
Numerical P Systems: Variants and Applications

Radu Traian Bobe1,*,†, Marian Gheorghe2,†, Florentin Ipate1,† and Ionuţ Mihai Niculescu1,†

1Department of Computer Science, Faculty of Mathematics and Computer Science University of Bucharest, Str Academiei 14, Bucharest, 010014,
Romania
2Faculty of Engineering and Informatics, University of Bradford, Bradford, West Yorkshire, BD7 1DP, United Kingdom

Abstract
Numerical P systems are compuational models which are inspired by cellular processes and use numerical values inside
the membrane structure. In this paper we will present the variants of numerical P systems that have been proposed in the
literature. In particular, we will discuss the advantages introduced by these extensions in terms of Turing completeness
and potential applications. Moreover, using a reference example, we will experiment a mapping between some important
numerical P systems variants.

Keywords
Membrane Computing, Numerical P systems, Spiking Neural P systems, Enzymatic Numerical P systems, Modelling

1. Introduction
The innovative and precise character of natural processes,
often referred to as "the intelligence of matter" has led to
the emergence of an interdisciplinary area at the inter-
section of biology and computer science, called natural
computing. Membrane computing, evolutionary compu-
tation, cellular automata, as well as neural computing are
just a few of the most important areas of natural comput-
ing.
Membrane computing is a branch of natural comput-
ing, developed by Gh. Păun in 1998 [1]. The concept
is inspired by the biological functionality of living cells,
abstracting computational models. A cell-like membrane
system, also called a P system is a formalism that ab-
stracts and mimics the processes observed in living cells,
specifically focusing on how membranes within cells
interact and process information. The membranes are
represented as compartments that encapsulates objects
and rules. We can refer to objects as entities that in-
habit inside membranes and are transformed according
to the rules. A rule is similar to a chemical reaction, to
the extent that dictates the evolution of objects within
and across membranes. Continuing the analogy with the
bio-chemical domain, this process is similar to molecular

24rd Conference ITAT: Workshop on Natural Computing
*Corresponding author.
†

These authors contributed equally.
$ radu.bobe@s.unibuc.ro (R. T. Bobe); m.gheorghe@bradford.ac.uk
(M. Gheorghe); florentin.ipate@unibuc.ro (F. Ipate);
ionutmihainiculescu@gmail.com (I. M. Niculescu)
� https://www.bradford.ac.uk/staff/mgheorghe (M. Gheorghe);
https://www.ifsoft.ro/~florentin.ipate/ (F. Ipate);
https:\ionutmihainiculescu.ro (I. M. Niculescu)
� 0009-0005-6611-3176 (R. T. Bobe); 0000-0002-2409-4959
(M. Gheorghe); 0000-0001-8777-3425 (F. Ipate);
0000-0002-6135-9135 (I. M. Niculescu)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

interactions and transport across the cells.
Different variants of the original model were then pro-
posed, based on the interactions and positioning of the
cells. If cell-like P systems feature a hierarchical con-
figuration of membranes as in a cell, tissue-like P sys-
tems [2] have several one-membrane cells arranged as
nodes in an undirected graph. This arrangement gave the
model name, because the cells are organized as in a tissue.
Moreover, Ionescu et al. introduced in 2006 neural-like
P systems, that incorporates the idea of spiking neurons
into the area of membrane computing. [3]. This novel
category of membrane systems has cells represented as
neurons from a neural net. The communication between
them is represented as electrical impulses called spikes.
More definitions about membrane computing, as well as
examples and technical results can be found in [4].
A category of cell-like P systems that use numerical val-
ues in the compartments sparked interest and innova-
tions in fields like economics or robotics. These mem-
brane systems are called numerical P sytems [5] and focus
on manipulating numerical values inside the membrane
structure. This paper aims to present the variants of nu-
merical P systems. In particular, we will highlight the
main differences between them, analysing the computa-
tional power. We will also demonstrate a transformation
between the most interesting models proposed in the lit-
erature, taking the examples from the reference articles.
This paper is structured as follows: Section 2 introduces
the formal definition of numerical P systems and spiking
numerical P systems. Section 3 presents and classifies all
the numerical P systems variants. Section 4 illustrates
the conversion from a numerical P system to a numerical
P system with Boolean condition and a numerical spiking
neural P system. Section 5 states the conclusions of this
paper as well as future research directions.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:radu.bobe@s.unibuc.ro
mailto:m.gheorghe@bradford.ac.uk
mailto:florentin.ipate@unibuc.ro
mailto:ionutmihainiculescu@gmail.com
https://www.bradford.ac.uk/staff/mgheorghe
https://www.ifsoft.ro/~florentin.ipate/
https:\ionutmihainiculescu.ro
https://orcid.org/0009-0005-6611-3176
https://orcid.org/0000-0002-2409-4959
https://orcid.org/0000-0001-8777-3425
https://orcid.org/0000-0002-6135-9135
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Preliminaries

