
Circular chromatic index of small snarks
Dušan Bernát1, Ján Mazák1,*

1FMFI UK, Bratislava, Slovakia

Abstract
This paper verifies and extends previous computational results on circular chromatic index of small snarks, gives further
support for certain conjectures, and discusses various practical aspects of using SAT solvers to solve graph colouring problems
(e.g. the impact of solver choice and Boolean formula construction on running time).

Keywords
cubic graph, snark, circular chromatic index, SAT solver

1. Introduction
The main aim of this article is to popularize the usage of
SAT solvers for computations in combinatorics. For more
than a decade, SAT solvers have been among the most
efficient tools for problems in discrete mathematics, and
there are plenty of them freely available. However, many
researchers in the area, both young and more experi-
enced, are still not sufficiently aware of their advantages
and the simplicity of their use. We will illustrate the
usage of SAT solvers through computations concerned
with edge-colourings of graphs.

Cubic graphs that do not admit a 3-edge-colouring
(so-called uncolourable) have been studied for more than
a century, initially in connection with the Four Colour
Problem, and more recently in the context of flows and
cycle covers. In this article, a snark is a bridgeless simple
cubic graph with chromatic index 4. Since the problem of
determining the chromatic index of a cubic graph is NP-
complete, we cannot expect a simple characterization
of snarks, and volumes have been written on various
attempts to gain a better understanding of their structure
[1].

One possible approach is to acknowledge that “not
all snarks are of the same difficulty” and introduce a
measure that somehow splits snarks into classes with
“increasing levels of uncolourability” [2]. For instance,
if we consider the minimum number of odd cycles in a
2-factor of a cubic graph (its oddness), there are cubic
graphs with oddness 2𝑘 for every non-negative integer
𝑘. For 𝑘 = 0, we get colourable graphs, and presumably
as oddness increases, the difficulty of proving theorems
for such snarks increases: e.g. the 5-flow conjecture was
gradually proved for snarks with oddness 0, 2, and 4 [3].

CADM’24: Computational Aspects of Large-Scale Problems in Discrete
Mathematics, ITAT 2024
*Corresponding author.
$ dusan.bernat@fmph.uniba.sk (D. Bernát);
jan.mazak@fmph.uniba.sk (J. Mazák)
� 0000-0002-6498-9984 (J. Mazák)

© 2024 Author:Pleasefillinthe\copyrightclause macro
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

This paper focuses on circular chromatic index 𝜒′
𝑐,

which is a refinement of chromatic index that allows real
values as colours instead of just integers. For 𝑟 ≥ 1,
a circular 𝑟-edge-colouring of a graph 𝐺 is a mapping
𝑐 : 𝐸(𝐺) → [0, 𝑟) such that 1 ≤ |𝑐(𝑒)− 𝑐(𝑓)| ≤ 𝑟 − 1
for any two incident edges 𝑒 and 𝑓 of 𝐺. If a graph 𝐺 has
a circular 𝑟-edge-colouring, we say that it is circularly
𝑟-edge-colourable. The circular chromatic index 𝜒′

𝑐 of 𝐺
is the infimum of all 𝑟 such that 𝐺 has a circular 𝑟-edge-
colouring. This infimum is in fact a minimum; for a finite
graph it is always attained. Moreover, it is rational, and
the only possible candidates for 𝜒′

𝑐(𝐺) are fractions 𝑝/𝑞
such that 𝑝 ≤ |𝐸(𝐺)|. Circular colourings can be used
for optimization in certain types of scheduling problems,
but we are not exploring this in this paper. For a detailed
introduction to circular colourings, we refer the reader
to the survey [4].

Colourable cubic graphs have 𝜒′
𝑐 = 3, while snarks

have 𝜒′
𝑐 > 3, so 𝜒′

𝑐 is also a “measure of uncoloura-
bility”, perhaps the most natural one. Snarks with 𝜒′

𝑐

close to 3 are plentiful, whereas snarks with 𝜒′
𝑐 above

10/3 seem rare. This is partly known, partly hypothe-
sized. An intuition behind this statement is as follows:
In a 3-edge-colouring, when you fix the colours of two
edges at a vertex, the colour of the third edge is uniquely
determined—there is no wiggle room. But in a circu-
lar (3 + 𝜀)-edge-colouring, there is typically a small in-
terval of length up to 𝜀 for allowed values of the third
colour. With a bit of flexibility at each vertex, over a large
enough subgraph, we can gradually shift the colours into
pretty much anything we want on the edges leaving the
subgraph, making it easy to get a circular (3 + 𝜀)-edge-
colouring of the whole large graph even for a small value
of 𝜀. Of course, there are situations where this does not
apply—for instance, if we have a small subgraph that
cannot be coloured with 3 + 𝜀 colours for a small 𝜀, it
will ensure a lower bound on 𝜒′

𝑐 for the whole graph.
The following theorems and conjectures summarize

the current state of knowledge about 𝜒′
𝑐 of cubic graphs.

