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Abstract
We investigate the quantification of word importance by introducing a novel self-supervised task that modifies masked
language modeling. Instead of predicting masked words, our approach involves learning to identify which words were
inserted. We hypothesize that resulting models will predict a higher likelihood of insertion for less important words. We
experiment with two different insertion strategies: the List Inserting Method (LIM) and the BERT Inserting Method (BIM). We
outline the process for gathering manually estimated word importance data and describe the construction of a dataset for
evaluating our methods. Our results indicate that our modified language modeling surpasses baselines and is competitive
with existing research in assessing word importance.
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1. Introduction
A significant amount of human knowledge and commu-
nication is now recorded as digital text [1, 2], often in
raw, unstructured form [3]. This necessitates methods
to make text searchable and easily summarized, driving
the NLP community’s interest in quantifying word im-
portance as a possible solution.

The concept of identifying important words dates back
to the 1950s [4], with early methods based on word fre-
quencies such as TF-IDF , which remains widely used in
modern NLP applications [5]. Various methods have been
explored for determining word importance in tasks such
as querying [6], summarization [7], text classification [8],
and keyphrase extraction [9, 10].

Current approaches for assessing word importance
involve comparing spatial distribution of words in the
original versus shuffled text [11], exploiting attribution
methods [12], utilizing 𝜒2 test [13, 14] or interpreting
attention in attention-based models [15], although their
interpretability is debated [16].

Kafle and Huenerfauth [17] collect annotations of word
importance as real numbers from 0 to 1, which they later
use for captioning to aid those who are deaf or hard of
hearing [18].

Interestingly, [19] defines word importance ranks as
the difference in the classifier’s confidence for the tar-
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get label when a specific word is included in the text
versus when it is removed. This approach reveals that
adversarial attack algorithms in NLP primarily disrupt
the distribution of this word importance.

In [12], a method is explored to derive word signifi-
cance from models trained for Natural Language Infer-
ence (NLI) and Paraphrase Identification (PI) by using
an attribution method to compute scores for each in-
put word, identifying those that contribute most to the
model’s decision. The approach involves training an in-
terpreter to mask as many words as possible while still
preserving the original prediction. We compare the per-
formance of our approach with this work.

This study explores assessing word importance com-
prehensively, from collecting data to creating and evaluat-
ing an automatic word importance scorer. More precisely,
the contribution of this work is: (1) A precise definition
of word importance and proposed metrics for its evalua-
tion, (2) a small multi-domain word-importance dataset
in English annotated by three annotators, (3) a novel
self-supervised machine learning method for predicting
word importance. This self-supervised approach modifies
BERT’s [20] methodology to predict artificially inserted
words rather than masked ones, examining two insertion
methods: the List Inserting Method (LIM; inserting ran-
domly from a word list) and the BERT Inserting Method
(BIM; inserting using a BERT model). The results seem
to indicate that our proposed method is superior to base-
lines such as TF-IDF and is on par or even better than
existing approaches of calculating word importance.1

2. Word Importance
Word importance (WI) depends on its intended usage.
Depending on objectives, such as text summarization or
1https://github.com/adam-osusky/predicting-word-importance
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grammar correction, the same words may hold different
degrees of importance. In this work, we focus on seman-
tic importance and we define it by drawing inspiration
from prior works: Kafle and Huenerfauth [17] emphasize
the loss incurred by removing a word and Javorský et al.
[12] focus on the meaning contribution added by a word.
We combine these perspectives into a unified definition
of WI:

Importance is the measure of a word’s
contribution to the overall meaning of the
context, indicating the extent to which
the removal of a word would diminish the
information conveyed by the context.

We aim to collect human-annotated data for word im-
portance, and therefore we need to clearly formulate
instructions for annotators. Even though the most in-
tuitive approach would be to let annotators score each
word by a real number within the range [0, 1], as it is
done in other studies [17, 12], we find such task very
difficult for annotators. Therefore, we represent WI as
an importance ranking.

By ranking, we mean the ordering of word positions
within a context, where the word position ranked as 1 is
considered the most important. We rank word positions
because the same word can appear multiple times in a
context with varying levels of importance.

