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Abstract
Priority Dispatching Rules (PDRs) are greedy heuristic algorithms used to obtain approximate solutions to the NP-hard
Job-shop Scheduling Problem (JSSP). The manual design of PDRs requires domain knowledge to achieve good performance,
which varies with scenario properties and objectives. Recently, deep reinforcement learning has been used to automate the
process of designing PDRs, where PDRs are formulated as a Markov Decision Process exploiting graph representation of
JSSP, and a graph neural network (GNN) selects the operations to be dispatched. We experimentally compare five published
models with source code publicly available on GitHub and our extensions of those models on three different variants of JSSP.
Our experiments show that the choice of input features significantly affects the model’s performance regardless of the GNN
architecture. This suggests that the feature selection is essential for learning high-quality PDRs.
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1. Introduction
Job scheduling considers the allocation of jobs to re-
sources with the goal of minimizing the makespan. Each
job consists of a sequence of operations, and each re-
source can process only one operation at a time [1].

Generally, the Job-shop Scheduling Problem (JSSP) as-
sumes all jobs to be known apriori and each operation
can be allocated only to one given machine [1]. In a Flex-
ible Job-shop Scheduling Problem (FJSP), each operation
can be allocated to any of the machines from a given
subset of machines [2]. A Dynamic Job-shop Schedul-
ing Problem (DJSP), one of the more common variants,
tackles the stochastic aspects of modern manufacturing,
e.g., the arrival of new jobs during the execution of the
schedule or uncertain processing times [3].

Due to the NP-hardness of these problems [4], numer-
ous approaches and heuristics have been used over time
to yield approximate solutions, e.g. genetic algorithms
[5].

Priority Dispatching Rules (PDRs) [6] are a heuristic
method widely used in scheduling systems. Designing
a high quality PDR is usually a very time-consuming
task requiring extensive domain knowledge. Deep
reinforcement learning (DRL) has already been proposed
as a possible solution for automatizing algorithm
learning [7]. Several recent works have focused on
extending this technique to job scheduling [8, 9, 10, 11],
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applying graph neural networks (GNNs) on a graph
representation of job scheduling problems.

This article considers five models published in litera-
ture with source code publicly available on GitHub. Three
of those models solve JSSP, and two of them solve FJSP.
We present our extensions of JSSP models to DJSP and ex-
perimentally compare their performance on public bench-
marks for JSSP and FJSP. To compare our DJSP extensions,
we model the DJSP as a Poisson process and generate
test instances from JSSP benchmarks.

2. Problem formulation
The Job-shop Scheduling Problem (JSSP) consists of a set
of jobs 𝒥 and a set of machinesℳ [1]. Each job has an
associated sequence of operations 𝑂𝑖𝑗 ∈ 𝒪, which must
be processed in the given order. Operation𝑂𝑖𝑗 represents
uninterrupted processing of job 𝐽𝑖 ∈ 𝒥 on machine
𝑀𝑗 ∈ ℳ with processing time 𝑝𝑖𝑗 . Each machine can
process only one operation at a time. A schedule is a set
of start times 𝑆𝑖𝑗 for each operation 𝑂𝑖𝑗 that satisfies
these constraints. The completion times 𝐶𝑖𝑗 = 𝑆𝑖𝑗 +𝑝𝑖𝑗
denote the end of each operation. The JSSP solution
is a schedule minimizing the total makespan 𝐶max =
max𝑖,𝑗{𝐶𝑖𝑗} [8].
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Figure 1: Disjunctive graph representation of JSSP, slightly
modified from [1]

2.1. Flexible Job-shop Scheduling
Problem

A flexible Job-shop Scheduling Problem (FJSP) is an ex-
tended version of JSSP with the only difference being
that each operation 𝑂𝑖𝑗 ∈ 𝒪 can be processed on any
machine 𝑀𝑘 from a given subset of machinesℳ𝑖𝑗 ⊆ℳ
with processing time 𝑝𝑖𝑗𝑘 [10]. Solving FJSP then consists
of selecting the appropriate machine for each operation
in addition to determining its start time.

2.2. Dynamic Job-shop Scheduling
Problem

A dynamic Job-shop Scheduling Problem (DJSP) is a dy-
namic version of JSSP, where the jobs are not released all
at once, but at different times throughout the execution.
We assume that 𝑛 jobs are known at the beginning of the
schedule and 𝑛′ jobs arrive after the start of the schedule
[12, 13].