2.1. Numerical P System Definition
Before presenting any variant of numarical P system,
we find it useful to introduce the formal definition
of numerical P systems, the central concept of our
survey. Without reiterating any details about membrane
computing, we present a numerical P system [6] as the
following tuple:

𝛱 = (m,H , 𝜇, (Var1 ,Pr1 ,Var1 (0)), . . . ,

(Varm ,Prm ,Varm(0)))
(1)

where:

• m ≥ 1 is degree of the system Π (the number of
membranes);

• H is an alphabet of labels;

• 𝜇 is membrane structure;

• Vari is a set of variables from membrane
i , 1 ≤ i ≤ m ;

• Vari(0) is the initial values of the variables from
membrane i , 1 ≤ i ≤ m ;

• Pri is the set of programs from membrane
i , 1 ≤ i ≤ m .

The membrane structure 𝜇 is a hierarchi-
cal arrangement of membranes that can be
visualized as an expression of matching brackets,
each pair representing a membrane. It also
organizes inter-membrane communication [5] .
The programs are the components responsible
for computing the values of the variables at each
simulation step. A program Prli ,i , 1 ≤ li ≤ mi

has the following form:

Fli ,i(x1 ,i , . . . , xk,i) → c1 ,i |v1 + c2 ,i |v2 + . . .

+cmi ,i |vmi

where Fli ,i(x1 ,i , . . . , xk,i) is the production func-
tion, c1 ,i |v1 + c2 ,i |v2 + · · ·+ cmi ,i |vmi is the
repartition protocol, and x1 ,i , . . . , xk,i are vari-
ables from 𝑉 𝑎𝑟𝑖. Variables 𝑣1, 𝑣2 . . . 𝑣𝑚𝑖 can be
from the membrane where the programs are lo-
cated, and from its outer and inner compartments,
for a particular membrane 𝑖. If a compartment
contains more than one program, a common strat-
egy is to execute all the programs in parallel. This
is called all-parallel mode. More details about how
the variables values are computed according to
the programs are presented in [5].

A numerical P system evolves by iteratively applying
the rules that transform numerical values according to
the dynamics defined. In this way, numerical processes
observed in economics, robotics or real-word phenomena
are simulated.
An example of numerical P system is presented later in
this paper, in Section 4.1.

2.2. From Artificial Neural Networks to
Spiking Neural P Systems

Artificial Neural Networks [7] are computational models
inspired by the interaction between biological neural
networks from the human brain. The central computing
elements of an Artifical Neural Network (ANN) is
called neuron. The connections between neurons, called
synapses are made through input signals. The strength
of these signals is controlled by the weights associated
with synapses.
Spiking Neural Networks (SNNs) [8] are ANNs models
of computation that mimic the functioning of neural net-
works. Unlike traditional ANNs, which use continuous
activation functions, SNNs use discrete events known as
"spikes" to transmit information. This leads to a more
efficiently processing of time-dependent data.
Spiking Neural P systems (SN P systems) are a variant
of membrane computing model that combine concepts
from Spiking Neural Networks and membrane systems.
Neurons are individual units that send out signals in
form of spikes to other neurons. These spikes occur
when the neuron accumulates enough input signals to
reach a threshold. SN P systems were formalized by
Ionescu et al. in [3].

During each computation step, the rules within each
neuron are executed in parallel. If a neuron contains
multiple rules, one of them will be nondeterministically
chosen and applied. At any step, the configuration of the
system is described by the states of the neurons repre-
sented by the quantity of spikes present in each neuron
at that time.