In our initial experiments, we observed that when an-
notators were unrestricted in the number of words they
could rank, they tended to sequentially select key nouns
from the subjects and objects, as well as the verbs that
connect these elements in the sentences. However, this
behavior does not align with our objectives.

Our primary goal is to identify the most important
words, so the ranking can include only a subset of the
word positions in a given context. For a context with
the length of 𝑚, we aim to rank 𝑛 positions where 1 ≤
𝑛 ≤ ⌈0.1 ·𝑚⌉. Word positions that are not ranked are
assigned the rank of 𝑛 + 1, referred as the “last rank”.
We term this process as rank limit being equal to 10%.

We argue that it might facilitate the annotators’ atten-
tion on identifying only the most essential words in a
given context. By restricting the number of words that
can be ranked to 10% of the total word positions, we force
a more selective process, making the annotators focus
on the most salient words and not to be overwhelmed by
numerous options of possible rankings.

Instructions for Annotators The full set of instruc-
tions provided to our annotators is as follows:

1. Arrange the words in descending order by their
importance. You can rank at most 10 percent of
the words, or choose to rank fewer if desired.

2. Create an order for the most important ones; any
unranked words will receive the last rank, and
they should be considered to have similar impor-
tance. At least one word must be ranked.

3. Click on words to select them. The selection order
determines their ranking. Clicking on a selected
word will deselect it. The first selected word is
the most important.

4. Importance is the measure of a word’s contribu-
tion to the overall meaning of the context. Indi-
cating the extent to which the removal of a word
would diminish the information conveyed by the
context.

5. Contexts span five diverse domains: news,
beletry, poetry, jokes, and transcribed spoken lan-
guage.

6. In the transcribed spoken language do-
main, words may take the form of "(PER-
SON#NUMBER)" at the beginning of a person’s
reply, indicating the speaker’s identity. These
tags are non-clickable and non-rankable. Addi-
tionally, words in the form "PERSON#NUMBER"
serve as references to other persons’ names
within the utterance.

A simple annotation tool was used for data collection.
This tool allows annotators to rank words by clicking on
them in sequence. If an annotator wants to insert a word
into the middle of an already selected ranking, they must
unselect the subsequent words and then reselect them in
the desired order. While it might seem more convenient
to allow direct insertion of a word into the middle of
the ranking, the current approach has its benefits. By
requiring annotators to reassess the subsequent rank-
ings when making changes, the process encourages a
more thoughtful and deliberate evaluation of the overall
ranking.

3. Data Collection
To ensure diversity, we target various domains and their
corresponding English datasets: News, the News Com-
mentary dataset [21]; literature, data from [22]; poetry,
data from [23]; jokes, data from [24]; and meeting tran-
scripts, the ELITR Minuting Corpus [25]. From each
domain, we manually select 10 contexts (each context
possibly containing more sentences), ensuring that the
contexts are around 60 words long. To achieve better
granularity for certain words like “don’t” and “I’m”, the
contexts are tokenized using the Moses tokenizer [26].
The dataset statistics are outlined in Table 1.

Each of the 50 contexts is annotated by three annota-
tors who are non-native English speakers. These con-
texts with annotations form the Word Importance Dataset
(WIDS). We make the dataset available at [27].



Characters Moses-tokens
Domain Contexts Count mean±std Count mean±std
News 10 2565 256.5±26.1 529 52.9±4.0
Literature 10 2207 220.7±17.1 601 60.1±7.2
Poetry 10 1776 177.6±27.5 540 54.0±6.2
Jokes 10 1938 193.8±25.4 575 57.5±7.0
Transcripts 10 2432 243.2±26.6 616 61.6±7.1
All 50 10918 218.4±38.5 2861 57.2±7.2

Table 1
Statistics of our Word Importance Dataset. The mean and standard deviation are computed on lengths of contexts.

Domain Pair1-2 Pair1-3 Pair2-3 Average
News 0.318 0.296 0.388 0.334
Literature 0.223 0.286 0.273 0.260
Poetry 0.260 0.332 0.238 0.277
Jokes 0.533 0.630 0.533 0.565
Transcripts 0.539 0.475 0.518 0.511
All 0.380 0.406 0.395 0.393

Table 2
Cohen’s kappa coefficient between pairs of annotators within
individual domains and across all domains in our Word Impor-
tance Dataset. The highest agreements within each domain
are highlighted in bold.