Theorem 1 ([5]). There is no graph with 𝜒′
𝑐 ∈ (11/3, 4).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:dusan.bernat@fmph.uniba.sk
mailto:jan.mazak@fmph.uniba.sk
https://orcid.org/0000-0002-6498-9984
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Theorem 2 ([6, 7]). The Petersen graph has 𝜒′
𝑐 = 11/3.

There exists an infinite class of snarks with connectivity 3
and 𝜒′

𝑐 = 7/2.

Theorem 3 ([8]). For every 𝜀 > 0, there exists an integer
𝑔 such that every snark with girth at least 𝑔 has 𝜒′

𝑐 ≤ 3+𝜀.

Theorem 4 ([6]). The circular chromatic index of every
snark with girth at least 6 is at most 7/2.

Theorem 5 ([9]). For every rational 𝑟 ∈ (3, 10/3)∪{3+
𝑝/(3𝑝− 1) | 𝑝 ∈ Z+}, there exists a snark with 𝜒′

𝑐 = 𝑟.

Conjecture 1 ([6, 7]). The circular chromatic index of
every snark 𝐺 except the Petersen graph is at most 7/2. If
𝐺 is cyclically 4-connected, 𝜒′

𝑐(𝐺) < 7/2.

It is still open if the Petersen graph is the only graph
with 𝜒′

𝑐 = 11/3. Based on our computational results, we
propose two additional conjectures and one problem.

Conjecture 2. If 𝐺 is a snark with girth at least 6, then
𝜒′
𝑐(𝐺) ≤ 10/3.

The evidence for Conjecture 2 is somewhat scarce: it
holds for Isaacs snarks with girth 6 (though not for those
of smaller girth), and we verified it for all 42 snarks with
girth 6 on at most 38 vertices and an incomplete list of
snarks on 40 to 44 vertices (all of them being the result
of a dot product applied to smaller snarks). Weak indirect
support is also provided by Theorems 3 and 4.

Conjecture 3. All cyclically 4-connected snarks 𝐺 have
𝜒′
𝑐(𝐺) ≤ 17/5.

Problem 4. Characterise cyclically 4-connected snarks
𝐺 with 𝜒′

𝑐(𝐺) > 10/3. Is the set 𝑀>10/3 of such snarks
finite? Is the set of the values of 𝜒′

𝑐 of such snarks finite?

We have found 17 members of 𝑀>10/3, described in
more detail in Section 3.

2. Computing 𝜒′
𝑐

In light of the conjectures in Section 1, our computations
are primarily focused on proving that there are no snarks
with 𝜒′

𝑐 bigger than some value 𝑟. This is the easier
thing to do—one only needs to find a suitable circular
𝑟-edge-colouring. On the other hand, determining 𝜒′

𝑐

requires proving a lower bound, which takes much more
time. Anyway, where computationally feasible, we fully
determine 𝜒′

𝑐, not just verify the conjectures.
For a given input graph and a fraction 𝑝/𝑞, we con-

struct a boolean formula that is satisfiable if and only
if 𝐺 is circularly 𝑝/𝑞-edge-colourable. This formula
uses a variable 𝑥𝑒,𝑐 for each element (𝑒, 𝑐) ∈ 𝐸(𝐺) ×
{0, 1, . . . 𝑝− 1}; it states that each edge gets exactly one

colour and that no two incident edges can be assigned
colours with difference less than 𝑞 (using clauses like
¬𝑥𝑒,0 ∨ ¬𝑥𝑒,1). Then a SAT solver is used to decide the
satisfiability of the problem instance. As explained in
Section 1, there are finitely many candidates for fractions
𝑝/𝑞 and some bounds can be set based on the size of
the input graph, so it is possible to determine 𝜒′

𝑐 by sub-
sequently solving several SAT instances. This type of
problem is often solved by a binary search (we order the
possible fractions from the lowest to the highest, look
into the middle etc.), but it would be suboptimal in this
case, as we explain in the next paragraph.