The computing power of SN P systems is significant
and represents a key component in the research area of
this topic. It has been shown [3] that SN P systems are
Turing complete which means that they can compute any
computation that can be done if provided with enough
memory and time. Moreover, SN P systems are powerful
tools in biological modeling, as one of the main motiva-
tions for developing them was to understand and model
biological neural networks.
An in-depth survey detailing the computational process
of Spiking Neural P systems as well as the computational
power of its variants can be consulted in [9].

3. Numerical P systems variants
The use of numerical values in the compartments of a
cell-like membrane structure has naturally led to possible
use cases in economics. Even if the economic interpre-
tations of the variables evolution inside a numerical P
system may vary, complex interactions between different
currency exchange models or economic policies can be
done.
Programs are fundamental to the functionality of NP
systems and define computational processes, enabling
powerful computing performance and numerical anal-
ysis. Starting from the importance of programs within
a numerical P system and driven by the desire of better
control the processes, numerous variants of NP systems
have been proposed. In short, researchers have employed
different mtehods of using the evolution programs to find
new possible real-life applications of NP systems or to
study the universality results as well as the computa-
tional power of the resulted variants.
In this section, we will briefly present the extensions in-
troduced by each variant to the basic model, as well as
some initial results and possible use cases.
In the classical model of a NP system, only one production
function can be applied from each membrane in a time
unit. This case is called deterministic. In the stochastic
case, if a membrane contains more than one production
function, one of them is randomly chosen. Enzymatic Nu-
merical P systems (ENP systems) allow a better control
of programs applications, by incorporating enzymes into
the production functions, which allows for more accu-
rate transformations of numerical values. As presented
in [10], in an ENP system a rule can only be applied (in
this case, the rule is called active) if the corresponding en-
zyme is present in the necessary amount. It is important
to mention that an enzyme can be present in more than
one production functions. All the active rules are then
executed in parallel. In this way, more precise and regu-
lated transformations of numerical values are obtained,
reflecting the catalytic and regulatory roles of enzymes
in biological systems. In addition to the use of numerical
P systems in economics, enzymatic numerical P systems
can be utilized in robotics to enhance the precision and
adaptability of control algorithms [11].
Enzymatic numerical P systems were proved to be Tur-
ing universal, aspects like the complexity of polynomial
production functions or the number of variables being
investigated. The computational power on ENP systems
was discussed in [12]. The topic was considered from
a different point of view in [13], with the focus on de-
termining the smallest number of enzymatic variables
needed for universal ENP systems. Zhang et al. proved
that if ENP systems are used as number acceptors in
the all-parallel or one-parallel mode, only one enzymatic
variable is needed to achieve universality. In the case of

one-parallel ENP systems as number generators, two en-
zymatic variables are sufficient. The results significantly
improved upon the previous data, where the numbers of
enzymatic variables were 13 and 52 for the all-parallel
and one-parallel systems, respectively.

Numerical P systems with thresholds (TNP systems)
[14] employ a similar strategy to the enzymatic control in
the sense that they use evolution programs in controlled
manner. The difference is that a program can be applied
only when the values of the variables involved in the
production function are not smaller (Lower Threshold
Numerical P systems) or not greater (Upper Threshold
Numerical P systems) than the constant. A related
approach was introduced in [15] where a production
threshold control strategy is implemented. Instead of
comparing every value of variables involved in the
program with a constant, in numerical P systems
with production thresholds (PTNP systems), the entire
production value is compared with a constant. The
production function is applied only when its value is
not smaller (the lower-threshold case) or not greater
(the upper-threshold case) than its associated constant.
Even if the usability of these two numerical P systems
in concrete applications remains an open subject, the
language generating power of numerical P systems with
thresholds was discussed in [16].
Numerical P systems with thresholds were the funda-
mental concept for other research topics as well, with
their integration with Petri Nets being investigated in
[26], where the operations of Petri Nets were associated
with the evolutions in TNP systems. Another interesting
approach is presented in [17] where six mall universal
function computing devices of TNP systems were
constructed.