To assess the similarity of the annotations, we compute
inter-annotator agreement using Cohen’s kappa [28]. We
simplify the calculation by classifying each word position
in every context as either “selected” or “not selected” by
annotators. In Section 5.2, we present metrics to incorpo-
rate the order of selection for a more nuanced analysis.

The computed Cohen’s kappa values are shown in Ta-
ble 2. It is unsurprising that one out of the two domains
with the least agreement than poetry. An intriguing ob-
servation is that literature displays slightly lower agree-
ment as poetry. The domains with the highest agreement
are jokes and meeting transcripts. We find these findings
in line with our intuition: There is often very clear what
words make jokes funny and speech in meetings may
contain many objectively unimportant words, e.g. filler
words, hesitations, false starts etc.

4. Methodology
Our approach involves fine-tuning a pre-trained BERT
model [20] using automatically generated data. Specifi-
cally, we generate training text data by inserting words
into existing text and then use the modified text as train-
ing data. The objective of fine-tuning is to predict which
words were inserted. We hypothesize that this task will
require the model to understand the importance of each
word and its contribution to the overall meaning of the
context, ultimately leading the model to assign higher
likelihoods of insertion to less important words. This
enables us to create a ranking of words in a test input

text by ordering them according to their predicted word
importance score. We propose two methods for creating
the training dataset of inserted words: the List Inserting
Method (LIM) and the BERT Inserting Method (BIM).

List Inserting Method (LIM) This method inserts
words randomly from a predefined list. This list is gen-
erated by splitting the base corpus into words by white
space. Consequently, words that appear more frequently
in the corpus are more likely to be inserted, mirroring
the original distribution.

BERT Inserting Method (BIM) This method aims to
insert words that do not fit well in the sentence. This
is achieved by leveraging the capabilities of another
instance of the BERT model [20].2 Because BERT predicts
the words without any information except the text itself,
we assume that they should not alter the sentence’s
meaning significantly. In this method, mask tokens are
placed at the selected insertion positions within the text
and BERT is then used to predict the masked tokens.
We prohibit predictions of neighboring tokens (those
immediately before and after the masked token) and
sub-word tokens, i.e. tokens that are not a beginning
of a word. After filtering out these unwanted tokens,
we select the prediction with the highest logit probability.

For both methods, possible positions for insertion in-
clude places before existing words and one additional
position at the end of the text. These words are obtained
by splitting the text by white space to determine the po-
tential insertion positions. We insert at most one word
in each position, ensuring that words are not inserted
consecutively.

The positions for insertion are selected randomly. The
insertion rate is defined as the ratio of the number of
words to be inserted to the total number of words in
the original text sample. For instance, if a text sample
contains 10 words and we use an insertion rate of 0.5, we
insert 5 new words into this text.

In our experiments, our goal is to effectively compare
the two insertion methods, LIM and BIM, as well as evalu-

2https://huggingface.co/google-bert/bert-base-uncased
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Figure 1: Example of text with inserted words using LIM (left) and BIM (right) methods with insertion rate 0.5. Words that
are highlighted in yellow boxes are inserted.

ate their performance across different insertion rates. To
achieve this, we train separate models for both methods
at insertion rates of 0.25, 0.5, and 0.75.

In future endeavors, it would be interesting to extend
this research by training models on datasets created using
both LIM and BIM, potentially combining or varying
insertion rates.

4.1. Example Text with Inserted Words
In Figure 1, we illustrate an example of text from our
preprocessed WikiText dataset (Section 5.1), where words
have been inserted using both the LIM and BIM methods.

The inserted words in the BIM method often appear su-
perfluous, adding information to the sentences. Notably,
there is a frequent insertion of apostrophes, occurring
more often than desired. To investigate this phenomenon
further, we conducted a simple experiment on a subset
of 100 examples to analyze how the frequency of apos-
trophes changes with varying insertion rates. Refer to
Figure 2 for the results. It is observed that the frequency
of apostrophes converges to approximately 0.22 when
the insertion rate is at least 0.5.

