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Abstract
Membrane systems and their different variants (e.g. P Colonies with transferable programs) can be used to model various
processes if we are satisfied with simple rules manipulating the elements of a set of objects. However, these systems were
designed more for computational purposes, so we may encounter problems when solving non-numerical problems. Reaction
systems, on the other hand, come with the concept of reactants and inhibitors, which we can also use in simulating (typically
dynamic) processes. In this paper, we compare these two concepts and propose a new type of system: IR Colonies, which are
inspired by both of these concepts. The IR Colonies are designed to be mainly applicable for modeling communication in the
Internet of Things networks. In the paper, the reader will find both a proposed definition of IR Colonies and an example of
a network model with several IoT devices.
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1. Introduction
Membrane computing (introduced by Gheorghe Pǎun in
1998) is a framework for modeling parallel distributed
processing. Information about this paradigm is available
in [1, 2, 3], or the bibliography at http://ppage.psystems.
eu/ [2024-07-04]. Membrane systems are based on the
hierarchical structure of cell membranes and can be used
to model distributed computing. Mathematical models
of membrane systems have been called P Systems.

P Colony (introduced in [4] in 2004) is a simple com-
putational model based on membrane systems. On the
basic variant, the environment containing objects of a
given type is shared by agents that also contain objects
inside their internal environment and are equipped with
programs consisting of rules. The programs allow the
agents to influence both their own environment and also
the shared environment.

P Colonies with transferable programs were intro-
duced in [5] and additional examples and discussions
can be found in [6]. In the given concept, programs can
be transferred between an agent and the environment
and vice versa, not only objects.

Reaction systems were introduced in [7], and in [8, 9]
we can find information about networks of reaction sys-
tems. Reaction systems (R Systems) are a formal frame-
work intended for modeling interactions between bio-
chemical entities. The intention was to simulate the co-
existence of two reverse mechanisms – using reactants
and inhibitors.
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A network of reaction systems is a graph with reaction
systems as its nodes. Each reaction system can be affected
by the reactions of its neighbours.

There are several papers that combine the concept
of P Systems (or P Colonies) and R Systems. In [10]
the authors compare the two mentioned mathematical
models and construct a P Colony simulating processes
taking place in a reaction system. In [11] we can find the
concept of PR Systems, where reactions from reaction
systems are applied in membranes of a P System.

In [11] P Systems are referred to as a quantitative
model because they focus primarily on computation,
whereas R Systems are referred to as a qualitative model
because they focus more on evolution. This does not
mean that P Systems are of poor quality, just that their
focus is different (on calculations, the result is a number).

In [12] we introduce a membrane system working as
a communication interface between IoT devices, but we
encounter problems with implementing some properties
of the resulting system based on P Systems. P Systems
have been found to be useful for this purpose, however,
a structure of membranes with unit rules (i.e. rules with
a single symbol or object on both sides) is not flexible
enough and some operations are not easy to implement.
On the other hand, membrane systems naturally repre-
sent the tree structure of a network interconnecting IoT
devices.

In [6] we discuss properties of systems derived from
P Systems – P Colonies, adding the concept of transfer-
able programs introduced in [5]. In [6] only the basic idea
is outlined, in [6] we develop the idea and give further
examples. The capabilities of P Colonies with transfer-
able programs are compared with the properties of the
concept of osmotic computing and the functionality of
computer viruses, showing that similarities can be found
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between the three concepts. However, for the purposes
of this paper, we are primarily interested in P Colonies
with transferable programs.

The question is to what extent it would be possible to
replace the P Systems in the concept proposed in [12] by
P Colonies with transferable programs. The concept of
transferable programs naturally lends itself to e.g. the
distribution of updates, but on the other hand, the possi-
bility of representing the tree structure of the network be-
tween IoT devices by membranes gets lost here – agents
in P Colony cannot be nested. And the environment is
only a repository of objects and programs, it is not able
to execute its own rules. Here, networks of reaction sys-
tems, specifically a suitable combination with P Colonies
with transferable programs, could be helpful.

This section is followed by the preliminaries section, in
which we briefly introduce P Colonies, P Colonies with
transferable programs, reaction systems and networks of
reaction systems. We also briefly introduce the world of
IoT devices.

The subsequent section 3 is a brief comparison and
evaluation of the properties of P Colonies (with transfer-
able programs) and (networks of) reaction systems. In
particular, we observe states, rules, processes, possibili-
ties of cooperation of involved entities and sharing, also
possibilities for conditioning of events taking place in
the system.

Section 4 proposes a definition of a new type of system:
the IR colony. The section describes and explains various
aspects of this system. IR Colony is used in Section 5
to create an outline of a model of communication in a
network with several devices.

2. Preliminaries
We assume the reader to be familiar with the basics of the
formal language theory[13] and membrane computing
[3].

We denote the length of a word 𝑤 by |𝑤|, and also the
number of elements in a (multi)set 𝑆 by |𝑆|. The empty
word is represented by the symbol 𝜀, so |𝜀| = 0.

For details and definitions of the graph theory, we
can refer e.g. to https://www.britannica.com/topic/
graph-theory [2024-07-08]. We denote the set of all nodes
from which an edge leads to a node 𝑣 by in(𝑣).

2.1. P Colonies
P Colonies enrich the concept of P Systems by agents
evolving activities according to defined programs. On the
contrary, the complex structure of membranes was aban-
doned. An agent is actually analogous to a membrane
within an environment of the main membrane so that

the P Colony can be viewed as a two-level membrane
structure.

