
Models of P Colonies
Lucie Ciencialová1,*,†, Luděk Cienciala1,†

1Institute of Computer Science, Faculty of Philosophy and Science in Opava, Silesian Univerity in Opava, Opava, Czech Republic

Abstract
This paper explores different models of P colonies, including restricted, homogeneous, and those with senders and consumers.
P colonies, inspired by the behavior of simple unicellular organisms in a shared environment, are theoretical computational
models where agents interact through finite programs within a common environment. The study examines transformations
between these P colony types and their impact on new findings related to the computational completeness of P colonies
under specific parameter constraints.

Keywords
membrane computing, P Colonies, agent-based model, nature-inspired computation model

1. Introduction
In this paper, we concentrate on various previously
published P colony models, specifically the restricted
P colony, the homogeneous P colony, and P colonies with
senders and consumers. The original model of P colony
was introduced in [1] as a theoretical computing model
inspired by structure and behavior of simple one-cell
organisms living in a shared environment.

The P colony consists of basic units called agents, each
equipped with programs. The environment plays a cru-
cial role, storing the products of agent activities and en-
abling agents to send “messages" to each other through
it. The agents operate based on objects.

Each agent contains a finite multiset of objects, which
are processed by a finite set of unique programs asso-
ciated with each agent. The number of objects within
each agent remains constant during the computation of
the agent community, known as the "capacity" of the P
colony. In this paper, we will focus on P colonies with a
capacity of 2, specifically on P colonies where each agent
contains exactly two objects.

The agents share a common environment, represented
by another multiset of objects. Among these objects, a
specific type called the "environmental object" is assumed
to exist in an infinitely countable number of copies. It
is worth noting that some literature may also describe
cases where the environmental symbol appears in a very
large, but finite, number of copies.

By utilizing their respective programs, the agents can

ITAT 2024: Information Technologies – Applications and Theory,
September 20–24, 2024, Čergovské Vrchy, Slovakia
*Corresponding author.
†

These authors contributed equally.
" lucie.ciencialova@fpf.slu.cz (L. Ciencialová);
ludek.cienciala@fpf.slu.cz (L. Cienciala)
� 0000-0002-0877-7063 (L. Ciencialová); 0000-0001-7116-9338
(L. Cienciala)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

modify the objects they possess and exchange some of
their objects with those in the environment. These co-
ordinated actions result in a configuration change, or
transition, within the P colony. A finite sequence of con-
secutive configuration changes, starting from the initial
configuration, constitutes a computation. The output of
this computation is determined by counting the number
of copies of a specific distinguished object, known as the
“final object”, present in the environment at the end of
the process.

The environment serves a dual purpose: it acts as a
communication channel for the agents and also functions
as a storage medium for objects. Its critical role lies
in synchronizing the collaborative efforts of the agents
throughout the entire computation process.

The programs thus allow P colony agents to change
both their own contents and the contents of the environ-
ment. The programs consist basically of six distinct types
of rules: rewriting, communication, checking, generating,
consuming and transporting rules. The first two types of
rules are used in restricted and homogeneous P colonies.
Communication and rewriting rules can be combined
to checking rules. In this paper, we do not consider the
use of this combination of rules, which determine the
priority between two participating rules. P colonies with
senders and consumers uses insertion and deletion rules.

The structure of the paper is as follows: after an intro-
ductory section, we introduce the basic concepts of the
original P colony model, its restricted and homogeneous
versions and P colony with senders and consumers. In
the third part, we will focus on transformations between
these types of P colonies. We will compare the results
regarding the computational power of these types of P
colonies in terms of the proposed transformations.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:lucie.ciencialova@fpf.slu.cz
mailto:ludek.cienciala@fpf.slu.cz
https://orcid.org/0000-0002-0877-7063
https://orcid.org/0000-0001-7116-9338
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Preliminaries and Definitions
Throughout the paper we assume the reader to be famil-
iar with the basics of the formal language theory and
membrane computing [2, 3].

For an alphabet Σ, the set of all words over Σ (includ-
ing the empty word, 𝜀), is denoted by Σ*. We denote
the length of a word 𝑤 ∈ Σ* by |𝑤| and the number
of occurrences of the symbol 𝑎 ∈ Σ in 𝑤 by |𝑤|𝑎.

A multiset of objects 𝑀 is a pair 𝑀 = (𝑂, 𝑓), where
𝑂 is an arbitrary (not necessarily finite) set of objects and
𝑓 is a mapping 𝑓 : 𝑂 → 𝑁 ; 𝑓 assigns to each object in 𝑂
its multiplicity in 𝑀 . Any multiset of objects 𝑀 with the
set of objects 𝑂 = {𝑥1, . . . 𝑥𝑛} can be represented as
a string 𝑤 over alphabet 𝑂 with |𝑤|𝑥𝑖

= 𝑓(𝑥𝑖); 1 ≤ 𝑖 ≤
𝑛. Obviously, all words obtained from 𝑤 by permuting
the letters can also represent the same multiset 𝑀 , and
𝜀 represents the empty multiset.