Conversely, in the LIM method, the inserted words
sometimes introduce information that seems out of con-
text. Additionally, some inserted words include punctua-
tion marks, such as “(April” or “area,”, as seen in the last
sentence on the left in Figure 2.

5. Experiments

5.1. Training Details
We detail the preprocessing methods applied to the Wiki-
Text dataset and outline the construction of the training
regime.
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Figure 2: Frequency of apostrophes in inserted words by BIM
method with varying insertion rates.

Data As the base text corpus in which we insert new
words, we have selected the WikiText dataset [29]. This
dataset comprises articles from Wikipedia3 that are clas-
sified as either Good or Featured articles, according to
the criteria specified by Wikipedia editors at the time of
creation.

We use versionwikitext-103-raw-v14 from the Hugging-
Face datasets library [2]. Each example in the dataset is
either a paragraph or a title. For our specific use case,
we preprocess this dataset by removing examples that
are titles. Additionally, the dataset is tokenized using the
Moses tokenizer [26]. Since we employ a Transformer
[15] model that already incorporates its own tokeniza-
tion, we detokenize the text. We retain the original train-
validation-test splits. For detailed statistics regarding our
preprocessed WikiText, refer to Table 3.

3https://www.wikipedia.org/
4https://huggingface.co/datasets/wikitext

https://www.wikipedia.org/
https://huggingface.co/datasets/wikitext


Train Validation Test
Paragraphs 859,532 1841 2183
Characters 509,512,733 1,083,136 1,217,025
Characters mean ± std 592.7 ± 404.2 588.3 ± 385.4 557.5 ± 404.1
Words 84,208,748 178,815 201,013
Words mean ± std 97.9 ± 67.1 97.1 ± 63.8 92.0 ± 67.3

Table 3
Statistics for train, validation, and test splits of our preprocessed WikiText. The statistics are computed on lengths of paragraphs,
where std stands for empirical standard deviation. Words are obtained by splitting the detokenized text by white space.

Model 𝐹1 Loss Precision Recall
BIM-0.25 0.929 0.046 0.930 0.927
LIM-0.25 0.952 0.031 0.957 0.947
BIM-0.5 0.953 0.048 0.950 0.957
LIM-0.5 0.972 0.028 0.974 0.971
BIM-0.75 0.982 0.027 0.980 0.984
LIM-0.75 0.985 0.021 0.985 0.985

Table 4
Performance of models on the test split from their respective
generated data. The model names indicate whether the List
Inserting Method (LIM) or BERT Inserting Method (BIM) was
used for generating data, along with the insertion rate. Loss
refers to cross-entropy loss, and in the computation of 𝐹1

score, precision, and recall, the positive target is the class for
inserted words. Best results are in bold.

Models We create six datasets using both the LIM and
BIM techniques, each with insertion rates of 0.25, 0.5,
and 0.75. Subsequently, we train six models, each corre-
sponding to a distinct combination of insertion method
and rate.

To ensure a fair comparison and avoid introducing bias
due to differences in hyper-parameters, we use identical
settings for all models. Hyper-parameters were selected
empirically based on initial experiments.

We use a learning rate of 0.0032, batch size of 256,
Adam optimizer [30] with default betas (0.9,0.999), and
a linear learning rate scheduler with a linear warmup of
350 steps. Starting from the BERT5 pre-trained model,
we fine-tune on each of the datasets for 5 epochs.

The performance of individual models in the classifi-
cation task is shown in Table 4. The LIM models consis-
tently outperform the BIM models. Given this discrep-
ancy and the distribution of inserted punctuation marks
discussed in Section 4.1, it indicates that the BIM data
present a more challenging task, as the inserted words
blend more seamlessly with the context.

5.2. Evaluation for WI ranking
Our trained models predict logits for the probability of
word insertion. We construct the ranking by ordering
BERT-tokens in one context in ascending order of their

5https://huggingface.co/google-bert/bert-base-uncased

insertion probabilities. Since Word Importance Dataset
(WIDS) is pretokenized by the Moses tokenizer, we use
the logits of the first BERT-token to score the original
Moses-token if a Moses-token is split into multiple BERT-
tokens.