Taking into consideration the above mentioned
findings, it is unanimously accepted that control
conditions play a crucial role in controlling the evolution
of numerical P systems. Addressing potential practical
applications, the large majority of dynamic systems
requires an accurate control. The above mentioned
numerical P systems variants have introduced the
concept of control conditions. However, this conditions
tend to have a simple logic and may not be able to
achieve the requirements in a real-world dynamic
system scenario. In order to overcome this limitation,
Liu et al. [18] introduced the control condition in
Boolean form and proposed a new variant of NP
systems, called Numerical P Systems with Boolean
condition (BNP systems). Even if the control condition
in the previous variants of numerical P systems can be
expressed as a Boolean condition, there were still a lot
of Boolean expressions that cannot be expressed in all
these variants. In a BNP system, the condition can be
any Boolean expression using relational operators and

linked by logical operators. In this way, BNP systems
have introduced a stronger control mechanism that
can be useful in real-world applications of NP systems.
Moreover, it was proved that BNP systems are Turing
universal as number generating/accepting devices and
function computing devices, respectively, working in
all-parallel, one-parallel and sequential mode.

In addition to these variants that target control
conditions, other extensions of numerical P systems
have also been proposed. Pavel and Dumitrache [19]
introduced Hybrid Numerical P systems (HNP systems).
Numerical P systems with migrating variables (MNP
systems) [14] were inspired by the fact that in standard
P systems an object can pass through membranes,
between regions of the same cell, between cells, or
between cells and their environment. In 2020, Yang
et al. proposed another extension of NP systems,
called Stochastic numerical P systems (StNP systems)
[20]. The main difference arises from the stochastic
production function-reparticion protocol, obtaining
a class of distributed parallel computing models with
applications in data clustering problems. Another
interesting approach was proposed in [21], where a
MIMD (Multiple Instruction Multiple Data) architecture
is used to parallelise the elements of a NP system. Also,
the generative capacity of numerical P systems as
language generators was investigated in [22].

In the following, we will focus on P systems extensions
obtained by combining the advantages offered by numeri-
cal P systems and spiking neural P systems (SNP systems).
One of the main advantages of numerical P systems re-
mains the use of numerical values as data representation.
At the same time, SN P systems combine the strengths of
membrane computing and spiking neural networks, the
temporal aspect being one of the most attractive features.
In 2020, Wu et al. [23] introduced numerical spiking neu-
ral P systems (NSN P systems), a new class of membrane
systems that combines the advantages of NP systems and
SNP systems. Similar to SNP systems, NSN P systems
have a network architecture with an enhanced capability
of representing complex topologies. Also, the informa-
tion is encoded using numerical variables, involved in
production functions that determine how the variables
within the neurons evolve over time. The repartition
protocol involves that after a production function in a
neuron is executed, the resulted value is sent to all the
variables present in adjacent neurons. Each production
function can have a threshold and will be executed only
when each value of the variables involved in it is not
smaller than the threshold. The formal definition of NSN
P systems is the following:

𝛱 = (𝜎1 , . . . , 𝜎m , syn, in, out) (2)

where:

• 𝜎1 , . . . , 𝜎m represent the neurons of the form
𝜎i = (Vari ,Prfi ,Vari(0)), 1 ≤ i ≤ m , where:

(a) Vari = {𝑥𝑞,𝑖 | 1 ≤ 𝑞 ≤ 𝑘𝑖} represents
the set of variables present in 𝜎i , where
x1 ,i . . . xk,i can be viewed as components
of a n-dimensional real space vector

(b) Vari(0) = {𝑥𝑞,𝑖(0) | 𝑥𝑞,𝑖(0) ∈ R, 1 ≤
𝑞 ≤ 𝑘𝑖} refers to the set of initial values
of the corresponding variables from Vari

(c) Prfi represents the set of production func-
tions associated with each neuron

• syn is the set of synapses for each
(i , j) ∈ syn, 1 ≤ i , j ≤ m, i ̸= j

• in, out are the input and output neurons

Turing universality of NSN P systems has also been
demonstrated in [23]. In terms of potential applica-
tions, NSN P systems can be suitable for applications
that involve numerical information. Moreover, adding
the threshold have made NSN P systems a powerful tool
for applications that require deterministic mechanisms.
In 2022, Jiang et al. [24] considered working with NSN
P systems in asynchronous manner. They also proposed
an extension of the traditional threshold strategy, intro-
ducing an extended threshold strategy which involves
using a threshold interval. More precisely, a production
function can be executed only if all of the variables in-
volved are within the range of the threshold interval. In
this way, the obtained asynchronous numerical spiking
neural P systems (ANSN P systems) will be more flexible.
The Turing universality as well as the computing power
of ANSN P systems has also been discussed in [24].
The extension of NSN P systems is an active research
direction, with concrete results in recent years. In this
context, Yin et al. [25] introduced in 2021 a new variant
of NSN P systems, called Novel numerical spiking neural
P systems with a variable consumption strategy (NSNVC
P systems). This new variant has led to improvements
in the production functions, values of the variables in-
volved having prescribed consumption rate without all
being set to 0 after the execution. NSNVC P systems also
use polarization of the neurons in order to control the
execution of a production function.
Another variant that aims to improve the flexibility of
the system has been introduced by Xu et al. [26] in 2023
by adding weights into NSN P systems. The resulted nu-
merical spiking neural P systems with weights (NSNW P
systems) are still Turing universal and the their compu-
tational power was demonstrated using fewer neurons
than NSN P systems.
An interesting approach was proposed in [27]. While