Definition 1 ([5]). A P Colony of capacity 𝑘, 𝑘 ≥ 1, is
a construct Π = (𝐴, 𝑒, 𝑓, 𝑣𝐸 , 𝐵1, . . . , 𝐵𝑛) where

• 𝐴 is an alphabet, its elements are called objects,
• 𝑒 ∈ 𝐴 is the environmental object,
• 𝑓 ∈ 𝐴 is the final object,
• 𝑣𝐸 is a finite multiset over𝐴−{𝑒} called the initial

state of the environment,
• 𝐵𝑖, 1 ≤ 𝑖 ≤ 𝑛, are agents where each agent
𝐵𝑖 = (𝑜𝑖, 𝑃𝑖) is defined as follows:

– 𝑜𝑖 is the initial state of the agent, a multiset
over 𝐴 consisting of 𝑘 objects,

– 𝑃𝑖 = {𝑝𝑖,1, . . . , 𝑝𝑖,𝑘𝑖} is a finite set of pro-
grams where each program consists of 𝑘
rules, the rules can be in one of the following
forms:

∗ 𝑎→ 𝑏, 𝑎, 𝑏 ∈ 𝐴 called an evolution
rule,

∗ 𝑐 ↔ 𝑑, 𝑐, 𝑑 ∈ 𝐴 called a communi-
cation rule,

∗ 𝑟1/𝑟2 called a checking rule, 𝑟1, 𝑟2
are both evolution or communication
rules.

The evolution rules are of the form 𝑎→ 𝑏. This type
of rule allows the agent to influence its internal envi-
ronment: an object 𝑎 inside the agent’s environment is
rewritten to the specified object 𝑏.

The communication rules (𝑐 ↔ 𝑑) are intended for
communication between the given agent and the envi-
ronment. An object 𝑐 inside the agent is swapped with
the given object 𝑑 in the environment.

The checking rules (𝑟1/𝑟2) are composed of two rules
𝑟1 and 𝑟2 of any of the previous two types. The first rule
has a higher priority to apply, and if the first rule cannot
be executed, the second rule in order may be executed.

The configuration of a P Colony Π with capacity 𝑘 is
an (𝑛 + 1)-tuple of multisets 𝑜𝑖 for 1 ≤ 𝑖 ≤ 𝑛 for the
agents 𝐵𝑖, and 𝑣𝐸 for the environment

(𝑤1, . . . , 𝑤𝑛, 𝑤𝐸)

where 𝑤𝑖 ∈ 𝐴*, |𝑤𝑖| = 𝑘, 𝑤𝑖 ∈ 𝐴*, 𝑤𝐸 ∈ (𝐴−{𝑒})*.
Several derivation modes have been defined, in [5] and

[6] the maximally parallel derivation mode is primarily
taken into account where all agents can work parallelly
in each derivation step (each agent non-deterministically
chooses one of its programs with applicable rules). The
calculation halts if no agent finds an applicable program.

https://www.britannica.com/topic/graph-theory
https://www.britannica.com/topic/graph-theory


2.2. P Colonies with Transferable
Programs

As mentioned above, the concept of transferable pro-
grams for P Colonies has been introduced in [5]. A trans-
ferable program is an ordered pair

(⟨simple_program⟩ ; {conditions})

located inside an agent or the environment. The program
can be transferred from the agent to the environment and
vice versa (from the source to the destination, depending
on the direction), and the stated condition determines
under what circumstances this transfer can occur. Two
types of conditions are admissible: an object condition
and a program condition.

The “object” condition specifies which objects must
(or must not, with the negation symbol) be present in
the destination for the program to be transferable. This
condition is formed by multisets of objects, the size of
the multisets is equal to the capacity of the P Colony.

The “program” condition specifies programs that must
(or must not) be present in the destination for the given
program to be transferable.

Example 1. Let Π be a P Colony of capacity 2. The
capacity is reflected in both the number of objects in
agents’ environments and the number of rules in each
program.

An example program with an object condition inside
an agent can be as follows:

(⟨𝑎→ 𝑏; 𝑐↔ 𝑑⟩ ; {𝑑𝑚,¬𝑎𝑔})

This means that the given program is transferable only if
at least one occurrence of 𝑑 and one occurrence of 𝑚 is
present and there is no 𝑎𝑔 pair, both in the environment
(the shared environment is the destination).

An example program with a program condition inside
the environment can be as follows:

(⟨𝑎→ 𝑏; 𝑐↔ 𝑑⟩ ; {⟨𝑎↔ 𝑏; 𝑏→ 𝑐⟩})

The given program can be transferred into an agent only
if the agent contains the program ⟨𝑎↔ 𝑏; 𝑏→ 𝑐⟩.

A combination of both types of conditions in a single
transferable program is allowed.

According to [5], a program can be classified as perma-
ment. When a permanent program is being transferred,
the program remains in the original location and the copy
is included in the destination location, but the program
loses this property at the new location. When a non-
permanent program is being transferred, it is removed
from its original location.

In each computation step, an agent can either apply
one of its applicable programs or transfer one of the
programs in or out[5]. This implies that the transfer of
programs is actually an analogy of programs.

2.3. R Systems and their Networks
A reaction takes place over a set of symbols, reactants.
A reactant enters a (chemical or other) reaction and
changes into a product of the given reaction. The re-
action may not take place under certain circumstances
if an inhibitor is present in the environment (set), i.e.
a substance that slows down or prevents the reaction.