For the human reference, we calculate the average
rank of each token based on the rankings provided by
all three annotators and then order the words according
to these average ranks. With only three annotators, a
majority of words still fall into the lowest rank, leading to
inconsistencies between model predictions and averaged
annotations, as they can result in different lowest ranks.
To ensure consistency in evaluation, we apply the 10%
rank limit to both the averaged annotations and model
predictions.

Since 90% of the positions fall into the lowest rank, this
creates challenges in designing effective evaluation met-
rics. To address these issues, we propose three metrics,
each progressively refining and incorporating desired
properties to better align with our evaluation goals.

Pearson correlation The simplest and well-known
approach is to calculate the sample Pearson correlation
coefficient on the ranks of word positions over all po-
sitions and all contexts in the dataset. However, this
method is not ideal because 90% of word positions within
a given context fall into the lowest rank. Our primary fo-
cus is on achieving higher agreement within the top 10%,
which is not adequately emphasized by this correlation
measure.

k-inter Another perspective on rankings is to consider
words that do not have the last rank and disregard their
specific order. By doing this, we view the rankings as
indicators of which words are important, allowing us to
measure the extent of the intersection between different
rankings. We thus propose a new metric, k-inter, where
we filter the ranking and keep only word positions that
do not have the last rank. We then compute the fraction
of context pairs where the intersection of their filtered
rankings has at least 𝑘 elements. We examine values of
𝑘 ∈ {1, 2, 3}.

https://huggingface.co/google-bert/bert-base-uncased


Annotators Pearson 1-inter 2-inter 3-inter Overlap
Pair1-3 0.534 0.90 0.76 0.52 0.319
Pair1-2 0.555 0.92 0.72 0.38 0.324
Pair2-3 0.602 0.90 0.70 0.46 0.394
Average 0.563 0.91 0.73 0.45 0.346

Table 5
Metrics from Section 5.2 computed between our annotators
on Word Importance Dataset.

Domain Pair 1-2 Pair 1-3 Pair 2-3 Average
News 0.286 0.247 0.511 0.348
Literature 0.211 0.220 0.340 0.257
Poetry 0.189 0.301 0.220 0.237
Jokes 0.484 0.475 0.462 0.474
Transcripts 0.450 0.354 0.437 0.413

Table 6
Overlap computed between our annotators on Word Impor-
tance Dataset, but on individual domains.

Model Pearson 1-inter 2-inter 3-inter Overlap
Random 0.256 0.54 0.13 0.01 0.061
PI 0.321 0.78 0.40 0.08 0.114
TF-IDF 0.309 0.66 0.20 0.04 0.121
BIM-0.75 0.335 0.82 0.32 0.12 0.125
BIM-0.25 0.341 0.76 0.40 0.14 0.131
LIM-0.5 0.328 0.72 0.40 0.12 0.137
LIM-0.75 0.352 0.80 0.48 0.18 0.142
BIM-0.5 0.344 0.70 0.42 0.14 0.143
NLI 0.374 0.90 0.56 0.22 0.150
LIM-0.25 0.376 0.82 0.52 0.14 0.178
Humans 0.563 0.91 0.73 0.45 0.346

Table 7
Evaluation of models from Section 6 on the Word Importance
Dataset. The “Random”category represents the average met-
rics of 100 random predictions, while “Humans” denotes the
average of human metrics from Table 5. The metrics are de-
fined in Section 5.2.

Overlap The limitation of 𝑘-inter is that it does not
consider specific rank values, only if the words are in
the top 10%. We aim to assign more weight to agree-
ments on specific rank values, prioritizing the match
on higher-ranked agreements over lower-ranked ones.
We thus propose to use the average overlap metric, as
described by Webber et al. [31]. First, we derive an
ordered list of words from the ranking. The agree-
ment between lists 𝑙 and 𝑙 at depth 𝑑 is defined as
𝐴(𝑙, 𝑙, 𝑑) = |𝑙:𝑑 ∩ 𝑙:𝑑|/𝑑, where 𝑙:𝑑 represents the first 𝑑
elements of the list. The average overlap at depth 𝑘 is
then 𝐴𝑂(𝑙, 𝑙, 𝑘) = 1

𝑘

∑︀𝑘
𝑑=1 𝐴(𝑙, 𝑙, 𝑑). For context pairs

of rankings, we compute the average overlap for each
pair and then average these values, which we refer to as
overlap. The depth is chosen differently for each pair:
for a context with length 𝑚, the depth is set to ⌈0.1 ·𝑚⌉,
to be consistent with our rank limit of 10%.