in the classic NSN P systems the production functions
are placed inside the neurons, in numerical spiking neu-
ral P systems with production functions on synapses
(NSNFS P systems), the production functions of each neu-
ron are placed on synapses. In this way, a neuron will
contain only numerical variables. Potential applications
of NSNFS P systems are further investigated.
A more practical initiative was presented by Zhang et.
al in [28], where enzymatic numerical spiking neural
membrane systems (ENSNP systems) were introduced.
In the aforementioned paper, the practicality of ENSNP
systems is demonstrated by modelling ENSNP membrane
controllers for robots implementing wall following.

4. Illustrative Examples

4.1. Numerical P System
In this section we will illustrate two numerical P systems
variants with similar evolution, using as starting point
an example of numerical P system. By analysing the
evolution of the proposed NP system, we designed two
entities of different NP systems variants, achieving simi-
lar functioning. We chose to use a well-known NP system
example, extracted from the article that introduced the
concept of numerical P systems [5]. Let us introduce
the system 𝛱1 , having three membranes, each of them
containing one variable. Examining the structure of 𝛱1

presented in Figure 1, we can observe that the rules sug-
gest a sequential dependency where the variable values
of each membrane influences the next. All membranes
start with an initial value of zero for the variables defined
inside them.
Analysing the system rules and starting with the third
membrane, we can note that variable x1 ,3 increases by 1
at each simulation step. The value of x1 ,3 is also trans-
mitted to x1 ,2 , as assigned in the repartition protocol.
In membrane 2, the value 2x1 ,2 + 1 is transmitted to
x1 ,1 . Also, it can be observed that the value of x1 ,1 is
never consumed, hence its value increases continuously.
Taking this observation into account, we can see that
the value of the targeted variable x1 ,1 is constructed at
each simulation step using the following algebraic iden-
tity: n2 = (n − 1)2 + 2 (n − 1) + 1 , n > 0 . Table 1
contains the values of the variables after n = 4 simulation
steps.
As stated before, we chose this example of numerical

P system and next we will present two mappings into
different numerical P systems variants, emphasizing the
characteristics of each one.

Table 1
Evolution of NP system 𝛱1

Simulation step n x1 ,1 x1 ,2 x1 ,3

0 0 0 0
1 1 1 1
2 4 2 2
3 9 3 3
4 16 4 4

1

2

3

Figure 1: Illustration of the numerical P system 𝛱1

4.2. Numerical P system with Boolean
condition

As presented in Section 3, by integrating Boolean condi-
tions into NP systems, the control over the computation
process is improved, making selective rule application
one of the main advantages of using Numerical P sys-
tems with Boolean condition (BNP systems). Thus, we
will proceed with the modelling of a BNP system that
calculates the perfect squares starting with 1, similar to
𝛱1 . Moreover, by introducing Boolean conditions, we
will store the even and the odd values of perfect squares
in different membranes, using the same number of mem-
branes and variables as the initial NP system presented
above.
Looking at the resulted BNP system 𝛱2 which is illus-
trated in Figure 2, we can observe that the number
of membranes is the same as in 𝛱1 . Compartment 3
contains three programs. The first program is increas-
ing the value of the variable x1 ,3 . The next two pro-
grams distribute the value needed to obtain the next
odd/even perfect square that is calculated inside x1 ,1 ,
respectively x1 ,2 . Both the programs have Boolean con-
ditions based on the value of x1 ,3 and at each simulation
step only one of them will be executed. It is important
to mention that the obtained BNP system works in the
all-parallel mode, executing all the applicable rules at
each step. The distribution of the accumulated values
into separate variables for odd and even perfect squares
is based on a formula that is similar to the one used for
𝛱1 : n2 = (n − 2)2 + 4 (n − 1), n > 0 . The formula