Definition 2 (according to [9]). A reaction over a fi-
nite nonempty set 𝑆 is a triple 𝑎 = (𝑅, 𝐼, 𝑃 ) where

• 𝑅 ⊆ 𝑆 is a set of reactants, 𝑅 ̸= ∅,
• 𝐼 ⊆ 𝑆 is a set of inhibitors, 𝑅 ∩ 𝐼 = ∅,
• 𝑃 ⊆ 𝑆 is a set of products, 𝑃 ̸= ∅.

The set 𝑆 is called the background set.
Denote by res𝑎(𝑇 ) the result of applying the reaction 𝑎

to the set 𝑇 , we call the function res𝑎() the result function.
A reaction 𝑎 = (𝑅, 𝐼, 𝑃 ) with 𝑃 = res𝑎(𝑇 ) is enabled
in a configuration 𝑇 ⊆ 𝑆 iff

• 𝑅 ⊆ 𝑇 , and
• 𝐼 ∩ 𝑇 = ∅.

If res𝑎(𝑇 ) = ∅, the reaction 𝑎 is not enabled in the config-
uration with the set 𝑇 .

We write 𝑅𝑎, 𝐼𝑎, 𝑃𝑎, if we can stress the relationship to
the reaction 𝑎.

If 𝐴 is the set of all reactions 𝑎 over the background set
𝑆, we denote res𝐴 set of results of all reactions belonging
to 𝐴, so res𝐴 = ∪𝑎∈𝐴𝑃𝑎.

A reaction system is an ordered pair𝒜 = (𝑆,𝐴) where
the finite nonempty set of reactions 𝐴 is built over the
background set 𝑆.

In [9] we can also find the condition 𝐼 ̸= ∅ for the set
of inhibitors, and the author states that by omitting this
condition we get an equivalent system, so here we stick
to the shorter definition without this condition.

As we can see, the core of each reaction 𝑎 is its function
res𝑎. The input of this function is a set 𝑇 ⊆ 𝑆, all
members of 𝑅𝑎 are in 𝑇 , no member of a set 𝐼𝑎 should
be a part of 𝑇 , and the output of the function is the set 𝑃𝑎.
The function should be computable, we can represent it
by rules, program code, etc. according to the particular
use of the system.

Definition 3 (according to [9]). An interactive pro-
cess 𝜋 in a reaction system 𝒜 is a pair (𝛾, 𝛿) such that

• 𝛾 = 𝐶0, 𝐶1, . . . , 𝐶𝑛 (the context sequence),
𝛿 = 𝐷0, 𝐷1, . . . , 𝐷𝑛 (the result sequence),

• 𝐶𝑖 ⊆ 𝑆, 𝐷𝑖 ⊆ 𝑆, 0 ≤ 𝑖 ≤ 𝑛,
• 𝐷𝑖 = res𝐴(𝐶𝑖−1 ∪𝐷𝑖−1) for each 1 < 𝑖 ≤ 𝑛.

The state sequence of the interactive process 𝜋 is
𝑊0, . . . ,𝑊𝑛 where 𝑊0 = 𝐶0 is the initial state of 𝜋
and 𝑊𝑖 = 𝐶𝑖 ∪𝐷𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.



The definitions show that the output of the system
depends on the initial state 𝑊0 (resp. the first context
𝐶0). For two different initial states, we get two different
outputs.

For the purposes of this paper, it is very practical that
symbols (potential reactants) can be continuously added
to the system (by the members of the context sequence),
corresponding to processes occurring in dynamic sys-
tems.

Definition 4 (according to [9]). A network of reaction
systems is a tuple𝒩 = (𝐺,ℱ , 𝜇) where

• 𝐺 = (𝑉,𝐸) is a finite graph where 𝑉 is a finite
set of nodes (vertices) and 𝐸 is a finite set of edges,

• ℱ is a nonempty finite set of reaction systems,
• 𝜇 : 𝑉 → ℱ is a location function, assigning reac-

tion systems to nodes.

Moreover, if 𝐺 is undirected, then it is connected. If 𝐺 is
directed, then it is weakly connected.

Each reaction system can have a different background
set. Denote 𝑆𝑗 the background set of the reaction system
𝑣𝑗 , 1 ≤ 𝑗 ≤ 𝑚.

The superscript (“𝑥𝑗”) in the following paragraphs
does not denote multiplicity, it denotes membership to
a 𝑗𝑡ℎ R System in the network.

Definition 5 (according to [9]). Let 𝒩 = (𝐺,ℱ , 𝜇)
be a network of reaction systems with |𝑉 | = 𝑚, 𝑚 ≥ 1.
For 𝑛 ∈ N+, an interactive (n-step) network process is
a tuple Π = (𝜋1, . . . , 𝜋𝑚) where for all vertices 𝑣𝑗 , 1 ≤
𝑗 ≤ 𝑚:

• 𝜋𝑗 = (𝛾𝑗 , 𝛿𝑗), 𝛾𝑗 = 𝐶𝑗
0 , 𝐶

𝑗
1 , . . . , 𝐶

𝑗
𝑛 (the context

sequence of the 𝑗𝑡ℎ vertex), 𝛿𝑗 = 𝐷𝑗
0, 𝐷

𝑗
1, . . . , 𝐷

𝑗
𝑛

(the result sequence of the 𝑗𝑡ℎ vertex),
• 𝐶𝑗

𝑖 ⊆ 𝑆𝑗 , 𝐷𝑗
𝑗 ⊆ 𝑆𝑗 , 0 ≤ 𝑗 ≤ 𝑛,

• 𝐶𝑗
𝑖 = 𝑆𝑗 ∩

(︁⋃︀
1≤𝑘≤𝑚 𝐷𝑘

𝑖−1

⃒⃒
𝑣𝑘 ∈ in(𝑣𝑗)

)︁
,

• 𝐷𝑗
𝑖 = res𝐴𝑗

(︀
𝐶𝑗

𝑖−1 ∪𝐷𝑗
𝑖−1

)︀
for each 1 ≤ 𝑖 ≤ 𝑛.

