
Certification of Business Processes and Workflows via
Blockchain
Alberto Leporati

University of Milan-Bicocca, Department of Informatics, Systems and Communication, Edificio U14 (ABACUS), Viale Sarca 336,
20126 Milano, Italy

Abstract
Blockchains are distributed ledgers that allow possibly untrusted actors to collaborate with the aim of achieving
a common goal. Typical uses of blockchains include supply chain management, document notarization, decen-
tralized finance (DeFi) applications, and tokenization of digital and physical assets. Inspired by the functioning
of software applications that allow administrative staff to manage different types of bureaucratic processes, we
propose to use permissioned blockchains to implement administrative and business processes involving different
organizations. We describe the design of our system, comprising its architecture, the functional analysis, and a
discussion on how to implement the required features. Such a design is the first step towards the implementation
of a blockchain-based system for the certification of business processes and workflows.

Keywords
Blockchain, Business Process Modeling, Certification of Business Processes, Certification of Workflows

1. Introduction

A blockchain is a distributed ledger shared among a computer network’s nodes. The nodes work
together to maintain a secure and decentralized record of information, stored inside blocks. Each block
is linked to the previous one through a cryptographic hash function. This makes the contents of a block
virtually impossible to be changed, since a modification would make the cryptographic check of hash
fingerprints to fail.

Typical uses of blockchains include supply chain management [1], document notarization [2], de-
centralized finance (DeFi) applications [3], and tokenization of digital and physical assets [4]. Every
application needs a blockchain with certain characteristics, and in fact there are different types of
blockchains. First of all, a blockchain can be public or private, depending upon whether its contents is
publicly available or not. Furthermore, a blockchain can be either permissionless or permissioned. In
the former case, anyone can join the network that maintains the blockchain, holding an entire copy of
it. Usually, this also means that anyone can participate in validating the information contained into
the blocks. To prevent malicious behaviors, permissionless blockchains usually adopt a majority-based
consensus algorithm, which may be however very inefficient in terms of computational power and
energy consumption. In the case of permissioned blockchains, instead, only authorized actors can be
part of the network that manages the blockchain. Permissions are established based on the possession
of cryptographic credentials, managed by a certification authority. In fact, permissioned blockchains
are generally managed by consortia, made up of entities that potentially do not trust each other, but who
must collaborate to achieve a common goal. The consortium that manages the blockchain can decide
whether or not to make its content public. Furthermore, it also controls the certification authority that
issues (and revokes) the cryptographic credentials that allow one to read and/or write information on
the blockchain. Permissioned blockchains do not require a real consensus algorithm, as they are used as
distributed digital ledgers. The members of the consortium simply write their declarations in the register,
and these declarations can no longer be deleted or modified. The other members of the consortium
simply observe the statements made, and assume they are true; this creates trust between the parties.

6th Distributed Ledger Technology Workshop (DLT 2024), May 14-15, 2024, Turin, Italy
$ alberto.leporati@unimib.it (A. Leporati)
� 0000-0002-8105-4371 (A. Leporati)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:alberto.leporati@unimib.it
https://orcid.org/0000-0002-8105-4371
https://creativecommons.org/licenses/by/4.0


Subsequently, if some of the statements made turn out to be false, the members who made them will be
punished by the consortium, for example with expulsion. A problem of permissioned blockchains is
that they are completely controlled by the consortium. This means that if the consortium members
agree, they can modify the content of the blocks as they want. This problem is especially felt for small
consortia. An often adopted solution to prevent this possibility is to save the cryptographic hash of the
last block of the blockchain on a well-known public blockchain, such as Polygon1, at established time
intervals.