The time required to solve a particular instance for
a given graph highly depends on 𝑝: a large value of 𝑝
results in a large number of variables, which is the biggest
determinant of time complexity (Section 4.2 gives more
details on this). Our experiments clearly indicate that we
need to reduce the number of instances with large values
of 𝑝 as much as possible during a search for 𝜒′

𝑐. There are
two other factors at play, but both play a minor role. The
first is that the time increases when the tested fraction
is near 𝜒′

𝑐—when the value is far below 𝜒′
𝑐, the solver

can quickly recognise unsatisfiability; when the fraction
is too far above 𝜒′

𝑐, it is easy to find a colouring. The
second is specific to circular colourings: fractions of the
form 3+1/𝑘 are easier to exclude than 3+2/𝑘, 3+3/𝑘
etc. because there is less flexibility in colouring edges
incident to a vertex. Based on these observations, we use
a heuristic that always starts testing for the fraction with
the smallest numerator.

3. Results of computations
The exhaustive lists of snarks with given order and cyclic
connectivity we used come from [10]. The counts of cycli-
cally 4-connected snarks with girth 5 up to 30 vertices
with particular 𝜒′

𝑐 were presented in [11]. The results of
this diploma thesis were not published properly and per-
haps are not widely known. We have fully confirmed the
results of [11] and extended them for snarks of girth 4,
see Table 1 (rows are ordered according to the increasing
value of 𝜒′

𝑐).
All the results presented in this section were obtained

using the CaDiCaL_vivinst, one of the winning solvers
of the 2023 SAT Competition [12]. We used a machine
with 20 cores (Intel Xeon Gold 5220R CPU @ 2.20GHz).
Because the computations for different graphs are com-
pletely independent, the jobs within a batch are well
suited for parallelisation, yielding the speedup approach-
ing the number of CPU cores. The most demanding batch
comprised all snarks of order 30 and girth greater or equal
to 4; it took two weeks to complete. We verified the com-
puted indices by using SBVA combined with Kissat [12],
but so far only with the same formula-generation algo-

Table 1
Counts of snarks with girth at least 4 and specific 𝜒′

𝑐.

Order 10 18 20 22 24 26 28 30
𝜒′
𝑐

16/5 - - - - - - - 3
29/9 - - - - - 1 - 13
13/4 - - - - - 17 849 24070
36/11 - - - - - - - 1
23/7 - - - - 19 396 5438 61838
33/10 - - - - - - - 2
10/3 - 1 5 29 136 883 6229 53925

17/5 - - 1 2 - - 1 2
7/2 - 1
11/3 1

rithm; we are working on additional verification and
extension of the results to snarks on 32 or more vertices.
On the other hand, our code is completely independent of
what Kunertová used, and the results also agree with the-
oretically determined indices for graphs that we checked
(e.g. Isaacs and generalized Blanuša snarks), which gives
us confidence in the results.

Conjecture 3 suggests that non-trivial snarks with
𝜒′
𝑐 > 10/3 are quite exceptional. This is supported

also by Table 1 which is sorted by index value. The mem-
bers of the set 𝑀>10/3 from Section 1 are below a line:
the Petersen graph, the type 2 Blanuša snark, the flower
snark on 20 vertices and five other snarks on 22, 28
and 30 vertices. Additional computations for all cycli-
cally 4-connected snarks on up to 36 vertices (girth at
least 4) identified one more snark of order 34 and two
snarks of order 36 with 𝜒′

𝑐 = 17/5. In the incomplete
set of generated snarks of order 38, there were six ad-
ditional snarks (three of them have 𝜒′

𝑐 = 27/8, three
of them have 𝜒′

𝑐 = 37/11). All these snarks are avail-
able at https://github.com/janmazak/research-data (see
circular_chromatic_index).

4. SAT solvers for graph theory

4.1. Construction of Boolean formulas
We experimented with different ways of constructing
Boolean formulas capturing 3-edge-colouring of cubic
graphs. For instance, one can say that for every colour 𝑐
and every two incident edges, at least one of the edges
does not have colour 𝑐. Or that every colour is used on the
three edges incident to a vertex at least once; or some-
thing based on combinatorial nullstellensatz etc. The
running times were very similar, somewhat depended on
the input graphs, and our experiences show that arcane
ways of formula construction are likely not worth it for
smaller-scale computations.

We suggest starting with a formula minimizing
the chance of a mistake (either conceptual or in
implementation—we made plenty of both kinds, so do not
underestimate it, and if you can, make sure you verify
your implementation against some independently ob-
tained data). Of course, it pays off to employ known
tricks allowing translation of disjunctive normal forms
into small equisatisfiable conjunctive normal forms1,
thus avoiding the exponential blowup in the number
of clauses.