6. Results
We first evaluate the pair-wise agreement between anno-
tators using these metrics, which we present in Table 5.
This evaluation complements Cohen’s kappa from Sec-
tion 3. The order of annotator pairs remains consistent
for both the Pearson correlation and the overlap metric.
The 𝑘-inter values for 𝑘 values of 1 and 2 are relatively
high compared to Pearson correlation or the overlap, in-
dicating that the annotators agree on the selection of the
most important words but not that well on their order.
This supports our decision to let annotators focus only on
the most important words and not make them mentally
overloaded by the vast amount of options. In Table 6, we
further present the overlap between annotators within
individual domains of WIDS. Annotators show the high-
est similarity in the jokes domain and the lowest in the
poetry domain. This observation aligns with the results
in Table 2. For other metrics on individual domains, see
Appendix A.

Finally, we evaluate the performance of all six of our
trained models. Additionally, we include random predic-
tions as a baseline for our metrics and the average human
performance from Table 5 as an upper bound.

As an additional baseline, we include term fre-
quency–inverse document frequency (TF-IDF), computed
on the Word Importance Dataset without any preprocess-
ing. Furthermore, we include two models, PI (Paraphrase
Identification) and NLI (Natural Language Inference), de-
veloped by Javorský et al. [12]. We obtain rankings from
all models by ordering the words according to their sig-
nificance scores.

The results are presented in Table 7, indicating that
our models are performing reasonably well. They sur-
pass random predictions and TF-IDF across all metrics
and are comparable to the NLI model. Notably, LIM-0.25
even exceeds the NLI model in both the overlap and Pear-
son correlation metrics. Metrics that consider the order
of selected words show our models are approximately
halfway to achieving human-level performance. They
are approaching human performance in terms of 1-inter
but lag significantly in higher 𝑘-inter metrics.

It is quite surprising that LIM approach is superior to
BIM, suggesting that simple methods are sometimes more
efficient. We hypothesize that inserted words by BERT
are so well suited to the surrounding context that it is
very difficult to detect them, which effectively decreases
the useful learning signal from them.

For readers interested in a detailed view of all metrics
across individual domains, refer to Appendix A.



7. Conclusion
In this paper, we define word importance, collect annota-
tions for a small multi-domain word-importance dataset
in English, propose metrics for its evaluation and intro-
duce a novel self-supervised machine learning method:
The goal is to predict inserted words in the text. Our
results demonstrate that our method outperforms base-
line models and is comparable to prior work on word
importance.

Possible future work might benefit from more experi-
ments when using BIM or combining LIM and BIM, poten-
tially leading to more competitive results. Experimenting
with smaller insertion ratios can be another potential
avenue.

Limitations One of the primary limitations of our
study is the size of the Word Importance Dataset, since
it includes only 50 relatively short contexts that consists
of approximately 60 words. Varying lengths of context
might contribute to better generalization. The study com-
pares importance scores to only one other indicator of
word significance and it also lacks the evaluation of im-
portance scores on a downstream task.

Another limitation is the small number of annotators.
With a larger pool of annotators, the data in the Word
Importance Dataset would likely exhibit lower variance.
This would result in higher quality averaged rankings
that are more closely aligned with the true distribution.

Finally, the work does not provide the evaluation of
importance scores on the word-importance dataset col-
lected by Kafle and Huenerfauth [17].
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A. Metrics on Individual Domains
In Table 9, we present our proposed metrics computed for
individual domains within the Word Importance Dataset
between human rankings. Notably, the poetry domain ex-
hibits relatively high 𝑘-inter values, whereas the Pearson
correlation and overlap metrics are low. This indicates
that humans agreed more on which words are important
rather than on the order of their importance.