Another common use of blockchains is the notarization of documents. The idea is to demonstrate
that a given digital document existed in exactly that form at a given time. Since the block size does
not allow documents to be saved directly in the blockchain, the document file is usually saved on a
decentralized file system, such as IPFS2, while the document’s cryptographic fingerprint — calculated
via a hash function — is saved on the blockchain. When the documents on which notarization is
performed are certifications — for example certificates of origin of raw materials, or quality certificates
of processed products — we sometimes speak of document certification rather than notarization. A
natural next step is the certification of processes, or workflows. Inspired by the functioning of software
applications that allow administrative staff to manage different types of bureaucratic processes, such as
for example Archiflow3 or Cineca’s Titulus, in this paper we propose to use permissioned blockchains
to implement administrative and business processes involving different organizations. An example of
such processes could be a bureaucratic process that involves the collection of documents, signatures
and authorizations from various bodies. Or, in the industrial sector, the certification of the processing
phases of a product, collecting information both from the machinery and from the people involved in
controlling the process. In the latter case, the process can be seen as a generalization of supply chain
management, where several companies or factories are involved in making the product. Due to their
decentralization, robustness and security properties, blockchains are commonly used in contexts in
which it is necessary to build trust between participants and/or between the entities that manage a
process and end users. Therefore, they are particularly suitable for certifying processes and workflows
involving several potentially untrustworthy actors.

The rest of this paper is structured as follows. In Section 2, we briefly discuss some related works
found in the literature. In Section 3 we make an analysis of the intended functions of the proposed
system. The exposition will be accompanied by an example of the workflows or business processes that
our system will be able to certify. In Section 4 we present the system architecture, and we discuss how
the intended functionalities can be implemented. Finally, Section 5 draws conclusions and offers some
perspectives for future work.

2. Some Related Works

Of course, we are not the first to propose modeling business processes or workflows via blockchains. A
comprehensive literature review is contained in [5]. There, blockchains are identified as an emerging
technology in the field of Business Process Management (BPM); it is claimed that, through smart
contracts, a blockchain may enforce the obligations of counterparties that transact in a business process.
The paper focusses on how trust is maintained during the entire lifecycle of a business process, and
identifies some challenges and research directions. It is also pointed out that most of the reported
applications are at their primary stages, thus further research efforts are needed to meet the technical
challenges posed by them.

In [6], it is shown that a process model comprising tasks performed by multiple untrusted parties can
be coordinated via smart contracts operating on the blockchain, without requiring a central authority.
However, the cost required for blockchain use is highly dependent on the volume of data recorded and
the frequency of data updates by smart contracts. The authors then propose an optimized method for

1https://polygon.technology/
2https://ipfs.tech/
3https://www.siav.com/archiflow/

https://polygon.technology/
https://ipfs.tech/
https://www.siav.com/archiflow/


executing business processes on top of commodity blockchain technology. The method is empirically
compared to a previously proposed baseline, by measuring resource consumption and throughput.

In [7], it is reported that several research proposals have demonstrated the feasibility of designing
blockchain-based collaborative business processes using a high-level notation, such as the Business
Process Model and Notation (BPMN), and thereon automatically generating the code artifacts required to
execute these processes on a blockchain platform. The authors then present the conceptual foundations
of model-driven approaches for blockchain-based collaborative process execution, and they compare
two concrete approaches, Caterpillar [8] and Lorikeet [9]. Both tools are proof-of-concepts, proposed
to work on the Ethereum public blockchain. The effectiveness of the former is demonstrated through
an industrial use case.

As we can see, many projects proposed in the literature are at an experimental level. They are mostly
based on the Ethereum public blockchain, which is too expensive to be used in real-world applications.
Furthermore, a public blockchain makes all processes visible to anyone, possibly leaking some relevant
information about their operation. Moreover, most of the proposed solutions require that users learn the
Business Process Model and Notation (BPMN) to define their processes, which can be cumbersome. The
solution proposed in this paper works instead on a private and permissioned version of the Ethereum
blockchain, whose state is regularly notarized on a public permissionless blockchain. Moreover, the
users will be able to use a very simple graphical interface to define their own processes.