2.3. Disjunctive Graph Representation
JSSP can be represented as a disjunctive graph 𝐺 =
(𝑂,𝐴,𝐸), where 𝑂 denotes a set of vertices correspond-
ing to different operations 𝑂𝑖𝑗 weighted by the process-
ing time together with a start node 𝒮 and a target node 𝒯
with processing time equal to zero, representing start and
end of the schedule, respectively [1]. 𝐴 is a set of arcs
representing precedence constraints. 𝐸 =

⋃︀
𝑘 𝐸𝑘 is a set

of edges, where 𝐸𝑘 is a clique connecting operations that
require the same machine 𝑀𝑘 for their execution. An
example of a JSSP instance represented as a disjunctive
graph is shown in Figure 1.

Finding a solution to the Job-shop Scheduling Problem
can be viewed as defining the ordering between oper-
ations requiring the same machine. In the disjunctive
graph, this is done by turning all edges into arcs in such

Figure 2: Disjunctive graph representation of FJSP, slightly
modified from [14]

a way that the resulting graph is a directed acyclic graph
(DAG) [1].

2.3.1. FJSP as a disjunctive graph

The only difference with respect to JSSP is that each
operation can be part of multiple cliques. An example
of disjunctive graph representation for FJSP is shown in
Figure 2.

2.4. Heterogeneous Graph Representation
JSSP as a heterogenous graph is 𝐻 = (𝑂,𝑀,𝐸), where
𝑂 is a set of operation nodes, 𝑀 is a set of machines
nodes, and 𝐸 is a set of edges [11].

Each edge can be either operation-to-operation (𝑂−𝑂)
edge, machine-to-machine (𝑀 −𝑀 ) edge, or operation-
to-machine (𝑂 −𝑀 ) edge. 𝑂 −𝑂 edges fully connect
all operations in the same job, and all machines are fully
connected via 𝑀 −𝑀 edges. 𝑂 −𝑀 edge connects op-
erations with machines on which they can be processed.

2.4.1. FJSP as a Heterogeneous Graph

FJSP as a heterogenous graph is defined as 𝐻 =
(𝑂,𝑀,𝐴,Σ) [10]. Set of operation nodes 𝑂 and set of
arcs 𝐴 is the same as in the disjunctive graph. A set of ma-
chine nodes 𝑀 represents machines, and a set of edges Σ
connects operation nodes and machine nodes on which
they can be processed. An example of a heterogeneous
graph for FJSP is shown in Figure 3.

2.5. Priority Dispatching Rules
PDRs are a greedy heuristic method for solving JSSP in
|𝒪| steps [8]. For each eligible operation, PDR computes
a priority index and selects the one with the highest prior-
ity to be dispatched. In FJSP, PDR also selects the machine.
Traditional PDRs compute the priority index based on
the set of features for each operation [13]. Traditional
PDRs include:



Figure 3: Heterogeneous graph representation of FJSP,
slightly modified from [14]

• First In First Out (FIFO)
• Most Operations Remaining (MOR)
• Shortest Processing Time (SPT)
• Most Work Remaining (MWKR)
• Earliest Due Date (EDD)
• Least Operations Remaining (LOR)
• Longest Processing Time (LPT)
• Least Slack (LS)
• Shortest Remaining Processing Time (SRPT)

Decisions made by PDRs can then be viewed as actions
changing the disjunctive graph. This process can then
be formulated as a Markov Decision Process (MDP) [8],
allowing PDRs to be learned automatically via deep rein-
forcement learning techniques. State 𝑠𝑡 at timestep 𝑡 is a
graph as described in Section 2.3 and Section 2.4. Action
𝑎𝑡 at timestep 𝑡 is an unscheduled operation whose pre-
ceding operations have already been scheduled. A state
transition from 𝑠𝑡 to 𝑠𝑡+1 after executing 𝑎𝑡 is done by
updating the graph. The reward for each action is the
difference between the 𝐶max(𝑠𝑡) and 𝐶max(𝑠𝑡+1), where
𝐶max(𝑠𝑡) is the lower bound of the makespan in state
𝑠𝑡. The cumulative reward with discount factor 𝛾 = 1 is
𝐶max(𝑠0)−𝐶max(𝑠|𝒪|), where 𝐶max(𝑠|𝒪|) corresponds to
the makespan of the final schedule 𝐶max, and 𝐶max(𝑠0) is
a constant specific to the problem instance. Maximizing
cumulative reward minimizes final schedule makespan
𝐶max [8, 10, 11]. Each model presented in the next section
uses their own modified version of this MDP, which we
will not discuss in detail.