In Table 8, we present the overlap of the models from
Section 6 across individual domains within the WIDS.
Our models outperform the TF-IDF baseline in all do-
mains except for the news domain. In a few cases and
metrics, Random ranking outperforms some methods. It
is worth noting that each domain includes only 10 ex-
amples, which may lead to significant variability in the
results. Despite this, human performance consistently
exceeds that of the models across all domains.

In Table 10, we present all of our proposed metrics
computed for models from Section 6 on individual do-
mains within the Word Importance Dataset. For these
evaluations, the TF-IDF was created using text solely
from the respective individual domain. It is apparent that
the performance ordering of the models is not consistent
across the different domains, likely due to each domain
having only 10 examples.

An interesting observation is that TF-IDF performs
best on the news domain, whereas it is under performing
in the other domains.

Model News Lit. Poetry Jokes Trans.
Random 0.066 0.061 0.062 0.068 0.065
PI 0.068 0.185 0.120 0.106 0.095
TF-IDF 0.126 0.055 0.044 0.088 0.142
BIM-0.75 0.075 0.196 0.121 0.106 0.125
BIM-0.25 0.069 0.212 0.078 0.130 0.166
LIM-0.5 0.063 0.156 0.158 0.143 0.167
LIM-0.75 0.048 0.128 0.135 0.192 0.206
BIM-0.5 0.079 0.170 0.114 0.084 0.270
NLI 0.047 0.221 0.207 0.153 0.120
LIM-0.25 0.115 0.133 0.159 0.183 0.299
Humans 0.348 0.257 0.237 0.474 0.413

Table 8
Overlap of models from Section 6 on the Word Importance
Dataset for individual domains. The “Random” category rep-
resents the average metrics of 100 random predictions, while
“Humans” denotes the average of human metrics from Table 6.
Sorted according to overlap score across the domains (not
shown here).



Annotators Pearson 1-inter 2-inter 3-inter 4-inter 5-inter Overlap
News

pair1-3 0.378 0.90 0.60 0.40 0.00 0.00 0.247
pair1-2 0.412 0.90 0.60 0.30 0.00 0.00 0.286
pair2-3 0.631 1.00 0.70 0.30 0.10 0.00 0.511
Average 0.474 0.93 0.63 0.33 0.03 0.00 0.348

Literature
pair1-2 0.472 0.80 0.50 0.20 0.00 0.00 0.211
pair1-3 0.440 0.70 0.60 0.40 0.20 0.10 0.220
pair2-3 0.535 0.80 0.50 0.30 0.10 0.00 0.340
Average 0.483 0.77 0.53 0.30 0.10 0.03 0.257

Poetry
pair1-2 0.413 0.90 0.60 0.10 0.00 0.00 0.189
pair2-3 0.422 0.70 0.50 0.20 0.10 0.00 0.220
pair1-3 0.481 0.90 0.70 0.30 0.30 0.00 0.301
Average 0.439 0.83 0.60 0.20 0.13 0.00 0.237

Jokes
pair2-3 0.597 1.00 1.00 0.80 0.40 0.10 0.462
pair1-3 0.641 1.00 1.00 0.90 0.50 0.30 0.475
pair1-2 0.614 1.00 1.00 0.60 0.50 0.20 0.484
Average 0.617 1.00 1.00 0.77 0.47 0.20 0.474

Transcripts
pair1-3 0.565 1.00 0.90 0.60 0.50 0.10 0.354
pair2-3 0.683 1.00 0.80 0.70 0.40 0.00 0.437
pair1-2 0.671 1.00 0.90 0.70 0.30 0.10 0.450
Average 0.640 1.00 0.87 0.67 0.40 0.07 0.413

Table 9
Metrics from Section 5.2 computed between our annotators on individual domains from the Word Importance Dataset corpus.