2.1. P Colonies
In the following we describe the concept of a P Colony.
The original definition of P colony was introduced in
[1]. In this paper, we will use an extended definition
[4], which we have slightly modified by excluding the
possibility of an evolving environment.

Rewriting rule 𝑎 → 𝑏 allows an agent to rewrite (evolve)
one object 𝑎 placed inside the agent to object 𝑏.

Communication rule 𝑎 ↔ 𝑏 exchanges one object 𝑎
placed inside the agent for object 𝑏 from the en-
vironment.

Checking rule 𝑟1/𝑟2, where each of 𝑟1, 𝑟2 is a rewriting
or a communication rule, sets a priority between
these two rules. The agent try to apply the first
rule and if it cannot be performed, the agent exe-
cutes the second rule.

Generating rule 𝑎 → 𝑏𝑐 creates two objects 𝑏, 𝑐 from
one object 𝑎.

Consuming rule 𝑎𝑏 → 𝑐 rewrites two objects 𝑎, 𝑏 to one
object 𝑐.

Transporting rule of the form (𝑎, 𝑖𝑛) or (𝑎, 𝑜𝑢𝑡) is used
to transport one object from the environment into
the agent, or from the agent to the environment,
respectively. The rule is always associated with
a consuming/generating rule to keep a constant
number of objects inside the agent.

Definition 1. A P colony with capacity 𝑐 ≥ 1 is the
structure

Π = (Σ, 𝑒, 𝑓, 𝑣𝐸 , 𝐵1, . . . , 𝐵𝑛), where

• Σ is the alphabet of the colony, its elements are
called objects,

• 𝑒 is the basic (environmental) object of the colony,
𝑒 ∈ Σ,

• 𝑓 is final object of the colony, 𝑓 ∈ Σ,
• 𝑣𝐸 is the initial content of the environment, 𝑣𝐸 ∈
(Σ− {𝑒})*,

• 𝐵𝑖, 1 ≤ 𝑖 ≤ 𝑛, are the agents, every agent is the
structure 𝐵𝑖 = (𝑜𝑖, 𝑃𝑖), where 𝑜𝑖 is a multiset over
Σ, it defines the initial state (content) of the agent
𝐵𝑖 and |𝑜𝑖| = 𝑐 and 𝑃𝑖 = {𝑝𝑖,1, . . . , 𝑝𝑖,𝑘𝑖} is the
finite set of programs of three types:

(1) generating program with generating rules
𝑎 → 𝑏𝑐 and transporting rules (𝑑, 𝑜𝑢𝑡) -
the number of generating rules is the same
as the number of transporting rules.

(2) consuming program with consuming rules
𝑎𝑏 → 𝑐 and transporting rules (𝑑, 𝑖𝑛) - the
number of consuming rules is the same as
the number of transporting rules.

(3) rewriting/communication program can con-
tain three types of rules:
◇ 𝑎 → 𝑏, called a rewriting rule,
◇ 𝑐 ↔ 𝑑, called a communication rule,
◇ 𝑟1/𝑟2, called a checking rule; each of

𝑟1, 𝑟2 is a rewriting or a communi-
cation rule.

We first note that throughout the paper, we use term
“object 𝑎 is inside agent 𝐴” and term “𝑎 ∈ 𝑤, where 𝑤 is
the state of agent 𝐴” as equivalent.

The functioning of the P colony starts from its initial
configuration (state).

The initial configuration of a P colony is an (𝑛+ 1)-
tuple of multisets of objects present in the P colony at
the beginning of the computation. It is given by the
multisets 𝑜𝑖 for 1 ≤ 𝑖 ≤ 𝑛 and by multiset 𝑣𝐸 . For-
mally, the configuration of the P colony Π is given by
(𝑤1, . . . , 𝑤𝑛, 𝑤𝐸), where |𝑤𝑖| = 𝑐, 1 ≤ 𝑖 ≤ 𝑛, 𝑤𝑖

represents all the objects present inside the 𝑖-th agent,
and 𝑤𝐸 ∈ (Σ − {𝑒})* represents all the objects in the
environment different from the object 𝑒.

At each step of the computation (at each transition),
the state of the environment and that of the agents change
in the following manner: In the maximally parallel deriva-
tion mode, each agent which can use any of its programs
should use one (non-deterministically chosen), whereas
in the sequential derivation mode, one agent uses one
of its programs at a time (non-deterministically chosen).
If the number of applicable programs for one agent is
higher than one, then the agent non-deterministically
chooses one of the programs.

A sequence of transitions is called a computation. A
computation is said to be halting, if a configuration is

reached where no program can be applied any more.
With a halting computation, we associate a result which
is given as the number of copies of the objects 𝑓 present
in the environment in the halting configuration.

Because of the non-determinism in choosing the pro-
grams, starting from the initial configuration we obtain
several computations, hence, with a P colony we can
associate a set of numbers, denoted by 𝑁(Π), computed
by all possible halting computations of given P colony.