Moreover, if in(𝑣𝑗) = ∅, then 𝐶𝑗
𝑖 = ∅, 1 ≤ 𝑖 ≤ 𝑛.

The key for us is the ability of the individual compo-
nents of the network (here reaction systems) to commu-
nicate with each other. It may look a bit complicated in
the definition, but the point is that at each step of the
process, each system can send the result of its own re-
action (product) to another system using the edge that
connects them.

2.4. IoT Concepts
IoT (Internet of Things) devices are small, simple devices
that emphasize the ability to connect to other devices,
interact with each other, and automate their operation.
Their programs are not usually complex (except perhaps
for security devices), and their operation consists mostly
of transmitting simple data ( either one-time or at regular
intervals) or, conversely, receiving simple data and then
reacting. For example, a thermometer sends the current
temperature to network at regular intervals, to which
a window controller can respond by opening or closing
a window, or a heating or air conditioning controller can
start or stop a related device. In [14] several definitions
of IoT network can be found, a more compact definition
is provided in [12].

In IoT device networks, we encounter one of two
types of communication: Request-Response or Publisher-
Subscriber. The Request-Response model comes from the
decentralized world of WWW networks. The Publisher-
Subscriber model is better adapted to requests of IoT
networks or other automated systems, however, usually
a central control device is being used. More details about
IoT network communication models, including protocols,
can be found in [15].

3. Comparison of Base Systems
In this section, we compare the capabilities of P Colonies
with transferable programs and R Systems and/or net-
works of R Systems.

As mentioned above, various mathematical models
are either quantitative (as P Systems) or qualitative (as
R Systems). P Colonies can be considered as something
between quantitative and qualitative concepts, but close
to the first one. We need a system somewhere between
as well, but close to the second one, to be more suitable
for modeling and simulations.

We can find some parallels between the concepts of
P Colonies with transferable programs and reaction sys-
tems.

States. In P Colonies, each agent has its own state, and
the shared environment has the state as well (all states
are the parts of the configuration). The agents can evolve
their own state using evolution rules, and influence the
state of the shared environment using communication
rules. Agents cannot directly affect the state of other
agents, only indirectly through the environment.

Each R System has its own state too. Networked R Sys-
tems can both evolve their own state and influence the
states of neighbouring nodes through reactions, and they
can influence the states of other R Systems in the network
only indirectly through their neighbours.



Rules, Processes, Functions. With using transferable
programs, the sets of programs inside agents and shared
environment are changeable. But programs can only
be transferred, not new ones created. When defining
a new P Colony, the format of the rules and programs is
predetermined. Even the number of objects in the agents’
environments and the number of rules in programs is
given by the capacity of the P Colony.

Every R System has its own set of reactions, and it is
not possible to change or upgrade it subsequently. There
is no strict form for the function res𝑎 describing the reac-
tion 𝑎 inside a reaction system, this function should only
be computable. However, the purpose of this function is
to process a set of reactants and transform them into a
set of products, so this function can also be represented
by a set of rules (not necessarily simple or regular).

When defining a new R System, we have a relatively
free hand and can better customize the system to what we
need to model (which is very practical for a qualitatively
oriented system intended for simulations of real systems);
some specific simulated systems cannot be represented
by regular or context-free rules.

Conditionality of Transfer or Reaction. The orig-
inal programs with rules in P Colony agents are static,
but transferable programs add dynamism. The object
conditions for transferable programs are analogous to
reactants (positive conditions) and inhibitors (conditions
with negation) used in R Systems.

We can also consider as conditionality in R Systems
the fact that the reaction is only enabled in certain con-
figurations.

P Colonies go a bit further, allowing the transfer
to be conditioned not only by objects but also by the
(non)presence of rules in the agent’s environment or in
the shared environment (depending on the transfer di-
rection).

Cooperation and Sharing. In P Colonies with trans-
ferable programs, agents cooperate through a shared
environment. It is a two-level hierarchy, the shared en-
vironment serves as a repository for objects and rules.
Individual agents do not communicate directly with each
other. This communication model corresponds to an
infrastructure with a central control component repre-
sented by the shared environment.

R Systems themselves do not have a defined neigh-
bourhood. However, the network of R Systems precisely
defines the connections of R Systems as nodes of a graph.
Each R System is adjacent to at least one different R Sys-
tem, all nodes communicate right with their neighbours,
with respect to edge directions. There is no shared envi-
ronment. This communication model allows using vari-
ous structures: centralized, decentralized, and distributed.

The potential central component can be represented by
one of the network nodes, with an adjustment of the
network structure (e.g. a tree structure).

4. IR Colonies with Transferable
Programs and Reactions

In [11], the authors have designed PR Systems in such
a way that the rules of the P System have been replaced
by reactions, i.e. each membrane has an associated set
of reactions. This concept is interesting, but not very
suitable for our purposes (optimization for IoT network
simulation).

From the definition of the network of R Systems, we
take:

• definition of infrastructure using a graph,
• system of reactions with reactants and inhibitors,

the rules will follow the computational function
with variable input arguments (not only static
objects),

• partly the principle of processes, context se-
quence and result sequence,

• flexibility in the number of symbols/objects inside
agents’ states and rules in programs.