3. Models with source code
In this section, we will briefly present five models from
the literature with available source code. These models

Figure 4: Disjunctive graph with original precedence con-
straints (black arrows), and three precedence constraints (red
and blue arrows) between already scheduled operations (or-
ange circles) in JSSP "arc adding scheme". Slightly modified
from [8].

used GNNs and DRL to solve JSSP and FJSP. We named
each model after its GitHub repository. Source code of
all models, experiments, and data used in this paper can
be found on GitHub (link).

3.1. JSSP Models
L2D is a model published in [8], source code was
obtained from [15]. It employs a modified disjunc-
tive graph shown in Figure 4, where the authors
start with the original disjunctive graph containing
only conjunctive arcs, and after each dispatched
operation, they add a conjunctive arc representing
a new precedence constraint between operations on
the same machine. To train the model, the authors
used Proximal Policy Optimization (PPO) algorithm [16].

Wheatley is an open-source model published in
[17], with source code available on GitHub [18]. It uses a
similar "arc adding scheme" as L2D. To train the model,
the authors used PPO algorithm [16].

IEEE-ICCE-RL-JSP was published in [11], the
code was obtained from the GitHub repository [19].
It represents JSSP as a heterogeneous graph. In each
step, this model chooses one of the traditional PDRs to
determine the operation to dispatch. To train the model,
the authors used a Double Deep-Q Network (DDQN)
algorithm [20].

3.2. FJSP Models
End-to-end-DRL-for-FJSP was published in [14], the
source code was obtained from [21]. It represents FJSP as

https://github.com/Maros112358/Graph-neural-networks-and-deep-reinforcement-learning-in-job-scheduling/


Figure 5: Action 𝑎7 dispatches 𝑂33 on 𝑀2 by adding a red arc corresponding to 𝑀2 and changing the color of 𝑂33 to red in
FJSP "arc adding scheme". Reproduced from [14].

a disjunctive graph. It uses a similar "adding arc scheme"
as L2D, which is shown in Figure 5 for an FJSP. To train
the agent, the authors used a multi-agent version of the
PPO algorithm.

The model fjsp-drl was published in [10], and the source
code was obtained from [22]. It represents FJSP as a
heterogeneous graph. To train the model, the authors
used their own modified version of PPO algorithm.

4. Proposed Extensions
In this section, we will present our extensions of JSSP
models to DJSP, namely for L2D, Wheatley, and IEEE-
ICCE-RL-JSP.

4.1. Dynamic L2D
The main idea behind our algorithm is that when a new
job 𝐽new arrives at the time 𝑡𝑎, the algorithm reschedules
all operations that have not started yet. The complete
algorithm pseudocode is shown in Algorithm 1. We treat
L2D as a black box, which takes a JSSP instance and a
list of actions as input (containing the already started
operations), performs actions from the list in a given
order, dispatches the remaining operations using its GNN,
and outputs a solution. The already started operations,
and their start times, are kept in a list called plan. After
each new job arrival, plan is updated with operations
that have started since the previous job arrived, the new
job is added to the instance, and L2D is used to dispatch
the rest of the operations.

4.2. Dynamic Wheatley
We consulted Wheatley’s authors in the GitHub issue
[23]. We were advised to add a "virtual" operation at the
start of the job processed by a "virtual" machine with the
processing time equal to the arrival time 𝑡𝑎. This "virtual"
operation guarantees, that the first "real" operation will
start after 𝑡𝑎. To avoid different jobs interfering with

Algorithm 1 Dynamic L2D
Input: Jobs known at the start 𝐽known, 𝑞𝑢𝑒𝑢𝑒 with
arriving jobs
Output: Dynamic schedule

1: 𝑝𝑙𝑎𝑛← initialize empty list of actions
2: 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒← formulate JSSP instance from 𝐽known

3: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← dispatch operations in 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 with
L2D