In the original model (see [1]) the number of objects
inside each agent is set to two. Since the application
of a program must involve all objects within the agent,
the original P colony model requires that the number of
rules in a program equals the number of objects, which
is two. Moreover the initial configuration was defined as
(𝑛+ 1)-tuple (𝑒𝑒, . . . , 𝑒𝑒, 𝜀) so the environment of the
P colony is at the beginning of the computation “empty”,
without an input information.

A P colony is called restricted if each program consists
of one evolving rule and one communication rule. A P
colony is called homogeneous if each program consists
of one type of rules - rewriting or communication. The
third type of P colonies we will cover in this article are P
colonies using generating and consuming programs. If
agents have only generating programs in their program
set, we call them senders. If an agent has only consuming
programs available, we call it a consumer. In this article,
we will not be so strict and we will also consider agents
that use both generating and consuming programs.

The number of agents in a given P colony is called
the degree of Π; the maximal number of programs of an
agent of Π is called the height of Π and the number of
the objects inside an agent is called the capacity of Π.

The family of all sets of numbers 𝑁(Π) computed as
above by P colonies of capacity at most 𝑐 ≥ 0, degree at
most 𝑛 ≥ 0 and height at most ℎ ≥ 0, using checking
programs, and working in the maximally parallel way
are denoted by NPCOL𝑝𝑎𝑟𝐾(𝑐, 𝑛, ℎ).

If one of the parameters𝑛, ℎ is not bounded, then we re-
place it with *. If only P colonies using programs without
checking rules are considered, then we omit parameter
𝐾 . The family of all sets of numbers 𝑁(Π) computed as
above by restricted P colonies of capacity at most 𝑐 ≥ 0,
degree at most 𝑛 ≥ 0 and height at most ℎ ≥ 0, not
using checking programs, and working in the maximally
parallel way are denoted by NPCOL𝑝𝑎𝑟𝑅(𝑐, 𝑛, ℎ), if the
P colony is homogeneous the notation of corresponding
family is NPCOL𝑝𝑎𝑟𝐻(𝑐, 𝑛, ℎ). In the case of P colonies
with generating and consuming programs we can use
notation NPCOL𝑝𝑎𝑟𝐺𝐶(𝑐, 𝑛, ℎ).

3. Program Transformations
Let Π = (𝐴, 𝑒, 𝑓, 𝑣𝐸 , 𝐵1, . . . , 𝐵𝑛) be a P colony of ca-
pacity 2 with 𝑛 agents.

For all transformations, we will assume a unique la-
beling of programs such that each program has its own
labeling within all agents of the P colony.

Let 𝑃 =
𝑛⋃︀

𝑖=1

𝑃𝑖 and 𝑅 be a set of all program labels

such that 𝑅 = {𝑟𝑖 | 1 ≤ 𝑖 ≤ |𝑃 |}.
Now we will focus on transforming the different types

of programs into one another. We will start with the
conversion of restricted programs into homogeneous
ones.

3.1. Transformation from Restricted to
Homogeneous Programs

If we need to transform restricted programs into homo-
geneous ones, we must address the situation where ho-
mogeneous programs change their entire content in each
step—they either rewrite it or exchange it with the envi-
ronment. During the simulation of executing a restricted
program, there is a situation where, due to the rules of the
homogeneous program, it is necessary to pull a different
object into the agent than the original restricted program
requires, and we do not have objects available that the
agent could have generated in the previous phase (such as
𝑟𝑖, 𝑟

′
𝑖, . . .). Even though the environment contains a large

number of environmental objects, we cannot use them
because these objects may be part of the agent’s restricted
programs (for example, ⟨𝑎 → 𝑒, 𝑒 ↔ 𝑏⟩). Therefore, we
will need to generate an appropriate number of objects
that are not part of the original P colony’s alphabet. Let
this object be ℎ /∈ Σ. The generation of the required
number of ℎ objects can be handled by special agents
that perform only one program—placing their content
(2 objects ℎ) into the environment. Alternatively, the
required number of ℎ objects can simply be added to the
initial configuration of the environment.

∀ programs 𝑟𝑖 of type < 𝑎 → 𝑏; 𝑐 ↔ 𝑑 > there are
programs in the subset 𝐶 of programs:

𝐶1. < 𝑎 → 𝑟𝑖; 𝑐 → 𝑟′𝑖 >
𝐶2. < 𝑟𝑖 ↔ ℎ; 𝑟′𝑖 ↔ 𝑒 >
𝐶3. < ℎ ↔ 𝑟𝑖; 𝑒 ↔ ℎ >
𝐶4. < 𝑟𝑖 → 𝑐; 𝑒 → ℎ >
𝐶5. < 𝑐 ↔ 𝑟′𝑖; ℎ ↔ 𝑑 >

𝐶6. < 𝑟′𝑖 → 𝑏; 𝑑 → 𝑑 >
𝐶7. < 𝑐 ↔ 𝑟′𝑖; ℎ ↔ ℎ >
𝐶8. < 𝑟′𝑖 → 𝑟′𝑖; ℎ → ℎ >

There are agents of type 𝐷 in the P colony:
𝐷1. < ℎ ↔ 𝑒; ℎ ↔ 𝑒 >

Here, we have presented a variant that uses 𝑛 agents
to generate 2𝑛 objects ℎ.