From the definition of the P Colonies with transferable
programs, we take:

• the system of agents and shared environment as
storage for objects and programs,

• a set of objects as agent state, supplemented by
the ability to store objects in the shared environ-
ment,

• some rule types in programs, transferable pro-
grams.

Since we want to design a quality-oriented system,
we will abandon the capacity parameter. Each agent has
a specific role for which it needs a specific number of
objects in the environment and a differently complex pro-
gram. While abandoning capacity means that the ability
to compare with other systems and to represent various
characteristics of the system numerically is degraded, but
these characteristics are not important for our purposes.

Because, unlike other similar systems, we add variable
properties to objects, it makes no sense to work with
multisets. In the definition, we can only find sets, which
will ensure the determinism of each operation and make
programming easier.

Object Properties. Our system has a shared alphabet
of objects, but each object can have variable properties,
numbers from Z. For example, an agent representing
a device has an object in its state for the version of the



system installed in the agent, the specific version num-
ber is a property of this object. A rule in some program
will work with an object specifying the version, the (vari-
able) argument will be a specific version number. Or an
agent simulating a weather station products an object for
temperature with the current temperature as its property.

The intersection operation on sets of objects with prop-
erties corresponds to the operation without using prop-
erties (properties are ignored when comparing). E.g. for
an object 𝑎 with a property 𝑥 and a set of objects Σ:
{𝑎(𝑥)} ∩ Σ ∼= {𝑎} ∩ Σ. The exception is the case when
the same object is on both sides of the operator, but with
different properties: {𝑎(𝑥)} ∩ {𝑎(𝑦)} = ∅ if 𝑥 ̸= 𝑦. All
membership operators (e.g. ⊆) work with properties in
the same way.

The unification operation applied on a set of objects
with properties is not commutative. If the same object
is in both sets, but with different properties, the object
from the set on the right side of the union operator will
be the member of the resulting set. E.g. {𝑎(𝑥), 𝑏(𝑦)} ∪
{𝑏(𝑧), 𝑐(𝑟)} = {𝑎(𝑥), 𝑏(𝑧), 𝑐(𝑟)}. This corresponds to
updating properties in the right-to-left direction.

If the same object has a property in only one of the
sets, then the result of the union will contain the object
with the property. E.g. {𝑎(𝑥)} ∪ {𝑎, 𝑏} = {𝑎(𝑥), 𝑏}.

IR Colony and Agents. An IR Colony (IoT Reaction
Colony) is a construct Π𝐼𝑅 = (Σ,𝒜, 𝐺, 𝜇,𝑊0, 𝑃0)
where

• Σ is a finite nonempty alphabet, a set of base
objects, the objects can have default properties,

• 𝒜 = {𝐴1, . . . , 𝐴𝑚} is a finite nonempty set of
agents,

• 𝐺 = (𝑉,𝐸) is a graph, 𝑉 is a finite set of nodes,
|𝑉 | = 𝑚, 𝐸 is a finite set of edges,

• 𝜇 : 𝑉 → 𝒜 is a location function, locating agents
into the graph nodes,

• 𝑊0 ⊆ Σ, 𝑊0 ̸= ∅ is the initial state of the shared
environment,

• 𝑃0 is the initial set of programs located in the
shared environment.

If the graph 𝐺 is undirected, then it is connected. If 𝐺 is
directed, then it is weakly connected.

An agent 𝐴𝑗 , 1 ≤ 𝑗 ≤ 𝑚, is a pair 𝐴𝑗 = (𝑤𝑗 , 𝑃𝑗)
where

• 𝑤𝑗 ⊂ Σ, 𝑤𝑗 ̸= ∅ is the initial state of the agent,
• 𝑃𝑗 is the initial set of programs of the given agent,
𝑃𝑗 is finite, and can be empty.

In the following paragraphs, we specify the individual
parts of this basic definition, we take into account an IR
Colony Π𝐼𝑅 = (Σ,𝒜, 𝐺, 𝜇,𝑊0, 𝑃0) and 𝐺 = (𝑉,𝐸).

Rules and Programs. The rules in Π𝐼𝑅 consist of
symbols, these symbols may or may not have properties
specified. Listing a property on the left side of a rule
indicates a conditional application of that rule. The prop-
erties are numbers from Z. The rules can be in one of the
following forms:

• evolution rule: 𝑎→ 𝑏 or 𝑎(𝑥)→ 𝑏(𝑦), 𝑎, 𝑏 ∈ Σ,
an agent evolves its state, 𝑥, 𝑦 ∈ Z are properties
of the given objects,

• deletion rule: 𝑎→ 𝜀, 𝑎 ∈ Σ,

• multicast rule: 𝑎 out−→ 𝑏, 𝑎, 𝑏 ∈ Σ to send the
object 𝑏 to all outgoing edges, 𝑎 remains inside
the sending agent; if 𝑎 = 𝑏, it is not necessary to
specify the properties of the objects, the current
property of 𝑎 is used,

• backup rule: 𝑎 →, 𝑎 ∈ Σ, to put the object
down into the environment (including its current
property), the object 𝑎 remains in the agent’s
state,

• restoration rule:← 𝑏, 𝑏 ∈ Σ, to pick an object up
from the environment (including its current prop-
erty), the object 𝑏 remains in the environment; if
𝑏 has been present in the state of the given agent,
the parameter will be rewritten (updated),

• programming rule: 𝑝 ◁

The backup and restoration rule types apply the unifica-
tion operation, including the processing of parameters.
The programming rule will be explained later.