Model Pearson 1-inter 2-inter 3-inter 4-inter 5-inter Overlap
News

NLI 0.17 0.80 0.30 0.00 0.00 0.00 0.047
LIM-0.75 0.168 0.60 0.10 0.00 0.00 0.00 0.048
LIM-0.5 0.177 0.40 0.30 0.10 0.00 0.00 0.063
Random 0.178 0.52 0.12 0.01 0.00 0.00 0.066
PI 0.189 0.80 0.20 0.00 0.00 0.00 0.068
BIM-0.25 0.191 0.50 0.10 0.10 0.00 0.00 0.069
BIM-0.75 0.216 0.70 0.20 0.00 0.00 0.00 0.075
BIM-0.5 0.183 0.30 0.20 0.10 0.00 0.00 0.079
LIM-0.25 0.235 0.70 0.40 0.00 0.00 0.00 0.115
tf-idf 0.229 0.60 0.30 0.00 0.00 0.00 0.126

Literature
tf-idf 0.231 0.60 0.20 0.00 0.00 0.00 0.055
Random 0.251 0.55 0.15 0.02 0.00 0.00 0.061
LIM-0.75 0.292 0.80 0.40 0.10 0.00 0.00 0.128
LIM-0.25 0.302 0.70 0.40 0.00 0.00 0.00 0.133
LIM-0.5 0.302 0.80 0.20 0.10 0.00 0.00 0.156
BIM-0.5 0.345 0.90 0.50 0.10 0.00 0.00 0.170
PI 0.34 0.70 0.50 0.10 0.10 0.00 0.185
BIM-0.75 0.354 1.00 0.30 0.10 0.00 0.00 0.196
BIM-0.25 0.379 0.90 0.50 0.10 0.00 0.00 0.212
NLI 0.438 0.90 0.70 0.30 0.10 0.00 0.221

Poetry
tf-idf 0.236 0.50 0.10 0.00 0.00 0.00 0.044
Random 0.255 0.52 0.13 0.01 0.00 0.00 0.062
BIM-0.25 0.279 0.80 0.40 0.00 0.00 0.00 0.078
BIM-0.5 0.293 0.70 0.50 0.00 0.00 0.00 0.114
PI 0.364 0.90 0.60 0.20 0.00 0.00 0.120
BIM-0.75 0.356 0.80 0.50 0.10 0.00 0.00 0.121
LIM-0.75 0.35 0.80 0.60 0.20 0.00 0.00 0.135
LIM-0.5 0.363 0.70 0.60 0.20 0.10 0.00 0.158
LIM-0.25 0.357 0.90 0.40 0.10 0.10 0.10 0.159
NLI 0.435 0.90 0.70 0.50 0.00 0.00 0.207

Jokes
Random 0.179 0.55 0.16 0.02 0.00 0.00 0.068
BIM-0.5 0.214 0.70 0.30 0.00 0.00 0.00 0.084
tf-idf 0.203 0.60 0.30 0.10 0.00 0.00 0.088
PI 0.264 0.80 0.40 0.10 0.10 0.00 0.106
BIM-0.75 0.238 0.80 0.20 0.10 0.00 0.00 0.106
BIM-0.25 0.269 0.70 0.40 0.20 0.00 0.00 0.130
LIM-0.5 0.253 0.70 0.30 0.10 0.00 0.00 0.143
NLI 0.325 1.00 0.50 0.10 0.10 0.10 0.153
LIM-0.25 0.327 0.80 0.80 0.20 0.00 0.00 0.183
LIM-0.75 0.312 1.00 0.60 0.10 0.00 0.00 0.192

Transcripts
Random 0.213 0.55 0.14 0.01 0.00 0.00 0.065
PI 0.248 0.70 0.30 0.00 0.00 0.00 0.095
NLI 0.294 0.90 0.60 0.20 0.00 0.00 0.120
BIM-0.75 0.301 0.80 0.30 0.30 0.10 0.00 0.125
tf-idf 0.309 0.90 0.30 0.00 0.00 0.00 0.142
BIM-0.25 0.355 0.90 0.60 0.30 0.10 0.10 0.166
LIM-0.5 0.33 1.00 0.60 0.10 0.10 0.00 0.167
LIM-0.75 0.409 0.80 0.70 0.50 0.20 0.00 0.206
BIM-0.5 0.438 0.90 0.60 0.50 0.10 0.10 0.270
LIM-0.25 0.446 1.00 0.60 0.40 0.00 0.00 0.299

Table 10
Metrics from Section 5.2 computed for models from Section 6 on individual domains from the Word Importance Dataset.
Sorted by overlap within each domain.
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