agent agent 𝐷 env. prog. prog.
1. 𝑎𝑐 ℎℎ 𝑥𝑑 𝐶1 𝐷1
2. 𝑟𝑖𝑟

′
𝑖 𝑒𝑒 𝑥𝑑ℎℎ 𝐶2 −

3. ℎ𝑒 ℎ𝑞 𝑥ℎ𝑑𝑟𝑖𝑟
′
𝑖 𝐶3 −

4. 𝑟𝑖ℎ ℎ𝑞 𝑥𝑑𝑟′𝑖ℎ 𝐶4 −
5. 𝑐ℎ ℎ𝑞 𝑥𝑑𝑟′𝑖ℎ 𝐶5 −
6. 𝑟′𝑖𝑑 ℎ𝑞 𝑥𝑐ℎℎ 𝐶6 −
7. 𝑏𝑑 ℎ𝑞 𝑥𝑐ℎℎ − −

The program 𝑟𝑖 is simulated by performing six pro-
grams in six computation steps. Last two programs are
used for entering and performing infinite loop.

3.2. Transformation from Generating and
Consuming to Restricted Programs

To transform a P colony with insertion and deletion pro-
grams into a P colony with restricted programs, we need
to use a similar tactic to add a certain number of auxiliary
objects ℎ to the initial configuration of the P colony’s
environment or introduce new agents that place such
objects into the environment themselves.

Agents of type 𝐺 serve as generators of ℎ objects.
𝐺1. < ℎ → ℎ; ℎ ↔ 𝑒 >
𝐺2. < 𝑒 → 𝑞; ℎ ↔ 𝑒 >

∀ programs 𝑟𝑖 of type < 𝑎 → 𝑏𝑑; (𝑐, 𝑜𝑢𝑡) > there are
programs in subset 𝐸 of programs of agents:

𝐸1. < 𝑎 → 𝑟𝑖; 𝑐 ↔ 𝑒 >
𝐸2. < 𝑒 → 𝑟′𝑖; 𝑟𝑖 ↔ ℎ >
𝐸3. < 𝑟′𝑖 → 𝑏; ℎ ↔ 𝑟𝑖 >
𝐸4. < 𝑟𝑖 → 𝑟′′𝑖 ; 𝑏 ↔ ℎ >
𝐸5. < 𝑟′′𝑖 → 𝑑; ℎ ↔ 𝑏 >

Using this program, the agent does not need an object
from the environment; instead, it places an object into
the environment. Two objects ℎ are required for the
simulation.

agent env. prog.
1. 𝑎𝑐 𝑥ℎℎ 𝐸1
2. 𝑟𝑖𝑒 𝑥ℎℎ𝑐 𝐸2
3. 𝑟′𝑖ℎ 𝑥𝑐ℎ𝑟𝑖 𝐸3
4. 𝑟𝑖𝑏 𝑥ℎℎ𝑐 𝐸4
5. 𝑟′′𝑖 ℎ 𝑥ℎ𝑐𝑏 𝐸5
6. 𝑑𝑏 𝑥ℎℎ𝑐 −

∀ programs 𝑟𝑖 of type < 𝑎𝑐 → 𝑏; (𝑑, 𝑖𝑛) > there is
subset 𝐹 of programs of the agent:

𝐹1. < 𝑎 → 𝑟𝑖; 𝑐 ↔ 𝑑 >
𝐹2. < 𝑑 → 𝑟′𝑖; 𝑟𝑖 ↔ 𝑐 >
𝐹3. < 𝑐 → 𝑏; 𝑟′𝑖 ↔ 𝑟𝑖 >

𝐹4. < 𝑟𝑖 → ℎ; 𝑏 ↔ 𝑟′𝑖 >
𝐹5. < 𝑟′𝑖 → 𝑑; ℎ ↔ 𝑏 >

To execute the consuming program, the presence of ob-
ject 𝑑 in the environment is required. This condition also
applies to the execution of the first restricted program in
the simulation of rule 𝑟𝑖. If this check were to occur at a
later stage in the simulation, it could lead to an improper
application of the program, as the simulation of other

programs might temporarily place some objects into the
environment that will be back inside these agents by the
end of the simulation. Consider a configuration that does
not contain object 𝑑. During the simulation of a single
computation step, one of the agents uses a program of
type E4 and temporarily places object 𝑑 into the envi-
ronment, intending to remove it in the next computation
step using a rule of type E5. If, during the computation
phase when object 𝑑 is present in the environment, a
check for the presence of 𝑑 for a consuming program is
performed, then the programs of both agents would be
applicable.

agent env. prog.
1. 𝑎𝑐 𝑥ℎℎ𝑑 𝐹1
2. 𝑟𝑖𝑑 𝑥ℎℎ𝑐 𝐹2
3. 𝑟′𝑖𝑐 𝑥ℎℎ𝑟𝑖 𝐹3
4. 𝑟𝑖𝑏 𝑥ℎℎ𝑟′𝑖 𝐹4
5. 𝑟′𝑖ℎ 𝑥ℎ𝑏 𝐹5
6. 𝑑𝑏 𝑥ℎℎ −

3.3. Transformation from Restricted to
Generating and Consuming Programs

Since executing a restricted program involves the agent
exchanging an object with another from the environ-
ment, both generating and consuming programs must be
executed during the simulation. In this paper, we allow
one agent to contain both types of these programs.