Denote 𝒰 the set of all possible rules for Π𝐼𝑅. A pro-
gram in Π𝐼𝑅 is a construct 𝑝lab = (lab, 𝑈,𝑅, 𝐼) where

• each program has the own unique label lab,
• 𝑈 ⊆ 𝒰 is a finite nonempty set of rules,
• 𝑅 ⊆ Σ ∪ 𝒰 is a finite set of reactants, reactants

can be:

– an object with or without a property (a re-
lational expression can be added to the ob-
ject for its property),

– a relation between properties of different
objects,

– a program,

• 𝐼 ⊆ Σ∪𝒰 is a finite set of inhibitors, 𝑅∩ 𝐼 = ∅,
the syntax of elements of this set is the same as
for 𝑅.

The set 𝑈 must be deterministic in the sense that the
same object must not appear on the left-hand side of any
two rules.

A rule 𝑟 ∈ 𝑈 with an object 𝑎 ∈ Σ on the left side
is applicable to a state 𝑊 of a given agent iff the object
𝑎 is present in 𝑊 including potential parameters. The
restoration rule← 𝑏 is applicable iff the object on the



right side is present in the environment. The program-
ming rule is always applicable.

A program 𝑝lab in an agent 𝐴𝑗 = (𝑊𝑗 , 𝑃𝑗) is applica-
ble iff

• all rules in 𝑈 are applicable to 𝑊𝑗 ,
• (𝑅 ∩ Σ) ⊆𝑊𝑗 , (𝑅 ∩ 𝒰) ⊆ 𝑃𝑗 ,
• 𝐼 ∩𝑊𝑗 = ∅, 𝐼 ∩ 𝑃𝑗 = ∅.

It should be noted that only agents can run programs,
it is not possible to run any program directly in the envi-
ronment.

Process and States. The agents in𝒜, |𝒜| = 𝑚, work
synchronously in the weakly parallel mode, in subse-
quent steps. In each step, every agent 𝐴𝑗 , 1 ≤ 𝑗 ≤ 𝑚,
non-deterministically chooses one of its applicable pro-
grams and executes this program on its state.

An n-step process in Π𝐼𝑅 is a tuple (𝜋0, 𝜋1, . . . , 𝜋𝑚)
where for all agents 𝐴𝑗 , 1 ≤ 𝑗 ≤ 𝑚, is 𝜋𝑗 = (𝛾𝑗 , 𝛿𝑗):

• 𝛾𝑗 =𝐶𝑗,0, 𝐶𝑗,1, . . . 𝐶𝑗,𝑛 (the context sequence),
• 𝛿𝑗 =𝐷𝑗,0, 𝐷𝑗,1, . . . 𝐷𝑗,𝑛 (the result sequence).

𝐷𝑗,𝑖 is a result of an agent 𝐴𝑗 (towards its neighbourhood,
applying the multicast rules) for the 𝑖𝑡ℎ step, 𝑖 ≥ 0, and
a program 𝑝 ∈ 𝑃𝑗 is used by 𝐴𝑗 in the given step:

𝐷𝑗,𝑖 =
{︁
𝑏(𝑦)

⃒⃒⃒ (︁
𝑎(𝑥)

out−→ 𝑏(𝑦)
)︁
∈ 𝑝

}︁
.

If the property of object 𝑏 is not specified in the rule,
the property 𝑥 assigned when applying the rule (the
current property of object 𝑎) is used.

𝐶𝑗,𝑖 is a context set of an agent 𝐴𝑗 = (𝑊𝑗 , 𝑃𝑗) for
the 𝑖𝑡ℎ step:

𝐶𝑗,𝑖 =
(︁⋃︀

1≤𝑘≤𝑛 𝐷𝑘,𝑖−1

⃒⃒⃒
𝑣𝑘 ∈ in(𝑣𝑗)

)︁
, 𝜇(𝑣𝑠) = 𝐴𝑠

for all 1 ≤ 𝑠 ≤ 𝑚.
Denotemap𝐴𝑗

(𝑊, 𝑝) the mapping function of an agent
𝐴𝑗 (towards its state) for a program 𝑝 and a set of ob-
jects 𝑊 : the function captures the use of all rules affect-
ing the agent’s state contained in the program 𝑝, just
except the multicast-type ones on the set 𝑊 which do
not affect the state of the agent 𝐴𝑗 .

Denote map0(𝑊,𝑃 ) the mapping function of an envi-
ronment for some subset of agents’ programs 𝑃 affecting
the environment (the backup and restoration rules).

The sequence of states of the shared environment ap-
propriate to the given process is 𝑊0,0,𝑊0,1, . . . ,𝑊0,𝑛:

• 𝑊0,0 = 𝑊0 ∪ 𝐶0,0,
• 𝑊0,𝑖 = map0 (𝑊𝑖−1, 𝑃 ), 𝑃 is a set of all pro-

grams being used by agents in the given step
affecting the environment.

The sequence of states of an agent 𝐴𝑗 appropriate to the
given process is 𝑊𝑗,0,𝑊𝑗,1, . . . ,𝑊𝑗,𝑛:

• 𝑊𝑗,0 = 𝑊𝑗 ∪ 𝐶𝑗,0,

• 𝑊𝑗,𝑖 = map𝐴𝑗
(𝑊𝑗,𝑖−1 ∪ 𝐶𝑗,𝑖, 𝑝) , 1 ≤ 𝑖 ≤ 𝑛,

𝑝 is a program applied in the 𝑖𝑡ℎ step.