Table 2
Evolution of BNP system 𝛱2

Simulation step n x1 ,1 x1 ,2 x1 ,3

0 1 0 0
1 1 0 1
2 1 4 2
3 9 4 3
4 9 16 4

3

2

1

Figure 2: Illustration of the BNP system 𝛱2

can be observed by analysing how x1 ,1 and x1 ,2 accumu-
late values at each simulation step, based on the values
obtained at the previous steps. The first simulation steps
are presented in Table 2. We note that the values of vari-
ables x1 ,1 and x1 ,2 should be considered just for odd,
respectively even values of n, as they change at different
steps.

4.3. Numerical Spiking Neural P System
In order to obtain another membrane system with the
same functionality as 𝛱1 , we designed 𝛱3 , a NSN P
system looking for the set of values taken by variable x1 ,1 ,
which is never consumed. Moreover, we can observe
that 𝛱3 follows the same recursive formula as 𝛱1 , x1 ,1
receiving 2 (n − 1) + 1 at each simulation step n. The
result is graphically presented in Figure 3.

The NSN P system illustrated in Figure 3 consists
of four neurons, each containing one variable with an
initial value of zero. Neurons 𝜎2 , 𝜎3 , 𝜎4 also contain
the production functions that will be executed during
the evolution of the system. It is important to mention
that the first index of each variable represents the order
of the variable within the neuron (as we have only one
variable in each neuron, the first index will be 1 for all
the variables), whilst the second index represents the

2 3

1 4

Figure 3: Illustration of the NSN P system 𝛱3

Table 3
Evolution of NSN P system 𝛱3

Simulation step n x1 ,1 x1 ,2 x1 ,3 x1 ,4

0 0 0 0 0
1 1 1 1 1
2 4 2 2 2
3 9 3 3 3
4 16 4 4 4

label of the neuron. However, the target variable remains
x1 ,1 , whilst x1 ,2 and x1 ,3 maintain similar roles as in
𝛱1 . Table 3 illustrates the first simulation steps of the
NSN P system obtained.

Initially, the value of variable x1 ,3 is zero and the
production function from neuron 𝜎3 is executed. In this
way, neuron 𝜎3 transmits a value of 1 to neurons 𝜎2

and 𝜎4 . Looking at the production function from the
neuron 𝜎3 , it can be observed that it does not replicate
the original production function from the membrane 3
of the NP system 𝛱1 , even if neuron 𝜎3 seems to be
the correspondent of membrane 3. This aspect can be
explained by the repartition protocol of the program
from membrane 3, dividing the value between x1 ,3 and
x1 ,2 . According to the distribution stage of a NSN P
system, the computed production value is transmitted to
each variable from all the neighboring neurons, so there
is no need to divide it. After executing the production
function, the value of x1 ,3 is reset to zero.
Returning to the analysis of the system, we note that
neuron 𝜎3 receives 1 from neuron 𝜎4 . Neuron 𝜎4 is used
as an auxiliary structure, implementing the behavior
of the program inside membrane 3 of the original NP
system, where the variable x1 ,3 appears both in the
production function and the repartition protocol. In
order to achieve this functionality in the NSN P system,

we used neuron 𝜎4 to transmit the updated value of the
variable after being calculated.
At the same time, neuron 𝜎2 transmits a value of 1 to
variable x1 ,1 . As 𝜎1 does not contain any production
function, the value of x1 ,1 will be accumulated.

One can observe that 𝛱1 and 𝛱3 use the same recur-
sive formula, n2 = (n − 1)2 + 2 (n − 1) + 1 , where
(n − 1)2 is stored in x1 ,1 of compartment 1 and
2 (n − 1) + 1 is computed in compartment 2 of each
of them. The second model, 𝛱2 , a BNP system, comput-
ing two sets of perfect squares, uses another recurrence,
n2 = (n − 2)2 + 4 (n − 1), where (n − 2)2 is stored
either in compartment 1 or 2, depending on whether n is
odd or even, respectively, and 4 (n − 1) is computed in
compartment 3, the only compartment containing pro-
grams. 𝛱3 has a slightly more complex architecture,
with more compartments and implicitly programs and
variables.