∀ programs 𝑟𝑖 of type < 𝑎 → 𝑏; 𝑐 ↔ 𝑑 > there are
following programs in the subset 𝐻 of programs of the
corresponding agent:

𝐻1. < 𝑎𝑐 → 𝑟𝑖; (𝑑, 𝑖𝑛) >
𝐻2. < 𝑟𝑖𝑑 → 𝑟′𝑖; (𝑒, 𝑖𝑛) >
𝐻3. < 𝑟′𝑖 → 𝑟′′𝑖 𝑐; (𝑒, 𝑜𝑢𝑡) >
𝐻4. < 𝑟′′𝑖 → 𝑟′′′𝑖 𝑏; (𝑐, 𝑜𝑢𝑡) >
𝐻5. < 𝑟′′′𝑖 → 𝑟𝑖𝑑; (𝑏, 𝑜𝑢𝑡) >
𝐻6. < 𝑟𝑖𝑑 → 𝑑; (𝑏, 𝑖𝑛) >

Objects 𝑟𝑖, 𝑟′𝑖, 𝑟
′′
𝑖 , 𝑟

′′′
𝑖 , and 𝑟𝑖 serve to mark the phase

of the restricted program simulation, and they are used
to generate the necessary objects accordingly.

step agent H env. prog.
1. 𝑎𝑐 𝑥𝑑 𝐻1
2. 𝑟𝑖𝑑 𝑥 𝐻2
3. 𝑟′𝑖𝑒 𝑥 𝐻3
4. 𝑟′′𝑖 𝑐 𝑥 𝐻4
5. 𝑟′′′𝑖 𝑏 𝑥𝑐 𝐻5
6. 𝑟𝑖𝑑 𝑥𝑏𝑐 𝐻6
7. 𝑑𝑏 𝑥𝑐 −

3.4. Transformation from Homogeneous
to Generating and Consuming
Programs

Homogeneous programs can be of two types: either both
objects in the agent are rewritten into new objects (not

necessarily different from the original ones), or both ob-
jects inside the agent are exchanged with two objects
that were originally in the environment.

We begin the transformation by simulating a homoge-
neous program in which the agent exchanges its entire
content with the environment. Both objects inside the
agent are moved to the environment, and two objects
from the environment are moved to the agent. This sec-
ond transfer imposes a strong applicability condition for
the rule, which cannot be checked by consuming pro-
grams in a single step. Therefore, we perform the check
in two consecutive steps. We must also adjust the sim-
ulation of the second type of homogeneous program to
ensure that, during the first two steps of their applica-
tion, the agent does not introduce any objects into the
environment that might influence the applicability of
the second program in the simulation. If another agent
adds an object (e.g., 𝑏) to the environment in the first
step, which was not previously present, it can change the
applicability of the program.

∀ programs 𝑟𝑖 of type < 𝑎 ↔ 𝑏; 𝑐 ↔ 𝑑 > there is a
subset 𝐼 of set of programs of the agent:

𝐼1. < 𝑎𝑐 → 𝑟𝑖; (𝑏, 𝑖𝑛) >
𝐼2. < 𝑟𝑖𝑏 → 𝑟𝑖1; (𝑑, 𝑖𝑛) >
𝐼3. < 𝑟𝑖1𝑑 → 𝑟𝑖2; (𝑒, 𝑖𝑛) >
𝐼4. < 𝑟𝑖2 → 𝑟𝑖3𝑎; (𝑒, 𝑜𝑢𝑡) >
𝐼5. < 𝑟𝑖3 → 𝑟𝑖4𝑐; (𝑎, 𝑜𝑢𝑡) >
𝐼6. < 𝑟𝑖4 → 𝑟𝑖5𝑒; (𝑐, 𝑜𝑢𝑡) >
𝐼7. < 𝑟𝑖5 → 𝑏𝑑; (𝑒, 𝑜𝑢𝑡) >
𝐼8. < 𝑟𝑖𝑏 → 𝑙; (𝑒, 𝑖𝑛) >
𝐼9. < 𝑙 → 𝑙𝑒; (𝑒, 𝑜𝑢𝑡) >

Program 𝐼8 allows the computation to continue if the
homogeneous program 𝑟𝑖 was selected for simulation
but was not applicable in the original P colony due to the
absence of object 𝑑 in the environment. Program 𝐼9 is
included in the agent’s set of programs only once, and
its execution results in an infinite loop.

step agent env. prog.
1. 𝑎𝑐 𝑥𝑏𝑑 𝐼1
2. 𝑟𝑖𝑏 𝑥𝑑 𝐼2
3. 𝑟𝑖1𝑑 𝑥 𝐼3
4. 𝑟𝑖2𝑒 𝑥 𝐼4
5. 𝑟𝑖3𝑎 𝑥 𝐼5
6. 𝑟𝑖4𝑐 𝑥𝑎 𝐼6
7. 𝑟𝑖5𝑒 𝑥𝑎𝑐 𝐼7
8. 𝑑𝑏 𝑥𝑎𝑐 −