The given process can be shortly represented by the se-
quence (𝑊0,0, . . . ,𝑊𝑚,0)⇒* (𝑊0,𝑛, . . . ,𝑊𝑚,𝑛).

Transferring Programs. Unlike the original
P Colonies with transferable programs, here we set
the automatic transfer of programs when the given
conditions are met.

As stated above, a program is defined by a label, a set
of rules, a set of reactants, and a set of inhibitors. All
agents have their own initial set of programs, and the
environment carries the base repository of programs with
the initial state 𝑃0.

A programming rule is a construct (label, 𝑈,𝑅, 𝐼) ◁
with the parts of this sequence of the same meaning as
in the definition of a program. This rule creates a new
program with the given parameters and stores it in the
rule repository in the environment.

Before starting each step in an IR colony, agents check
the program repository for a new program with a label
belonging to one of their programs. If so, the agent’s orig-
inal program is overwritten (updated) by a new program
with the same label located in the repository.

The flow of a process step. During a single step of
a process, the following happens (for a 𝑗𝑡ℎ agent):

1. the agent checks the program repository and up-
dates its own programs,

2. the agent nondeterministically chooses one of its
applicable programs,

3. all rules in the program are processed with in-
fluencing the own state and computation of the
result and context sets for the given agent and
step,

4. the result sets are used to calculate the new state
of agents.

5. Sample Model of IoT Network
The system proposed in the previous section is used here
to outline a model of communication in a network of IoT
devices. The sample network consists of 7 devices:

𝐴1: control panel with buttons and other controls for
manual handling of several following devices,

𝐴2: display (an LCD panel) to show some sensor val-
ues (thermometer, CO2 sensor),

𝐴3: updater that provides updates for all devices on
the network, keeps an inventory of software ver-
sions on different devices, and forwards updates
of programs to the environment,

𝐴4: smart light bulb,



𝐴5: window control device that can open or close
a window based on data from other IoT devices
(here thermometer and CO2 sensor),

𝐴6: thermometer, its values can affect the window
control,

𝐴7: CO2 sensor, its values can also affect the window
control.

Figure 1 shows the demonstrated network with the listed
devices and connections (directed edges).
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Figure 1: Sample IoT network

Each agent can have a different number of objects in
its state, and this number can also be changed.

The agent 𝐴6 is a thermometer. It is a very simple
device: it needs only two objects inside the state. The
object 𝑡𝑣 means the version, the object 𝑡𝑛 is intended to
store the current temperature. There is only one program
in the set of programs, with one (multicast) rule.
𝐴6 = ({𝑡𝑣(1), 𝑡𝑛(24)}, {tout}) with the program:
(tout, {𝑡𝑛 out−→ 𝑡𝑛}, ∅, ∅)

The agent exports the object 𝑡𝑛 with its current prop-
erty to all edges directed from the agent (so the object
appears in the states of the agents 𝐴5 and 𝐴3 for the next
step, their contexts).

The agent 𝐴7 is similar: it has only two objects inside
the state and one program with the multicast rule:
𝐴7 = ({𝑠𝑣(1), 𝑠𝑛(1000)}, {sout}) with the program:
(sout, {𝑠𝑛 out−→ 𝑠𝑛}, ∅, ∅)

The agent 𝐴5 is a bit more complicated. Its role is
a window control, and it is necessary to synchronize in-
puts from three different sources: the thermometer, the
CO2 sensor, and the manual operation on the control
panel. The agent has three programs: opening a win-
dow in response to high room temperature or high CO2

levels, and closing the window. These programs are not
triggered when the manual mode (operation from the
control panel) is enabled.

Besides the object for the version, we have an object
for the state (0=closed, 1=open) and an object for the
manual mode indication.
𝐴5 = ({𝑤𝑣(1), 𝑤𝑠(0), 𝑤𝑚(0)},
{wopent,wopens,wclose})

(wopent, {𝑤𝑠(0)→ 𝑤𝑠(1)},
{𝑡𝑛(> 22)}, {𝑤𝑚(1)})

(wopens, {𝑤𝑠(0)→ 𝑤𝑠(1)}, {𝑡𝑠(> 1200)},
{𝑤𝑚(1)})

(wclose, {𝑤𝑠(1)→ 𝑤𝑠(0)}, {𝑡𝑛(≤ 22), 𝑡𝑠(≤ 1200)},
{𝑤𝑚(1)})

We can notice that there is a conjunction relation be-
tween the elements in the set of reactants, so the opening
operation is divided into two programs.

The agent 𝐴3 only displays information obtained from
its own state. The initial state consists of one object
𝑑𝑣(1), it is the version. The remaining objects will be
delivered during the system operation. No programs
are needed, the change of the display view state is done
automatically if there is a change in the objects and their
parameters from other agents.
𝐴3 = ({𝑐𝑣(1)}, ∅)

The agent 𝐴4 is a light bulb. There are three objects
in its state: the version, the device state (0 for lights off,
1 for lights on), and the light intensity (0–12).
𝐴4 = ({𝑏𝑣(1), 𝑏𝑠(0), 𝑏𝑖(2)}, ∅)

The agent 𝐴1 plays the role of the control panel for the
manual handling of devices. It needs the objects with the
current state of the controlled devices (the light bulb, the
window), and one additional object indicating manual
handling for the window.
𝐴1 = ({𝑐𝑣(1), 𝑐𝑏(0), 𝑐𝑤𝑚(0), 𝑐𝑤𝑠(0)},
{clight, cwindowman, cwindowstate})