Even for a relatively simple example, one can notice
slight variations in providing models with three different
numerical P systems. It is expected that more complex
case studies may require more diverse set of features
for each of the models involved, hence the need to find
optimal ones, with respect to certain criteria, such as
descriptional complexity measures (number of compart-
ments, connections, rules and programs complexity).

5. Concluding remarks
This paper presented the main theoretical results concern-
ing numerical P systems and their variants. We briefly
described each computation model, highlighting the in-
novations and potential applications. By exploring these
extensions of the basic concept, the reader can consider
using a targeted model adapted to specific requirements.
We also used a numerical P system with a concise struc-
ture to illustrate the mapping to numerical P systems
with Boolean condition (BNP systems) and numerical
spiking neural P systems (NSN P systems). The results
highlighted the main improvements introduced by each
variant.
As further developments, we will include more compu-
tation models in our mappings, also considering other
examples. As a testing methodology [29] for SNP systems
already exists, the mapping from NP systems to NSN P
systems can serve as the starting point of a promising
research line to develop a testing methodology for NSN P
systems. Furthermore, motivated by the applicability of
numerical P systems in areas of significant importance,
such as economics or robotics, we will elaborate a testing
theory and some testing methods for the most relevant
numerical P systems classes.

References
[1] Gh. Păun, Computing with membranes, Journal of

Computer and System Sciences 61 (2000) 108–143.
doi:10.1006/jcss.1999.1693.

[2] C. M. Vide, J. Pazos, Gh. Păun, A. R. Patón, Tis-
sue P systems, Theoretical Computer Science 296
(2003) 295–326. doi:10.1016/S0304-3975(02)
00659-X.

[3] M. Ionescu, Gh. Păun, T. Yokomori, Spiking neural
P systems, Fundamenta informaticae 71 (2006) 279–
308.

[4] Gh. Păun, Membrane Computing: An Introduction,
Springer Science & Business Media, 2002.

[5] Gh. Păun, R. Păun, Membrane computing and eco-
nomics: Numerical P systems, Fundamenta Infor-
maticae 73 (2006) 213–227.

[6] R. T. Bobe, F. Ipate, I. M. Niculescu, Mod-
elling and search-based testing of robot controllers
using enzymatic numerical P systems, arXiv
preprint arXiv:2309.13795 (2023). doi:10.48550/
arXiv.2309.13795.

[7] K. Gurney, An introduction to neural networks,
CRC press, 2018. doi:10.1201/9781315273570.

[8] S. Ghosh-Dastidar, H. Adeli, Spiking neu-
ral networks, International journal of neu-
ral systems 19 (2009) 295–308. doi:10.1142/
S0129065709002002.

[9] A. Leporati, G. Mauri, C. Zandron, Spiking neu-
ral P systems: main ideas and results, Natu-
ral Computing 21 (2022) 629–649. doi:10.1007/
s11047-022-09917-y.

[10] A. Pavel, O. Arsene, C. Buiu, Enzymatic numerical
P systems-a new class of membrane computing sys-
tems, in: International Conference on Bio-Inspired
Computing: Theories and Applications, IEEE, 2010.

[11] A. B. Pavel, C. Buiu, Using enzymatic numerical
P systems for modeling mobile robot controllers,
Natural Computing 11 (2012) 387–393.

[12] C. I. Vasile, A. B. Pavel, I. Dumitrache, Gh. Păun,
On the power of enzymatic numerical P systems,
Acta Informatica 49 (2012) 395–412.

[13] Z. Zhang, T. Wu, A. Păun, L. Pan, Universal
enzymatic numerical P systems with small num-
ber of enzymatic variables, Science China In-
formation Sciences 61 (2018) 1–12. doi:10.1007/
s11432-017-9103-5.

[14] Z. Zhang, L. Pan, Numerical P systems with thresh-
olds, International Journal of Computers Commu-
nications & Control 11 (2016) 292–304.

[15] L. Pan, Z. Zhang, T. Wu, J. Xu, Numerical P systems
with production thresholds, Theoretical Computer
Science 673 (2017) 30–41.