4: while new jobs are expected to arrive do
5: if no new job arrived in 𝑞𝑢𝑒𝑢𝑒 then
6: continue
7: end if
8: 𝐽new ← new job from the 𝑞𝑢𝑒𝑢𝑒
9: 𝑡𝑎 ← arrival time of the job 𝐽new

10: for operation 𝑂𝑖𝑗 in 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 do
11: if 𝑆𝑖𝑗 < 𝑡𝑎 and 𝑂𝑖𝑗 not in 𝑝𝑙𝑎𝑛 then
12: add 𝑂𝑖𝑗 to the 𝑝𝑙𝑎𝑛
13: end if
14: end for
15: add 𝐽new to 𝐽known

16: 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒← create JSSP instance from 𝐽known

17: for operation 𝑂𝑖𝑗 in 𝑝𝑙𝑎𝑛 do
18: dispatch 𝑂𝑖𝑗 in 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒
19: end for
20: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛← dispatch the rest of 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 with

L2D and constraint 𝑆𝑖𝑗 ≥ 𝑡𝑎
21: end while
22: return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

each other, we add one "virtual" machine per one "virtual"
operation.

4.3. Dynamic IEEE-ICCE-RL-JSP
We modified IEEE-ICCE-RL-JSP to take a list of jobs
and their arrival times as input. When the model chooses
which operation to dispatch, operations from jobs that
have not yet arrived are not listed as eligible operations.



5. Experiment
In this section, we will experimentally compare the mod-
els presented in Section 3 and Section 4. We will describe
the experimental setup for each job scheduling variant
(JSSP, FJSP, DJSP) and interpret the results.

5.1. Setup
We ran all experiments on a MacBook Pro with an Apple
M2 Max chip, 32 GB of RAM, and Sonoma 14.4.1 macOS
operating system.

5.1.1. Instances

JSSP. We obtained 242 benchmark instances, and their
best-observed solutions from [24]. We reformulate
each JSSP instance as its equivalent FJSP instance with
|ℳ𝑖𝑗 | = 1, so FJSP models can process JSSP instances.
For each model and JSSP instance, we run the experiment
with 10 different seeds. We are interested in the gap given
by the following equation

𝑔𝑎𝑝 =
𝐶 − 𝐶best

𝐶best
, (1)

where 𝐶 is the makespan produced by the model, and
𝐶best is the best-observed makespan.

FJSP. We obtained 402 benchmark instances, and
their best-observed solutions from [25]. Again, we
repeat the experiment for each model and each FJSP
instance with 10 different seeds and calculate the gap.

DJSP. We designed an experiment inspired by
[26]. We assume a set of known jobs at the beginning.
We then model the arrival of new jobs as a Poisson
process, i.e., the arrival of two consecutive jobs follows
an exponential distribution [26], where the average
arrival time is

∆𝑡avg =
𝜇𝑎

𝑈
, (2)

where 𝜇𝑎 is the average processing time of all operations,
and 𝑈 is a load factor of the dynamic job shop. We use
𝑈 ∈ {1, 4} in the experiment.

We generate the DJSP instances from the JSSP in-
stances and consider half the jobs as known and the
rest as arriving jobs. We repeat each experiment with
10 different seeds. We are interested in the makespan
because the gap is not available.

5.1.2. Model checkpoints

L2D. From the L2D GitHub repository [15], we obtained
checkpoints trained on random instances with size 6x6,
10x10, 15x15, 20x15, 20x20, 30x15, 30x20.

Wheatley. For the experiment, we had to train
Wheatley ourselves. To make Wheatley as simi-
lar to L2D as possible, we chose the same training
hyperparameters as L2D.

The listed checkpoints were trained using a CPU on
an Arm-based Ampere A1 virtual machine with 4 CPUs
and 24 GB of RAM in Oracle Cloud Infrastructure with
Ubuntu 20.04 64-bit operating system. We stopped the
training when the model had not improved its objective
for at least two days. Training of each checkpoint took
at least 3 weeks.

IEEE-ICCE-RL-JSP. We used the provided train-
ing script, which trains the model until the gap is smaller
than 20%. We trained five checkpoints. We trained the
model using CPU on an Arm-based Ampere A1 virtual
machine with 4 CPUs and 24 GB of RAM in Oracle Cloud
Infrastructure with Ubuntu 20.04 64-bit operating system.