3. Design of the System

The aim of the software is to allow users to define their own processes or workflows, and to certify
their execution on a blockchain. Users of the software will typically be companies, who register by
creating their own account. The account associated with the company contains the company’s data,
for billing, communicating with it, etc. Furthermore, this account is the administrator for the accounts
of that company subsequently created, and is also the owner of all smart contracts created by the
company. The blockchain used will be a permissioned (and possibly private) version of Ethereum, such
as Quorum4. The blockchain will be used as a distributed ledger, using proof-of-authority (PoA) as a
consensus algorithm.

The company administrator can create roles, users, and assign their users to the created roles. Each
role is associated with a set of possible operations, or actions; when the administrator creates a role,
it chooses from a list which of these operations are allowed for that role. Examples of roles could be:
head of legal department, quality manager, production manager, etc. Examples of operations that can
be performed are: uploading a document, signing a document, approving a process status. In the first
version of the software, the list of allowed operations will be predefined; the software will allow a
company administrator to create and name any role, assigning it a set of allowed operations taken from
that list. The administrator can then create one or more users, assigning them this role.

To define a process, the user uses a graphical interface, that allows one to arrange graphic elements
on a canvas, which represent states, conditions and transitions between the states of the process. The
process is represented through a directed graph, whose nodes are the states in which the process can be
found; at any instant, the process can be in one and only one state. Each process or workflow starts
from a single initial state. On the other hand there may be one or more final states, in which the process
can terminate successfully. And for every process there is always a state indicating that the process
terminated unsuccessfully, for example because it was invalidated by its owner.

The directed arcs correspond to state transitions. A state transition can occur if a predefined list of
conditions is satisfied by an appropriate set of actions. These actions can occur in any order; in fact, if
there is a pre-established order in which the actions must take place, it will be necessary to modify
the process in such a way that a change of state occurs in correspondence with each action, enabling
the subsequent ones. Examples of conditions that must be satisfied to move to a next state include: (1)
uploading one or more documents; (2) digitally sign one or more documents; (3) the approval of the

4https://github.com/ConsenSys/quorum

https://github.com/ConsenSys/quorum


Start Fail

Documents
loaded

Missing
documents

Upload documents:
application, financial
status, identity card 

Manual check by
Loan office employee

Check
OK?

Loan
approval

No Yes

(Approval of financial status
AND approval by legal office)

OR
Approval by General Director

Approvals
obtained?

No

Yes

Max 7 days

Max 7 days

Loan
granted

Figure 1: An example of workflow, for a user requesting a loan

current state by one or more people, or by one or more roles. In the former case, approval is required
from the specified people, while in the latter case it is sufficient for anyone in that role (for example, any
employee of the legal department) to give their approval; (4) a predefined amount of time has passed,
within which the prescribed actions had to be carried out. In this case, having verified that only some
of these actions have been performed, the process can go into a state in which alternative measures are
taken (or, in the worst case, into the state indicating that the process has failed).

An example of the business processes/workflows we want to consider is illustrated in Figure 1. The
example concerns the request for a loan by a user. To avoid overly complicating the diagram, we have
left out some details, such as the roles involved and details on the precise actions to be carried out (for
example, the checks performed by the loan office employee). This information will be visible in our
application, by selecting the nodes or arcs of the diagram. In Figure 1, states are represented by circles
or ovals, choices are represented by diamonds, and the conditions for moving from one state to another
are indicated inside rounded rectangles. Time conditions are indicated with a clock icon. In particular,
the workflow operates as follows:

1. The process starts from an initial state, labeled “Start” in the automaton of Figure 1.
2. A user, who is requesting a loan, must upload the application and a document certifying their

financial status. This application can be signed digitally, or it can be signed by hand; in this case,
a copy of the identity card must be attached. Finally, if the user has authenticated via SPID, no
signature — digital or by hand — is necessary. When these actions are completed, the process
goes into the “documents loaded” state.

