sources, 

transforms it, and then sends it to a stash like Elasticsearch. 
iii. Kibana: A visualization tool used to explore data stored in Elasticsearch, 

providing graphical representations and dashboards. 
6. Data Flow: 

a. Client Interaction: Users interact with the WebApp or WebSPA, which sends 
requests to the OcelotApiGw. 

b. API Gateway Routing: The API Gateway routes these requests to the appropriate 
microservice (Distance.API, Planets.API, Scattered.API, Space.API). 

c. Data Aggregation: For complex queries needing data from multiple sources, the 
Aggregator compiles the necessary information. 

d. Database Operations: Each microservice interacts with its respective database 
(MongoDB, Redis, PostgreSQL, SQL Server) to perform CRUD operations. 

e. Asynchronous Communication: Microservices communicate asynchronously 
through RabbitMQ, allowing for scalable and decoupled architecture. 

f. Health Monitoring: The WebStatus service continuously monitors the health of all 
services. 



g. Logging and Visualization: Logs and metrics are collected, processed, and 
visualized using the ELK Stack, facilitating monitoring and debugging. 

This architecture demonstrates a robust and scalable approach to managing an astronomy-related 
system using microservices, an API Gateway, asynchronous communication, and comprehensive 
health monitoring and logging capabilities. It leverages modern technologies to ensure high 
performance, resilience, and maintainability. 

As we can mention from the diagram above, Microservices represented by API HTTP services 
provide OpenAPI documentation by exposing Swagger endpoints. 

3.2. OpenAPI specification 

The provided OpenAPI specification describes an API for an astronomy-related service with several 
endpoints for managing and retrieving data about distances, planets, scattered disks, space, and 
reference stars [33]. Below is a detailed breakdown of each part of the specification. 

Specification provided using OpenAPI Version: 3.0.1. Specification is implemented via open-
source tool called Swagger UI and examples are provided below using that API tool. 

The first section of the specification (/api/Distance) is related to astronomical distance 
measurement. Existing HTTP endpoints accepts HTTP GET and POST request to the service, 
allowing to enter a record regarding any distance as well as fetch already existing information. The 
OpenAPI specification can be found below: 

• GET: Retrieves a list of distances. 
o Tags: Distance 
o Responses: 

▪ 200: Success returns an array of Distance objects in text/plain, 
application/json, or text/json formats. 

• POST: Creates a new distance entry. 
o Tags: Distance 
o Request Body: Accepts a Distance object in application/json, text/json, 

or application/*+json formats. 
o Responses: 

▪ 200: Success returns the created Distance object. 

The Swagger specification (/api/Planets) is related to the planets in the universe providing endpoints 
for accessing all the information including names, ordering and planetary system. Existing contracts 
allows retrieve existing list of planets and record a new planet entry which has been discovered 
recently. The OpenAPI specification can be found below: 

• GET: Retrieves a list of planets. 
o Tags: Planets 
o Responses: 

▪ 200: Success returns an array of strings representing planet names in 
text/plain, application/json, or text/json formats. 

• POST: Creates a new planet entry. 
o Tags: Planets 
o Request Body: Accepts a string in application/json, text/json, or 

application/*+json formats. 
o Responses: 

▪ 200: Success 

The scattered disk is a distant region of the Solar System that extends beyond the orbit of Neptune. 
It is populated by a group of small icy bodies known as scattered disk objects (SDOs). These objects 
have highly elliptical orbits that take them far from the Sun at their aphelion (the point in their orbit 



farthest from the Sun) and closer to the Sun at their perihelion (the point in their orbit closest to the 
Sun). Key characteristics of the scattered disk include orbital characteristics, origins, composition, 
known Objects. Listed characteristics are covered by the OpenAPI specification (/api/ScatteredDisk) 
listed below: 

• GET: Retrieves a list of space-related objects. 
o Tags: Space 
o Responses: 

▪ 200: Success returns an array of strings in text/plain, 
application/json, or text/json formats. 