End-to-end-DRL-for-FJSP. We obtained only
one checkpoint from the GitHub repository [21].

fjsp-drl. We obtained five checkpoints from the
GitHub repository for this model [22].

5.1.3. Baselines

JSSP. We compared the models with the 9 classic PDRs
listed in Section 2.5. We used implementations given by
the IEEE-ICCE-RL-JSP model as obtained from the
GitHub repository [19].

FJSP. For FJSP, we used PDR implementations
from the code of the model End-to-end-DRL-for-FJSP.
For operation selection, we used FIFO, MOPNR, LWKR,
and MWKR. For machine selection, we used EET and
SPT.

5.2. Results
5.2.1. JSSP

Average gaps are shown in Table 1. The boxplot of JSSP
gaps is shown in Figure 6. Average runtimes are in Ta-
ble 2.

We rejected the null hypothesis that the medians of the
performance of the three best models (MWKR, fjsp-drl,
and IEEE-ICCE-RL-JSP) are equal using the Kruskal-
Wallist test [27] (𝑝 < 5%). Therefore we can also reject
the null hypothesis that the medians of the performance
of all models are equal.

We compared all models pairwise using the Mann-
Whitney U test [28] corrected for multiple hypotheses
testing using the Holm method [29]. The best three mod-
els were significantly different from the rest. The pair-
wise comparison of the three best models is shown in



Table 1
Average JSSP gaps from optimal solutions for different models;
the lowest average value is in bold

Model Gap [%]

EDD 0.36 ± 0.12
FIFO 0.30 ± 0.13
LOR 0.40 ± 0.11
LPT 0.44 ± 0.11

MWKR 0.22 ± 0.12
LS 0.29 ± 0.11

MOR 0.26 ± 0.14
SPT 0.26 ± 0.09

SRPT 0.40 ± 0.11
End-to-end-DRL-for-FJSP 0.30 ± 0.14

fjsp-drl 0.22 ± 0.12
IEEE-ICCE-RL-JSP 0.20 ± 0.12

L2D 0.31 ± 0.16
Wheatley 0.48 ± 0.38

Table 2
Average JSSP runtimes for different models and categories

Model Runtime [s]

EDD 4.04 ± 6.11
FIFO 1.69 ± 3.51
LOR 1.09 ± 2.26
LPT 2.20 ± 3.39

MWKR 2.31 ± 3.82
LS 2.43 ± 3.88

MOR 1.26 ± 2.58
SPT 2.10 ± 3.37

SRPT 2.41 ± 3.82
End-to-end-DRL-for-FJSP 4.97 ± 8.69

fjsp-drl 16.70 ± 38.10
IEEE-ICCE-RL-JSP 9.85 ± 12.17

L2D 2.46 ± 3.18
Wheatley 10.98 ± 24.60

Table 3
Achieved significancies (p-values) of the comparison between
the three best models JSSP models, Holm-corrected for the
simultaneous testing of all 91 considered pairwise hypotheses

Comparison Corrected p-value

IEEE-ICCE-RL-JSP vs. fjsp-drl 8.1%
fjsp-drl vs. MWKR 100%

IEEE-ICCE-RL-JSP vs. MWKR 3.3%

Table 3. The best model is not significantly different from
the second, the second best model is not significantly dif-
ferent from the third, but the best model is significantly
different from the third.

The Holm-corrected p-values of pairwise comparison
using the Mann-Whitney U test are shown in Table 3.
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Figure 6: Boxplot of JSSP gaps from optimal solutions; The
model with the lowest average gap is highlighted as a blue
box

Table 4
Average FJSP gaps from optimal solutions for different models
and instance categories; the lowest values are in bold

Model Gap [%]

FIFO-EET 0.67 ± 1.13
FIFO-SPT 0.37 ± 0.22

LWKR-EET 1.10 ± 1.10
LWKR-SPT 0.64 ± 0.32

MOPNR-EET 0.97 ± 1.35
MOPNR-SPT 0.40 ± 0.22
MWKR-EET 0.80 ± 1.13
MWKR-SPT 0.40 ± 0.21

End-to-end-DRL-for-FJSP 0.13 ± 0.13
fjsp-drl 0.21 ± 0.35

5.2.2. FJSP

Average FJSP gaps for different models are shown in Ta-
ble 4. Average runtimes are shown in Table 5. A boxplot
for FJSP gaps is shown in Figure 7 with logarithmic ver-
tical scale.