3. A manual check is made by a loan office employee to ensure that the requested documentation
has been provided correctly, with digital signature, or hand signature, or authentication via SPID.
If the check is successful, the employee provides authorization to proceed and the process moves
to the “loan approval” status; if the check fails, the process switches to the “missing documents”
state, and a notification is sent to the user. When the user uploads the missing documents, the
process will return to the “documents loaded” state, and the employee can perform the check



again. If the user does not upload the missing documents within 7 days, or if they never uploaded
any document, the process ends unsuccessfully.

4. To approve the loan, the following two conditions must be met: (1) the office that performs the
checks on the user’s financial status must provide its authorization, and (2) the legal department
must provide its authorization. Alternatively, the authorization of the General Director is sufficient.
If any of these permissions are denied, the process ends unsuccessfully and the user is notified.
Otherwise, the process ends in a successful final state, and the loan is granted.

The roles necessary to carry out this process (not shown in Figure 1) are the following: (1) Normal
User (the users who request the services); (2) Loan Department (all employees who carry out the
initial checks on documents uploaded by users belong to this role); (3) Financial Department (all office
employees who carry out checks on the users’ financial status belong to this role); (4) Legal Department
(all office employees who carry out checks on the validity of documents from a legal point of view
belong to this role); (5) General Director: only one person belongs to this role, namely the General
Director.

Let us note that authorizations are associated with roles rather than directly with people. However,
the system will record the name of the people who provided the authorizations, for liability reasons.
Authorization conditions can in theory be very complex; for example, in a series of authorizations, it
may be required that at least two employees of an office sign or give their authorization, or that these
two authorizations be replaced by that of their office manager.

4. (Future) Implementation

The developed software, currently in the design phase, will be a web application. As such, it will allow
users of the service to register and authenticate. It will also allow the administrator of each company or
institution to create their own roles, users and processes. The software architecture of the proposed
system is shown in Figure 2, and consists of the following elements:

• The web application user interface (frontend), that communicates with the backend via REST
APIs. It will be implemented using the React library5.

• A backend. This is the heart of the software: it contains the operating logic, manages the
information stored in the centralized database, exposes the REST APIs to the frontend and to the
outside, and manages access to the blockchain and its smart contracts. It will be implemented
using the Sails Javascript MVC framework6. Communication between the APIs and the blockchain
will occur through the Web3.js Ethereum Javascript library7.

• A centralized database, in which all information that should not be recorded on the blockchain is
stored. This includes information contained in company accounts, billing information, etc. To
this aim, MongoDB8 will be used.

• A permissioned (and possibly private) version of the Ethereum blockchain, such as Quorum. Since
the documents cannot be saved in the blockchain, due to the limited size of the blocks, they will
be saved on a private IPFS9 network instance, while their hash fingerprints will be saved on the
blockchain.

• A public blockchain (such as Polygon10), on which the hash fingerprint of the last current block
of the permissioned blockchain will be notarized at regular time intervals.

Access to the blockchain always goes through the REST APIs. These control the permissions to
create or invoke smart contracts, as well as the permission to write information on the blockchain. The

5https://react.dev/
6https://sailsjs.com/
7https://web3js.org/
8https://www.mongodb.com/
9https://ipfs.tech/
10https://polygon.technology/

https://react.dev/
https://sailsjs.com/
https://web3js.org/
https://www.mongodb.com/


Quorum, IPFS

Rest APIs

Web
application’s

frontend

+
Permissioned

blockchain

Smart
contracts

Public
blockchain

(notarization)

Backend

Solidity

Sails, MongoDB

React

Polygon

Figure 2: The software architecture of the proposed system. The layers that make up the architecture are shown
on the right. On the left, the technologies used to implement these layers are mentioned.

presence of REST APIs will also allow external developers to integrate other software applications with
the system proposed here, according to the principle of process/workflow Certification-as-a-Service.