4.2. Number of variables and clauses
Internally, almost all current leading SAT solvers use the
CDCL algorithm. They thus learn new clauses along the
way and operate with many clauses that were not part of
the original input. Consequently, including some seem-
ingly redundant clauses in the input might even help
(though it usually does not). Also, solvers use prepro-
cessing which significantly rewrites the given formula:
while colouring problems typically yield clauses of size 2
and 3, it seems solvers prefer bigger clauses of size about
10 (at least in the couple of situations we were able to
check). Thanks to technical tricks like watched literals,
the clauses are not manipulated over and over, but are
accessed only when relevant. The takeaway here is that
the number of clauses is of very little practical concern
(unless it is really extreme).

On the other hand, the number of variables is criti-
cal because it affects the depth (and thus the number
of nodes) of the CDCL search tree. For SAT instances
derived from graphs, the number of variables is typically
some polynomial dependent on the size 𝑚 of the graph,
say, 𝑚𝑘 . The resulting theoretical worst-case complexity
of roughly 1.3𝑚

𝑘

seems terrifying, but in practice, SAT
solvers do much better. We will illustrate this with our
experience with several problems on cubic graphs.

• For 3-edge-colouring with integer colours, 𝑘 = 1.
Solvers easily beat other approaches2 and can deal
with graphs with hundreds or even thousands of
vertices.

• For circular edge-colouring, the number of
colours linearly depends on the size of the graph,
and we need a variable for each pair [edge,
colour], so 𝑘 = 2 at worst. The number of clauses
is cubic. Solvers work decently for small graphs,
but somewhere around 60 edges the computa-
tion time significantly increases (from minutes
to days per single graph). However, solvers are

1For instance, the Tseytin transformation, or the approach men-
tioned in https://en.wikipedia.org/wiki/Conjunctive_normal_form#
Other_approaches.

2Except tiny graphs and possibly except a recent algorithm based
on path-width decomposition [13].

https://github.com/janmazak/research-data
https://en.wikipedia.org/wiki/Conjunctive_normal_form#Other_approaches
https://en.wikipedia.org/wiki/Conjunctive_normal_form#Other_approaches

Table 2
Comparison of SAT solvers. Consumed CPU time in seconds for 𝜒′

𝑐 of all snarks of order 24 and girth greater or equal to 4.

Solver lingeling MergeSat Kissat Kissat Kissat CaDiCaL SeqFROST
(2017) (two threads*) 3.1.0 hywalk-exp MAB_DeepWalk+ vivinst

T[s] 3024 7431 2575 1906 1880 2096 958
T/T′[%] 144 355* 123 91 90 100 46

S20 16 18 14 17 16 15 15

much faster than our backtracking algorithm3 at
that threshold.

• For Hamiltonian cycles, the best formula con-
struction we are aware of uses variables for pairs
[vertex, order of vertex along the cycle], i.e. 𝑘 =
2. The number of clauses is also cubic. Again,
there is a threshold around 60–75 vertices after
which computation takes days for a single graph.
In contrast to circular colouring, backtracking
competes with solvers fairly well.

In summary, SAT solvers are likely to be all you would
ever need if you can keep the number of variables linear.
If quadratic, they are helpful, but large graphs (some-
where above 50–80 edges) are out of their reach, and
you are likely to run into trouble if you want to do com-
putations for sizeable complete lists of graphs of a given
order.

4.3. Which solver should I use?
We conducted several simple experiments in order to eval-
uate different SAT solvers. We considered state-of-the-art
solvers available from the website of SAT Competition
[12]. We included also lingeling, used in the 2017 work
[11]. The criterion we used was the overall CPU user time
consumed by all the spawned processes. The test case for
performance evaluation was the computation of 𝜒′

𝑐 for all
cyclically 4-connected snarks on 24 vertices. There are
155 such graphs and the computation for each of them
involved solving several SAT instances as explained in
Section 2.

The results are shown in Table 2 which shows total run
time 𝑇 and comparison to the CaDiCaL_vivinst, denoted
𝑇 ′, which was one of the winners of the competition
(the third place in main track). The table also shows
the speedup achieved on the 20 CPU machine denoted
𝑆20. At first sight, the MergeSat solver looks like quite
a bad choice but as it was always using two computa-
tional threads the real time of result delivery was ac-

3The algorithm first constructs a linear ordering of edges such that
the next edge in the ordering has the most incident edges among the
edges already included in the ordering, and then tries all possible
colours for each edge in the ordering subsequently, backtracking
when a colouring conflict arises. Our other attempts at backtracking
did not yield anything meaningfully faster.

tually shorter, in theory, the real time might be half of
the CPU time. The Kissat variants do about 10% better
than the CaDiCaL. The solver lingeling used in previous
work is about 7 years old but was only 1.5 times slower.
The SeqFROST solver appeared to do much better on our
benchmark task than the reference SAT solver. Repeated
runs for each solver gave almost the same results, the
differences in time consumption were all less than 0.5%.