∀ programs 𝑟𝑖 of type < 𝑎 → 𝑏; 𝑐 → 𝑑 > there is a
subset 𝐽 of set of programs of the agent:

𝐽1. < 𝑎𝑐 → 𝑟𝑖; (𝑒, 𝑖𝑛) >
𝐽2. < 𝑟𝑖 → 𝑟𝑖1𝑒; (𝑒, 𝑜𝑢𝑡) >
𝐽3. < 𝑟𝑖1 → 𝑟𝑖2𝑒; (𝑒, 𝑜𝑢𝑡) >
𝐽4. < 𝑟𝑖2 → 𝑟𝑖3𝑒; (𝑒, 𝑜𝑢𝑡) >
𝐽5. < 𝑟𝑖3 → 𝑟𝑖4𝑒; (𝑒, 𝑜𝑢𝑡) >
𝐽6. < 𝑟𝑖4 → 𝑟𝑖5𝑒; (𝑒, 𝑜𝑢𝑡) >
𝐽7. < 𝑟𝑖5 → 𝑏𝑑; (𝑒, 𝑜𝑢𝑡) >

In addition to ensuring that during the first step of sim-
ulating program 𝑟𝑖, the agent does not emit any objects
that could affect the applicability of other programs in the
P colony, it is also necessary to match the length of the
program simulation of 𝑟𝑖 to the number of steps required
for a successful simulation of the above-mentioned type
of homogeneous program. The reader can notice that oth-
erwise, the simulation could be completed in two steps
by using two programs (𝐽1 and the modified 𝐽7). If the
simulation of one type of homogeneous program took a
different number of steps than the simulation of the other
type, the simulation of steps of computation would start
to overlap, and the applicability of individual programs
might not reflect the configuration of the original model.

step agent env. prog.
1. 𝑎𝑐 𝑥 𝐽1
2. 𝑟𝑖𝑒 𝑥 𝐽2
3. 𝑟𝑖1𝑒 𝑥 𝐽3
4. 𝑟𝑖2𝑒 𝑥 𝐽4
5. 𝑟𝑖3𝑎 𝑥 𝐽5
6. 𝑟𝑖4𝑒 𝑥 𝐽6
7. 𝑟𝑖5𝑒 𝑥 𝐽7
8. 𝑑𝑏 𝑥 −

3.5. Transformation from Homogeneous
to Restricted Programs

We will conclude the section on transformations with
the conversion of homogeneous programs into restricted
programs.

To begin with, it should be noted that this transforma-
tion is not complete. In situations where the P colony is
in a halt configuration, but the agent configuration and
the environment’s content allow for the initiation of the
simulation of a homogeneous program with communica-
tion rules, it results in an infinite loop instead of halting
the computation. We present the transformation here for
the sake of completeness.

∀ programs 𝑟𝑖 of type < 𝑎 → 𝑏; 𝑐 → 𝑑 >:
1. < 𝑎 → 𝑟𝑖; 𝑐 ↔ 𝑒 >
2. < 𝑟𝑖 → 𝑟′𝑖; 𝑒 ↔ 𝑐 >
3. < 𝑐 → 𝑟′′𝑖 ; 𝑟

′
𝑖 ↔ 𝑒 >

4. < 𝑟′′𝑖 → 𝑑; 𝑒 ↔ 𝑒 >
5. < 𝑑 → 𝑑; 𝑒 ↔ 𝑟′𝑖 >
6. < 𝑟′𝑖 → 𝑟′′′𝑖 ; 𝑑 ↔ 𝑒 >
7. < 𝑟′′′𝑖 → 𝑏; 𝑒 ↔ 𝑑 >

To better illustrate how executing individual restricted
programs leads to the same outcome as executing the
homogeneous program 𝑟𝑖, we will provide a step-by-
step demonstration. The following table presents the
configurations of the agent and the environment, along
with the applicable rule for the agent.

agent env. prog.
1. 𝑎𝑐 𝑥 1
2. 𝑟𝑖𝑒 𝑥𝑐 2
3. 𝑟′𝑖𝑐 𝑥 3
4. 𝑟′′𝑖 𝑒 𝑥𝑟′𝑖 4
5. 𝑑𝑒 𝑥𝑟′𝑖 5
6. 𝑑𝑟′𝑖 𝑥 6
7. 𝑟′′′𝑖 𝑒 𝑥𝑑 7
8. 𝑏𝑑 𝑥 −

The program 𝑟𝑖 : < 𝑎 → 𝑏; 𝑐 → 𝑑 > is simulated by
performing seven programs in seven computation steps.