Each process/workflow defined by an organization will be transformed into a smart contract written
in the Solidity language11 by a specific Process-to-Solidity compiler. The smart contract thus produced
will be owned by the administrator of the organization who defined the process/workflow. Basically, a
process/workflow defines a deterministic finite state automaton (DFA) that will be simulated by the
smart contract. The history of all the states the DFA has been in, starting from the initial state, is stored
in a Solidity mapping. The smart contract also knows the structure of the DFA, and therefore not only
the state diagram but also all the conditions associated with the transition from one state to the next.
Note that this information can be stored and managed in (at least) two ways. A first way, which we
call uniform by analogy with what happens with some theoretical computation models [10], provides
that all the information relating to the DFA that encodes the process is stored in a smart contract in
appropriate data structures (mapping, arrays, etc.). The smart contract is therefore unique, and can
simulate any process. By analogy with what happens with Turing machines, we could say that it is
a universal smart contract. The second way, which we could instead call semi-uniform, requires that
the structure of the smart contract itself (i.e., its control structures: loops, branches, etc.) reflects the
structure of the process/workflow (i.e., the DFA) to be simulated. Both choices have pros and cons. In
the former case, there is a single smart contract to deal with, which can be optimized by hand; the
Process-to-Solidity compiler will “only” have to take care of generating the correct data structures to
represent the given process (DFA) within the smart contract. Naturally, the smart contract will be quite
complicated, having to be able to simulate every possible case described within the data structures. On
the other hand, in the latter case the smart contracts that encode the processes (DFA) will certainly
be simpler, but the Process-to-Solidity compiler will be more complicated. We are currently oriented
towards this last option.

In any case, the smart contract must keep track of all the actions that have been performed to verify
the conditions. Thus, in the example reported above, the smart contract can — at some point in the

11https://soliditylang.org/



execution of the process — store the fact that the current state is “loan approval”, which means that it
expects an authorization from part of the Financial Department, and an authorization from the Legal
Department (or, alternatively, by the General Director). Assuming that only the authorization from
the Legal Department has been received, the condition for the transition to the “loan granted” status
will only be partially verified. At this point the second authorization could arrive, or the authorization
from the General Director could arrive, which makes the first authorization received useless (but
does not delete it from the state of the smart contract). If one of these possibilities occurs, the smart
contract notices that all conditions are verified, and records the change in state of the automaton. The
communication of an action to the smart contract, the query about which conditions remain to be
verified, and the query about the current state of the automaton, all occur through appropriate calls to
functions written in Solidity. When some information is written inside a smart contract, a corresponding
event is emitted; this allows us to efficiently notify the application of the change in the status of the
smart contract. At any time, a call to the abort function can bring the process to an unsuccessful final
state, effectively causing the execution of the process to fail. Clearly, the abort function can only be
invoked by those authorized to do so, typically the owner of the smart contract. Similarly, if we realize
that the process/workflow is blocked because one of the conditions required in the current state can
never be verified, it is possible to return the automaton to one of the previously assumed states. Clearly
this means that some authorizations acquired and some actions performed will be discarded (but will
remain in the history of the states of the smart contract), given that the smart contract will have to be
in a state consistent with the current state of the automaton. Note also that the process can only return
to one of the previously assumed states, and not to an arbitrary state.

5. Conclusions and Directions for Future Work

Inspired by some software applications for document flow management, in this paper we proposed a
blockchain-based system for the certification of processes and workflows. The system is currently in
the design phase, and in this paper we have provided some of the ideas on which it is based. When
completed, it will take the form of a web application. Furthermore, it will provide a set of REST APIs that
will allow one to interface with any other document management or process management application.

In addition to application development, we will evaluate whether to adopt the Business Process
Model and Notation (BPMN)12 as a format for representing process procedures. This would allow for
more direct interfacing with softwares that already adopt this standard. For such software, the proposed
system would act as a notarization/certification service. However, as mentioned, the proposed system
is useful in those cases where there is a consortium of companies or entities that are potentially in
competition with each other; if the process is managed by a single company or entity within its own
software platform, it is difficult to decentralize. Therefore, another future challenge will be to ensure
that different organizations can independently provide their own processes, which communicate with
the processes of other organizations, all of them being certified by our system.