• POST: Creates a new space entry. 
o Tags: Space 
o Request Body: Accepts a string in application/json, text/json, or 

application/*+json formats. 
o Responses: 

▪ 200: Success 

The Figure 2 illustrates the effectiveness of Swagger usage in a context of astronomical data 
processing. On the image below, we can see an example of transforming OpenAPI JSON specification 
to user-friendly GUI via Swagger tool. 

 

 
Figure 2: Transforming OpenAPI JSON specification to user-friendly GUI via Swagger tool 

3.3. Data Models 

Data models define the structure of your data entities in C#. For an astronomy API, these models 
represent celestial objects and their attributes. The purpose of the following architecture component is 
to define domain model and main attributes are required during the astronomical data processing. The 
following important attributes should be defined inside the astronomical domain model of SSOs [34]: 
mass, radius, identifier (name), etc. 

Instances of these models are used throughout your application to represent and manipulate data 
related to stars. The visual representation of the database models highlights the different structures 
and technologies used for each microservice. The following diagram in Figure 3 showcases these 



models. 
The visual representation of the database models highlights the different structures and 

technologies used for each microservice. The following diagram showcases these models. 

• Distance.API (MongoDB): A document collection with various fields for distance data. This 
collection will store information about the distances between different astronomical objects. 
Each document will represent a specific distance measurement, including the source and 
destination of the measurement, the distance value, and the unit of measurement. 

• Planets.API (Redis): In-memory data structures for storing planet data. In Redis, each 
planet will be stored as a hash where the key is a unique identifier for the planet (e.g., 
planet:1) and the value is a hash containing various attributes of the planet such as name, 
mass, radius, orbital period, distance from the sun, and atmosphere composition. Redis is 
used here for its fast read and write operations, which are beneficial for frequently accessed 
data. 

• Scattered.API (PostgreSQL): A relational table with fields for scattered object data. This 
table will store data about scattered astronomical objects like asteroids and comets. Each row 
represents an object with attributes including its ID, name, type, mass, radius, orbital period, 
and discovery date. PostgreSQL is chosen for its ACID compliance and powerful querying 
capabilities. 

• Space.API (SQL Server): A relational table for space entity data with comprehensive fields 
for detailed information. This table will store general information about various space entities 
such as stars, galaxies, and nebulas. Each row represents an entity with attributes including 
its ID, name, type, mass, radius, distance from Earth, and a description. SQL Server is used 
here for its enterprise features and robust performance. 

 
Figure 3: Data models for an astronomy-related system using microservices 

 
Distance JSON model is represented by NoSQL (Document-Oriented) Database. Database 

collection is called Distances, and it includes following set of fields. 

{ 

  "distanceId": "60c72b2f4f1a4e3d5c8b4567", 

  "source": "Earth", 

  "destination": "Mars", 

  "distance": 0.52, 

  "unit": "AU" 

} 



Planets JSON model is represented by NoSQL (Key-Value storage) Database. Since it is a key-
value storage, data should be stored via single string by hashing or serializing into JSON string. 

{ 
  "name": "Earth", 
  "mass": 5.972e24, 
  "radius": 6371, 
  "orbitalPeriod": 365.25, 
  "distanceFromSun": 1.00, 
  "atmosphere": ["Nitrogen", "Oxygen", "Argon", "Carbon Dioxide"] 
} 
Scattered objects are stored in relational SQL database with its unique identifier as primary key 

for each scattered object and the list of related attributes. 
CREATE TABLE ScatteredObjects ( 
  objectId UUID PRIMARY KEY, 
  name VARCHAR(255), 
  type VARCHAR(50), 
  mass FLOAT, 
  radius FLOAT, 
  orbitalPeriod FLOAT, 
  discoveryDate DATE 
); 
Space SQL model is represented as relational database table as well with corresponding primary 

attribute and the list of attributes assigned. 
CREATE TABLE SpaceEntities ( 
  entityId UNIQUEIDENTIFIER PRIMARY KEY, 
  name NVARCHAR(255), 
  type NVARCHAR(50), 
  mass FLOAT, 
  radius FLOAT, 
  distanceFromEarth FLOAT, 
  description NVARCHAR(MAX) 
); 
This architecture leverages the strengths of each database technology, ensuring optimal 

performance, scalability, and flexibility for handling diverse data requirements in an astronomy-
related HTTP service. 