∀ programs 𝑟𝑖 of type < 𝑎 ↔ 𝑏; 𝑐 ↔ 𝑑 >:
To simulate execution of the program 𝑟𝑖 the agent has

a subset 𝐴 of programs :
𝐴1. < 𝑎 → 𝑟𝑖; 𝑐 ↔ 𝑑 >
𝐴2. < 𝑑 → 𝑟′′𝑖 ; 𝑟𝑖 ↔ 𝑐 >
𝐴3. < 𝑐 → 𝑑; 𝑟′′𝑖 ↔ 𝑒 >
𝐴4. < 𝑒 → 𝑒; 𝑑 ↔ 𝑟′′𝑖 >
𝐴5. < 𝑟′′𝑖 → 𝑒; 𝑒 ↔ 𝑟′𝑖 >
𝐴6. < 𝑟′𝑖 → 𝑏; 𝑒 ↔ 𝑑 >

Agent 𝐵 (for every agent in original P colony there
is one agent of type 𝐵, or for every communication pro-
gram there is one such agent):

𝐵1. < 𝑒 → 𝑎; 𝑒 ↔ 𝑟𝑖 >
𝐵2. < 𝑟𝑖 → 𝑟′𝑖; 𝑎 ↔ 𝑏 >
𝐵3. < 𝑏 → 𝑐; 𝑟′𝑖 ↔ 𝑒 >

𝐵4. < 𝑒 → 𝑒; 𝑐 ↔ 𝑒 >
𝐵5. < 𝑟𝑖 → 𝑙; 𝑎 ↔ 𝑒 >
𝐵6. < 𝑙 → 𝑙; 𝑒 ↔ 𝑒 >

The agent, by executing programs from set 𝐴, sends
object 𝑟𝑖 to the environment, which acts as a label for
the executed program and simultaneously checks for
the presence of object 𝑑 in the environment. Agent 𝐵,
based on the object 𝑟𝑖, checks for the presence of object
𝑏 in the environment. This checking process involves
moving the checked object inside the agent. Programs
𝐵5 and 𝐵6 ensure an infinite loop if the program 𝑟𝑖
being simulated is not applicable (i.e., object 𝑏 is missing
from the environment). Program 𝐵5 can also be applied
even if object 𝑏 is present in the environment because
the selection of a program from the set of applicable
programs is random. Since the computation is defined
as nondeterministic, a corresponding computation exists
for the case where program 𝑟𝑖 is applied in the correct
configuration. Other computations result in infinite loops
and thus do not lead to a result.

agent agent 𝐵 env. prog.𝐴 prog.𝐵
1. 𝑎𝑐 𝑒𝑒 𝑏𝑑 𝐴1 −
2. 𝑟𝑖𝑑 𝑒𝑒 𝑏𝑐 𝐴2 −
3. 𝑟′′𝑖 𝑐 𝑒𝑒 𝑏𝑟𝑖 𝐴3 𝐵1
4. 𝑒𝑑 𝑎𝑟𝑖 𝑏𝑟′′𝑖 𝐴4 𝐵2
5. 𝑒𝑟′′𝑖 𝑟′𝑖𝑏 𝑎𝑑 − 𝐵3
6. 𝑒𝑟′′𝑖 𝑐𝑒 𝑎𝑑𝑟′𝑖 𝐴5 𝐵4
7. 𝑒𝑟′𝑖 𝑒𝑒 𝑎𝑑𝑐 𝐴6 −
8. 𝑏𝑑 𝑒𝑒 𝑎𝑐 − −

4. Computational Power of P
colonies

For restricted P colonies, not using checking rules, the
following results are known:

• 𝑁𝑃𝐶𝑂𝐿𝑝𝑎𝑟𝑅(2, *, 5) = 𝑁𝑅𝐸 in [5],
• 𝑁𝑃𝐶𝑂𝐿𝑝𝑎𝑟𝑅(2, 2, *) = 𝑁𝑅𝐸 in [6],
• 𝑁𝑃𝐶𝑂𝐿𝑝𝑎𝑟𝑅(2, 57, 8) = 𝑁𝑅𝐸 in [7].

For homogeneous P colonies, not using checking rules,
the following results are known:

• 𝑁𝑃𝐶𝑂𝐿𝑝𝑎𝑟𝐻(2, 92, 3) = 𝑁𝑅𝐸 in [7],
• 𝑁𝑃𝐶𝑂𝐿𝑝𝑎𝑟𝐻(2, 70, 5) = 𝑁𝑅𝐸 in [7],
• 𝑁𝑃𝐶𝑂𝐿𝑝𝑎𝑟𝐻(2, 2, 163) = 𝑁𝑅𝐸 in [7].

For P colonies using generating and consuming pro-
grams there are known results only for cases when agents
contain only one type of such programs, the agents are
called senders and consumers.

• 𝑁𝑃𝐶𝑂𝐿𝑠𝑐(2, 2, *) = 𝑁𝑅𝐸 in [8, 9].

From the transformations described, we can derive
data for new results related to restricted, homogeneous,
and especially P colonies with generating and consuming
programs.

For homogeneous P colonies, we can add the following
result:

• 𝑁𝑃𝐶𝑂𝐿𝑝𝑎𝑟𝐻(2, 57, 64) = 𝑁𝑅𝐸.

For homogeneous P colonies, we find that the class
of P colonies with at most 57 agents, each having up to
64 programs, is computationally complete. This result
allows us to reduce the number of agents from 70 to 57
by increasing the number of programs associated with
each agent.