We rejected the null hypothesis that the medians of
gaps of all models and PDRs are equal using the Kruskal-
Wallis test (𝑝 < 5%). We also compared models and
PDRs using the Holm-corrected Mann-Whitney U test
[28]. Almost all pairwise comparisons produced statis-
tically significant differences (𝑝 < 5%). Comparisons
that did not produce statistically significant differences
are MOPNR-SPT vs. MWKR-EET, MOPNR-SPT vs.
MWKR-SPT, and MWKR-EET vs. MWKR-SPT.



Table 5
Average FJSP runtimes for different models

Model Runtime [s]

FIFO-EET 0.13 ± 0.24
FIFO-SPT 0.13 ± 0.23

LWKR-EET 0.12 ± 0.20
LWKR-SPT 0.12 ± 0.20

MOPNR-EET 0.13 ± 0.21
MOPNR-SPT 0.13 ± 0.22
MWKR-EET 0.12 ± 0.21
MWKR-SPT 0.13 ± 0.21

End-to-end-DRL-for-FJSP 1.13 ± 1.63
fjsp-drl 1.70 ± 2.27

FIF
O-EE

T

FIF
O-SP

T

LW
KR

-EE
T

LW
KR

-SP
T

MOPN
R-E

ET

MOPN
R-S

PT

MWKR
-EE

T

MWKR
-SP

T

En
d-t

o-e
nd

-DRL-f
or-

FJS
P

fjsp
-dr

l

10

100

1000

Ga
p 

[%
]

Figure 7: Boxplot of FJSP gaps from optimal solutions with
logarithmic vertical scale; The model with the lowest average
gap is highlighted as a blue box

5.2.3. DJSP

Average makespans with the load factor 1 are shown
in Table 6, with the load factor 4 in Table 7. We tested
the null hypothesis for each size and load factor that the
medians of the performance of all models are equal us-
ing the Holm-corrected Kruskal-Wallis U test, and after
we rejected this null hypothesis, we compared the mod-
els pairwise using the Holm-corrected Mann-Whitney U
test.

6. Discussion

6.1. JSSP
The results for MWKR we obtained are much better than
the results reported by the authors of L2D [8]. We did
not find their implementation of MWKR, so we could
not investigate the difference.

Table 6
Average DJSP makespan with 𝑈 = 1; the lowest values are
bold; "**" denotes best model better than the other two mod-
els, "*" denotes best model better only than the last model or
the second best model better than the last model

Size L2D IEEE-ICCE-RL-JSP Wheatley

6x6 72.03 ± 9.40 74.69 ± 11.38 77.00 ± 9.24
10x5 780.24 ± 90.34* 874.43 ± 153.79 817.90 ± 78.99
10x10 1204.43 ± 219.98* 1259.91 ± 257.09 1212.22 ± 217.04
15x5 1031.16 ± 61.63** 1198.84 ± 108.35 1080.24 ± 89.20*
15x10 1329.93 ± 94.21** 1413.15 ± 116.03 1442.65 ± 129.44
15x15 1676.67 ± 116.37** 1716.56 ± 119.06* 1817.81 ± 145.40
20x5 1363.52 ± 148.91* 1701.57 ± 203.56 1367.97 ± 104.40*
20x10 1858.25 ± 213.24* 2081.56 ± 257.26 1918.04 ± 161.88*
20x15 2779.05 ± 1270.01** 3009.12 ± 1383.13 2988.77 ± 1338.80
20x20 3208.98 ± 1522.30** 3402.65 ± 1637.48* 3655.56 ± 1662.28
30x10 2143.03 ± 126.54** 2511.60 ± 222.45 2510.66 ± 181.78
30x15 4034.07 ± 1660.43** 4484.68 ± 1833.57* 4819.48 ± 1847.26
30x20 4469.95 ± 1779.81** 4844.21 ± 1961.36* 5805.12 ± 2149.98
40x15 6835.81 ± 1080.76** 7789.19 ± 1137.65* 8884.73 ± 862.80
40x20 7556.13 ± 1071.72** 8496.36 ± 1179.83* 10985.64 ± 1032.40
50x10 3809.08 ± 766.24** 4456.46 ± 684.34* 4948.68 ± 604.10
50x15 5882.77 ± 2621.21** 6689.03 ± 2736.00* 9118.45 ± 3524.75
50x20 6320.83 ± 2770.31** 7050.68 ± 3024.71* 11367.83 ± 4334.55
100x20 6310.22 ± 178.01** 8150.22 ± 347.98* 22838.04 ± 1550.05