A more immediate and practical problem concerns the maximum size and complication of the
processes that can be represented by smart contracts. In fact, in November 2016 EIP-17013 imposed a
smart contract size limit of 24.576 bytes, to prevent denial-of-service (DOS) attacks. One immediate
solution would be to divide large smart contracts into smaller ones; however, this requires to design
beforehand the ways in which large contracts can be split. A technically more complicated solution
would be to use a proxy system14 with DELEGATECALLs, which execute another contract’s function
with the state of the calling contract.

Finally, in this preliminary study we have not considered performance issues, especially those related
to the speed of writing data to the blockchain. Although such issues are not relevant when modeling
document workflows, they become crucial in the case of automated industrial processes, especially if

12https://www.bpmn.org/
13https://eips.ethereum.org/EIPS/eip-170
14https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies

https://www.bpmn.org/
https://eips.ethereum.org/EIPS/eip-170
https://docs.openzeppelin.com/upgrades-plugins/1.x/proxies


several organizations try to change the state of their smart contracts simultaneously. A performance
evaluation under different workload conditions will certainly be performed in future work.

References

[1] F. Dietrich, Y. Ge, A. Turgut, L. Louw, D. Palm, Review and analysis of blockchain projects in
supply chain management, Procedia Computer Science 180 (2021) 724–733. Proceedings of the
2nd International Conference on Industry 4.0 and Smart Manufacturing (ISM 2020).

[2] M. J. M. Chowdhury, A. Colman, M. A. Kabir, J. Han, P. Sarda, Blockchain as a Notarization Service
for Data Sharing with Personal Data Store, in: 17th IEEE Intern. Conf. On Trust, Security And
Privacy In Computing And Communications/ 12th IEEE Intern. Conf. On Big Data Science And
Engineering (TrustCom/BigDataSE), 2018, pp. 1330–1335.

[3] Y. Chen, C. Bellavitis, Blockchain disruption and decentralized finance: The rise of decentralized
business models, Journal of Business Venturing Insights 13 (2020) e00151.

[4] G. Wang, M. Nixon, Sok: tokenization on blockchain, in: Proceedings of the 14th IEEE/ACM
International Conference on Utility and Cloud Computing Companion, UCC ’21, Association for
Computing Machinery, New York, NY, USA, 2022, pp. 1–9.

[5] W. Viriyasitavat, L. D. Xu, D. Niyato, Z. Bi, D. Hoonsopon, Applications of Blockchain in Business
Processes: A Comprehensive Review, IEEE Access 10 (2022) 118900–118925.

[6] L. García-Bañuelos, A. Ponomarev, M. Dumas, I. Weber, Optimized execution of business processes
on blockchain, in: J. Carmona, G. Engels, A. Kumar (Eds.), Business Process Management, Springer
International Publishing, Cham, 2017, pp. 130–146.

[7] C. Di Ciccio, A. Cecconi, M. Dumas, L. García-Bañuelos, O. López-Pintado, Q. Lu, J. Mendling,
A. Ponomarev, A. Binh Tran, I. Weber, Blockchain Support for Collaborative Business Processes,
Informatik Spektrum 42 (2019) 182–190.

[8] O. López-Pintado, L. García-Bañuelos, M. Dumas, I. Weber, A. Ponomarev, Caterpillar: A business
process execution engine on the Ethereum blockchain, Software: Practice and Experience 49
(2019) 1162–1193.

[9] A. Binh Tran, Q. Lu, I. Weber, Lorikeet: A Model-Driven Engineering Tool for Blockchain-Based
Business Process Execution and Asset Management, in: International Conference on Business
Process Management, 2018, pp. 56–60.

[10] N. Murphy, D. Woods, Uniformity is Weaker than Semi-Uniformity for Some Membrane Systems,
Fundamenta Informaticae 134 (2014) 129–152.


	1 Introduction
	2 Some Related Works
	3 Design of the System
	4 (Future) Implementation
	5 Conclusions and Directions for Future Work