[16] L. Zhang, F. Xu, Languages generated by numerical
P systems with thresholds, Theoretical Computer

http://dx.doi.org/10.1006/jcss.1999.1693
http://dx.doi.org/10.1016/S0304-3975(02)00659-X
http://dx.doi.org/10.1016/S0304-3975(02)00659-X
http://dx.doi.org/10.48550/arXiv.2309.13795
http://dx.doi.org/10.48550/arXiv.2309.13795
http://dx.doi.org/10.1201/9781315273570
http://dx.doi.org/10.1142/S0129065709002002
http://dx.doi.org/10.1142/S0129065709002002
http://dx.doi.org/10.1007/s11047-022-09917-y
http://dx.doi.org/10.1007/s11047-022-09917-y
http://dx.doi.org/10.1007/s11432-017-9103-5
http://dx.doi.org/10.1007/s11432-017-9103-5

Science 988 (2024) 114376.
[17] L. Liu, W. Yi, Q. Yang, H. Peng, J. Wang, Small

universal numerical P systems with thresholds for
computing functions, Fundamenta Informaticae
176 (2020) 43–59.

[18] L. Liu, W. Yi, Q. Yang, H. Peng, J. Wang, Numerical P
systems with boolean condition, Theoretical Com-
puter Science 785 (2019) 140–149. doi:10.1016/j.
tcs.2019.03.021.

[19] A. B. Pavel, I. Dumitrache, Hybrid numerical P
systems 78 (2016) 139–146.

[20] J. Yang, H. Peng, X. Luo, J. Wang, Stochastic numer-
ical P systems with application in data clustering
problems, IEEE Access 8 (2020) 31507–31518.

[21] D. Reid, A. Oddie, P. Hazlewood, Parallel numerical
P systems using a mimd based architecture, in:
2010 IEEE Fifth International Conference on Bio-
Inspired Computing: Theories and Applications
(BIC-TA), IEEE, 2010, pp. 1646–1653. doi:10.1109/
BICTA.2010.5645257.

[22] Z. Zhang, T. Wu, L. Pan, On string languages gen-
erated by sequential numerical P systems, Funda-
menta Informaticae 145 (2016) 485–509.

[23] T. Wu, L. Pan, Q. Yu, K. C. Tan, Numerical spiking
neural P systems, IEEE Transactions on Neural
Networks and Learning Systems 32 (2020) 2443–
2457. doi:10.1109/TNNLS.2020.3005538.

[24] S. Jiang, Y. Liu, B. Xu, J. Sun, Y. Wang, Asyn-
chronous numerical spiking neural P systems, In-
formation Sciences 605 (2022) 1–14.

[25] X. Yin, X. Liu, M. Sun, Q. Ren, Novel numerical spik-
ing neural P systems with a variable consumption
strategy, Processes 9 (2021) 549.

[26] B. Xu, S. Jiang, Z. Shen, X. Zhu, T. Liang, Numerical
spiking neural P systems with weights, Journal
of Membrane Computing 5 (2023) 12–24. doi:10.
1007/s41965-022-00116-3.

[27] S. Jiang, B. Xu, T. Liang, X. Zhu, T. Wu, Numerical
spiking neural P systems with production functions
on synapses, Theoretical Computer Science 940
(2023) 80–89.

[28] L. Zhang, F. Xu, D. Xiao, J. Dong, G. Zhang, F. Neri,
Enzymatic numerical spiking neural membrane sys-
tems and their application in designing membrane
controllers, International Journal of Neural Systems
32 (2022) 2250055.

[29] F. Ipate, M. Gheorghe, A model learning based test-
ing approach for spiking neural P systems, Theor.
Comput. Sci. 924 (2022) 1–16.

http://dx.doi.org/10.1016/j.tcs.2019.03.021
http://dx.doi.org/10.1016/j.tcs.2019.03.021
http://dx.doi.org/10.1109/BICTA.2010.5645257
http://dx.doi.org/10.1109/BICTA.2010.5645257
http://dx.doi.org/10.1109/TNNLS.2020.3005538
http://dx.doi.org/10.1007/s41965-022-00116-3
http://dx.doi.org/10.1007/s41965-022-00116-3

	1 Introduction
	2 Preliminaries
	2.1 Numerical P System Definition
	2.2 From Artificial Neural Networks to Spiking Neural P Systems

	3 Numerical P systems variants
	4 Illustrative Examples
	4.1 Numerical P System
	4.2 Numerical P system with Boolean condition
	4.3 Numerical Spiking Neural P System

	5 Concluding remarks