(clight, {𝑐𝑏 out−→ 𝑐𝑏}, ∅, ∅)
(cwindowman, {𝑐𝑤𝑚

out−→ 𝑤𝑚}, ∅, ∅)
(cwindowstate, {𝑐𝑤𝑠

out−→ 𝑤𝑠}, {𝑐𝑤𝑚(1)}, ∅)
The last agent, 𝐴2, is the updater. It holds the database

of all programs and their versions (as object properties).
Because of lack of space, we will show here only the
creation of an update program (more precisely: two pro-
grams) for the agent 𝐴5, when it is necessary to change
the temperature at which the window will automatically
open. We use one special helper object 𝑤𝑣𝑛 indicating
a new value intended for the object 𝑤𝑣.
𝐴2 = ({𝑐𝑣(1), 𝑢𝑣(1), 𝑤𝑣(1), . . . , 𝑤𝑣𝑛(2)},
{uw2, uw2d, . . . })

The program uw2 creates and exports the new version
of the program wopent, multicasts the object 𝑤𝑣 with
the property 2, and evolves its own copy of the object
𝑤𝑣 by changing the property. The set of rules must be
deterministic, therefore the multicast rule has a different
symbol on each side.
(uw2, { (wopent, {𝑤𝑠(0)→𝑤𝑠(1)},

{𝑡𝑛(>24)}, {𝑤𝑚(1)}) ◁,
𝑤𝑣𝑛(2)

out−→ 𝑤𝑣(2),
𝑤𝑣(1)→ 𝑤𝑣(2)},
{𝑤𝑣𝑛(2)}, ∅)

The set of reactants has the member 𝑤𝑣𝑛(2), so the
given rule is applied immediately after the new helper



object 𝑤𝑠𝑛 is created. After the update is provided, the
helper object is removed using a deletion rule:
(uw2d, {𝑤𝑣𝑛(2)→ 𝜀}, {𝑤𝑣𝑛(2), 𝑤𝑣(2)}, ∅)

While most devices (and agents) will operate more or
less automatically based on hardware signals affecting
the properties of objects in the agent state and according
to contained rules, for the updater we assume external
intervention resulting in the dynamic creation of new
rules for program updates.

6. Discussion and Conclusion
The proposed system is optimized for a very specific
application – IoT network modeling.

Unlike other systems, here we count on the existence
of object properties directly in the definition because the
purpose of most IoT devices is just to send or receive
(mostly numeric) data, or to react to them in a short,
simple code (these devices are not computationally de-
manding, they are often powered by a battery, which
limits their performance considerably).

Compared to P Colonies, we also abandoned the static
number of objects in the agent environment (state) and
the number of rules in programs. While this feature
makes it easier to detect and compare the computational
power of systems, it complicates the modeling of a group
of heterogeneous entities. In our system, it is even possi-
ble to continuously add objects to (or remove from) the
agent’s state that were not originally there.

The agent 𝐴5 does not have any 𝑡𝑛 and 𝑠𝑛 objects in
its state at the beginning of the system operation, it gets
them only after the agents running the thermometer (𝐴6)
and CO2 sensor (𝐴7) become functional and use their
multicast rules.

The format of rules and programs is a hybrid between
P Colonies with transferable programs and networks of R
Systems. All programs are in principle transferable, this
property (unlike P Colonies) is not determined directly
by a condition, but by a match in the label.

Conditionality refers more to the execution of rules
(similar to R Systems) and is even represented in two
places in the system design:

• sets of reactants and inhibitors in programs,
• properties of objects on the left-hand sides of

rules.

Cooperation is very simple between directly connected
agents, agents can send objects with properties to each
other at each step. A multicast rule is used for this pur-
pose, which corresponds to one-to-many communication
in computer networks. We also considered a rule for
one-to-one communication, but this would mean adding
a destination agent label to the rule definition, which

can be a problem in a dynamically changing graph node
structure.

Another option for communication between agents
is the use of a shared environment. If one agent uses
a backup rule and another agent uses a restoration rule,
both with the same object, we get the equivalent of broad-
cast communication (one-to-all). This method of commu-
nication was not shown in the example in the previous
section, but the principle is not complicated.

IR Colonies assume not only the processes mentioned
in the definition but also potential external interventions
(e.g. a temperature sensor as hardware directly influences
the property containing the instantaneous temperature,
this value is not influenced by any rule). In the previous
section with the IR Colony example, two agents are in-
fluenced in this way: 𝐴6 (Thermometer) and 𝐴7 (CO2

sensor).
The activities taking place in the IR Colony can there-

fore be divided into two groups:

• explicit (provided by rules in programs),
• implicit (provided by other means).

Implicit operations are included because the system is in-
tended to model real systems dealing with heterogeneous
data, including dynamic systems with variable structure
and purpose.

Some aspects of the system could, of course, be de-
signed differently. For example, it is not possible to create
and distribute completely new rules with a new label. In
some circumstances this functionality would be useful,
if needed it is not a problem to add it to the system.

Further research can be focused in several directions:

• improving the definition of IR Colonies to better
match expected uses,

• detailed comparison of the properties, capabili-
ties, and relationships with P Colonies (with trans-
ferable programs), R Systems, and possibly other
similar systems,

• evaluation of possibilities and limits of the use of
IR Colonies,

• creation of supporting tools that will allow the
system to be used for modeling in digital form.
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