For P colonies with generating and consuming pro-
grams, there are four new results:

• 𝑁𝑃𝐶𝑂𝐿𝑝𝑎𝑟𝐺𝐶(2, 2, 1305) = 𝑁𝑅𝐸,
• 𝑁𝑃𝐶𝑂𝐿𝑝𝑎𝑟𝐺𝐶(2, 57, 48) = 𝑁𝑅𝐸,
• 𝑁𝑃𝐶𝑂𝐿𝑝𝑎𝑟𝐺𝐶(2, 70, 41) = 𝑁𝑅𝐸,
• 𝑁𝑃𝐶𝑂𝐿𝑝𝑎𝑟𝐺𝐶(2, 92, 25) = 𝑁𝑅𝐸.

5. Conclusion
In this study, we explored various P colony mod-
els—restricted, homogeneous, and those using gener-
ating and consuming programs—highlighting their op-
erational differences. Our analysis showed that each
model has unique computational capabilities, shaped by
its rule types and agent structure. For example, restricted

P colonies, with their mix of rewriting and communi-
cation rules, exhibit different computational behaviors
than homogeneous colonies, which use only one type of
rule. Transformations between these models also reveal
insights into their computational power.

In the final section of the paper, we presented six new
results that illustrate the dependence of the number of
agents and the maximum number of programs associ-
ated with a single agent on the computational complete-
ness of P colonies constrained by these parameters. For
P colonies with generating and consuming programs,
these are the first results, as the computational power
of colonies using such program combinations associated
with a single agent has not yet been explored.

6. Acknowledgments
This work is supported by the Silesian University
in Opava under the Student Funding Plan, project
SGS/9/2024.

References
[1] J. Kelemen, A. Kelemenová, Gh. Păun, Preview of P

colonies: A biochemically inspired computing model,
in: Workshop and Tutorial Proceedings. Ninth Inter-
national Conference on the Simulation and Synthesis
of Living Systems (Alife IX), Boston, Massachusetts,
USA, 2004, pp. 82–86.

[2] J. E. Hopcroft, J. D. Ullman, Introduction to Automata
Theory, Languages and Computation, Addison-
Wesley, 1979.

[3] Gh. Păun, G. Rozenberg, A. Salomaa, The Oxford
Handbook of Membrane Computing, Oxford Univer-
sity Press, Inc., New York, NY, USA, 2010.

[4] L. Ciencialová, L. Cienciala, P. Sosík, Generalized
P colonies with passive environment, Theoretical
Computer Science 724 (2018) 61–68. doi:https://
doi.org/10.1016/j.tcs.2017.12.009.

[5] R. Freund, M. Oswald, P colonies working in the max-
imally parallel and in the sequential mode, in: D. Za-
harie, D. Petcu, V. Negru, T. Jebelean, G. Ciobanu,
A. Cicortas, A. Abraham, M. Paprzycki (Eds.), Sev-
enth International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing (SYNASC
2005), 25-29 September 2005, Timisoara, Romania,
IEEE Computer Society, 2005, pp. 419–426. doi:10.
1109/SYNASC.2005.55.

[6] L. Cienciala, L. Ciencialová, A. Kelemenová, On
the number of agents in P colonies, Lecture Notes
in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 4860 LNCS (2007) 193–208.

[7] L. Cienciala, L. Ciencialová, Some new re-
sults of P colonies with bounded parameters,
Natural Computing (2016) 1–12. doi:10.1007/
s11047-016-9591-0.

[8] L. Cienciala, L. Ciencialová, P colonies and their ex-
tensions, in: J. Kelemen, A. Kelemenová (Eds.), Com-
putation, Cooperation, and Life, Springer-Verlag,
Berlin, Heidelberg, 2011, pp. 158–169.

[9] L. Ciencialová, L. Cienciala, P. Sosík, Generalized P
colonies with passive environment, in: C. Graciani,
D. Orellana-Martín, A. Riscos-Núñez, Á. Romero-
Jiménez, L. Valencia-Cabrera (Eds.), Fourteen Brain-
storming Week on Membrane Computing, 2016, pp.
151–162.

http://dx.doi.org/https://doi.org/10.1016/j.tcs.2017.12.009
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2017.12.009
http://dx.doi.org/10.1109/SYNASC.2005.55
http://dx.doi.org/10.1109/SYNASC.2005.55
http://dx.doi.org/10.1007/s11047-016-9591-0
http://dx.doi.org/10.1007/s11047-016-9591-0

	1 Introduction
	2 Preliminaries and Definitions
	2.1 P Colonies

	3 Program Transformations
	3.1 Transformation from Restricted to Homogeneous Programs
	3.2 Transformation from Generating and Consuming to Restricted Programs
	3.3 Transformation from Restricted to Generating and Consuming Programs
	3.4 Transformation from Homogeneous to Generating and Consuming Programs
	3.5 Transformation from Homogeneous to Restricted Programs

	4 Computational Power of P colonies
	5 Conclusion
	6 Acknowledgments