Table 7
Average DJSP makespan with 𝑈 = 4; the lowest values are
bold; "**" denotes best model better than the other two mod-
els, "*" denotes best model better only than the last model or
the second best model better than the last model

Size L2D IEEE-ICCE-RL-JSP Wheatley

6x6 70.05 ± 8.25 64.48 ± 3.84** 75.50 ± 8.55
10x5 747.63 ± 75.82 741.80 ± 78.28 775.62 ± 77.70
10x10 1176.08 ± 221.28 1109.18 ± 200.95** 1187.33 ± 212.06
15x5 1006.18 ± 53.37 984.55 ± 44.94* 1008.57 ± 61.81
15x10 1274.83 ± 76.31* 1191.63 ± 70.89** 1321.84 ± 85.92
15x15 1598.28 ± 96.13* 1506.20 ± 70.61** 1681.24 ± 97.81
20x5 1343.42 ± 184.64 1339.17 ± 134.68 1333.13 ± 131.26
20x10 1835.01 ± 272.46 1710.64 ± 218.77** 1868.15 ± 233.91
20x15 2695.64 ± 1268.49* 2541.11 ± 1179.87** 2852.97 ± 1325.87
20x20 3066.77 ± 1509.04* 2902.33 ± 1419.60** 3446.61 ± 1688.14
30x10 2036.46 ± 114.04* 1993.52 ± 92.45** 2207.02 ± 132.10
30x15 3955.84 ± 1730.05* 3742.95 ± 1567.90** 4412.12 ± 1870.05
30x20 4330.06 ± 1818.44* 4122.12 ± 1719.04** 5214.83 ± 2106.46
40x15 6757.92 ± 1322.93* 6408.27 ± 1070.14** 7954.02 ± 1196.00
40x20 7463.87 ± 1319.68* 7114.58 ± 1091.71** 9642.57 ± 1169.56
50x10 3885.63 ± 873.73* 3676.22 ± 659.45** 4241.08 ± 729.50
50x15 5810.45 ± 2723.58* 5504.96 ± 2345.68** 7504.37 ± 3180.44
50x20 6227.76 ± 2894.36* 5883.56 ± 2631.55** 9320.83 ± 3888.32
100x20 6076.26 ± 226.25** 6225.12 ± 206.62* 16734.28 ± 1051.45

Good performance of MWKR hints at the importance
of the sum of processing times of remaining operations
as an operation feature. The model IEEE-ICCE-RL-JSP
used the number of remaining operations in the current
job as an operation feature. The model fjsp-drl also
included the number of unscheduled operations in the
job as a feature. Other models didn’t use this feature.

6.2. FJSP
The machine selection PDR SPT consistently performs
significantly better than EET. The model End-to-end-
DRL-for-FJSP includes processing time as a feature ex-



plicitly in the machine embeddings. The model fjsp-drl
includes the time when the machine will finish all its cur-
rently assigned operations as a feature which is similar to
the machine selection PDR EET. This may explain why
the model fjsp-drl yielded worse results.

6.3. DJSP
The worse results yielded by Wheatley for all load fac-
tors can be a consequence of the poor performance in
solving static JSSP.

The result of this experiment indicates that for more
sparsely arriving jobs, L2D features (the lower bound
of the estimated completion time) are more important.
As the load factor increases, a DJSP is more similar to a
static JSSP, and other features, which are more important
for a JSSP, become more important, too.

7. Conclusion and future work
In this paper, we compared five job scheduling models
with available source code. We extended three of those
models to the dynamic variant of job-shop scheduling.
From our experiments, we observed that the selection
of input features had a much more significant impact on
model performance than the architecture of the model. In
JSSP, the remaining work seemed to be the most crucial.
In FJSP, it was processing time during machine selection.
In DJSP, the lower bound of the estimated completion
time seemed more influential for sparsely incoming jobs.
For more densely incoming jobs, the remaining work
seemed to be more relevant. Investigating the effect of
existing input features and searching for new ones may
be a valuable direction for future work.
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