4. Results 

A skeleton of the proposed OpenAPI specification in distributed microservices-oriented information 
system for astronomical data processing was tested in scope of the Lemur software of the Collection 
Light Technology (CoLiTec) project (https://colitec.space) [35]. The specific modules and services 
related to the mathematical methods and algorithms in the Lemur software are: 

• automated frame calibration; 
• cosmetic frame correction; 
• track-and-stack feature; 
• brightness equalization; 
• background alignment; 
• astronomical image filtering; 
• determining the contours of objects; 
• fully automated robust method of the astrometric reduction; 
• fully automated robust method of the photometric reduction [36]; 

https://colitec.space/


• support of the multi-threaded processing; 
• transferring of astronomical data with intermediate storage; 

More extended details about the Lemur software of the CoLiTec project are presented in these 
papers and research [37, 38, 39]. The example of JSON data implemented in scope of the distributed 
microservices-oriented information system for astronomical data processing for the Lemur software 
represents a response for an API that provides distance-related information between celestial bodies 
mentioned below. 

{ 
  "origin": { 
    "name": "Earth", 
    "type": "Planet" 
  }, 
  "destination": { 
    "name": "Mars", 
    "type": "Planet" 
  }, 
  "distance": { 
    "unit": "AU", 
    "value": 1.52 
  }, 
  "travelTime": { 
    "unit": "days", 
    "value": 300 
  }, 
  "metadata": { 
    "requestTime": "2024-06-18T12:34:56Z", 
    "responseTime": "2024-06-18T12:34:57Z", 
    "service": "DistanceAPI" 
  } 
} 
Presented JSON structure contains following valued information: 

• origin: Information about the starting point of the distance calculation, including the name, 
type (e.g., planet, star). 

• destination: Information about the endpoint of the distance calculation, similar to the origin. 
• distance: The calculated distance between the origin and destination, along with the unit of 

measurement (e.g., Astronomical Units - AU). 
• travelTime: An estimated travel time to cover the distance, along with the unit of 

measurement (e.g., days). 
• metadata: Additional information about the API request, including the request and response 

times and the name of the service that provided the data. 

This JSON structure is designed to be comprehensive and can be extended further based on the 
specific requirements and additional attributes that might be relevant for the Distance API in a 
microservices architecture. 

5. Conclusions 

We presented the usage of OpenAPI specification in distributed microservices-oriented information 
system for astronomical data processing. A common goal of all scientific and technological 
algorithms and methods is to automate as much as available processes without any human actions.  

In general cases it can be done by the different astronomical distributed microservices-oriented 
information system. In these pipelines the various data mining and knowledge discovery in databases 



tasks are used for speeding up and optimizing the astronomical data processing. Suggested using of 
the OpenAPI specification in a distributed microservices-oriented information system for 
astronomical data processing significantly improves the system's interoperability, scalability, and 
maintainability. The developed skeleton of the real example of astronomical data-processing system 
is implemented using .Net Core framework and C# programming language. The modern 
international astronomical astrometric and photometric catalogues are available now in cloud, so 
any interactions with such data from them require services integration for processing. In comparison 
with existed information systems related to the astronomical image processing the developed micro-
serviced architecture show more stability and scalability points. Such architecture will be also very 
helpful in the complex information systems for astronomical data processing with integration of the 
Continuous Integration/Continuous Delivery (CI/CD) principles. 

The further research will be conducted on integrating proposed OpenAPI specification in 
distributed microservices-oriented information system for astronomical data processing in scope of 
the Lemur software of the Collection Light Technology (CoLiTec) project. 
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