In another experiment we let the solvers search for
𝜒′
𝑐 of one single graph on 36 vertices with girth 5 (the

result is 10/3). The results presented in Table 3 show
a different perspective than previous benchmark. For
this kind of task, all solvers except plain Kissat beats the
CaDiCaL. Even several years old lingeling was almost
twice as fast. For MergeSat, the total time consumed
by two threads is shown, while the running time was
only 1304 seconds, which is 44% of the time needed
by CaDiCaL. Interestingly, SeqFROST4 repeated the best
performance as it took only one quarter of the time of
the reference solver.

For computations taking hours, solver selection is not
worth the effort. But for longer tasks taking weeks, it
is likely to pay off. A reasonable way is to randomly
pick a small sample of the instances in question and test
them on solvers that are available. A word of warning:
solvers might contain rarely-encountered bugs; it has
happened in the past for the solvers submitted to the
competition. So in situations where you are proving
something for all instances, it would be better to stay
with a more mainstream and seasoned solver; if you are
trying to just find some suitable object that can be verified
later, possible bugs in a freshly implemented solver are
not a critical problem.

4.4. Should I strive for the best solver
configuration?

We experimented with tweaking configurable solver pa-
rameters a bit (for instance, lingeling has hundreds of
them). The best speedup we were able to get is 2-4x for
a single graph and less than 2x for a large set of graphs.
However, it is unclear if the gains are transferable to
other input instances. For instance, the distribution of
4A winner of SAT Competition 2022, https://gears.win.tue.nl/papers/
sc2022_seqfrost.pdf, https://github.com/muhos/SeqFROST

https://gears.win.tue.nl/papers/sc2022_seqfrost.pdf
https://gears.win.tue.nl/papers/sc2022_seqfrost.pdf
https://github.com/muhos/SeqFROST

Table 3
Comparison of SAT solvers. Consumed CPU time in seconds for 𝜒′

𝑐 of one snark on 36 vertices with girth 5.

Solver lingeling MergeSat Kissat Kissat Kissat CaDiCaL SeqFROST
(2017) (two threads*) 3.1.0 hywalk-exp MAB_DeepWalk+ vivinst′

T[s] 1599 2387 3758 1917 2220 2943 775
T/T′[%] 54 81* 128 65 75 100 26

graph features allowing the speedup for smaller graphs
might be different for larger graphs. Additionally, fine-
tuning the parameters takes quite some time because
of the necessary repeated solver runs. Overall, if your
computations are going to run for weeks, it might be
worthwhile to work on this, but for quick verification
of conjectures and the like, not really. Also, note that
in Section 4.3, lingeling turned out to be slow for small
instances, but fast for large instances, thus solver config-
uration should be focused on bigger instances primarily
or even exclusively.

Your time might be better spent on trying to break the
symmetry of your Boolean formulas [14]. For instance,
for circular edge-colouring, one can pre-colour an edge
with 0 without a loss of generality, and immediately get
rid of a handful of variables, potentially gaining a better
speedup than anything that could be gained by tweaking
solver parameters.

Our experience with parallelism is that it does not pay
off to use multiple threads per single SAT instance. It
seems preferable to solve many instances in parallel, each
in its own thread.

4.5. Alternatives to SAT
Kunertová [11] described several alternatives for comput-
ing 𝜒′

𝑐, some of them with measurements of computation
time. It seems that they all fall far short of SAT solvers
(unless we are talking about very small instances, where
backtracking is king). These alternatives typically rely
on some specific properties of circular colourings, so are
not generalizable and we will not discuss them. One of
the approaches, though, deserves attention.

For a graph 𝐺 with 𝜒′
𝑐(𝐺) = 𝑟, one way to prove

the lower bound is to refute the existence of an 𝑟′-edge-
colouring for 𝑟′ being the largest relevant fraction smaller
than 𝑟. Another is finding all 𝑟-edge-colourings of 𝐺 and
checking that each of them contains a so-called tight
cycle. While it is not particularly fruitful for circular
colourings [11], it might sometimes be the most efficient
approach for graphs of limited size. The problem of find-
ing all satisfying assignments to a given Boolean formula
is called AllSAT and there are specialized solvers for it
[15], although not many, and they are not heavily em-
ployed, so there are concerns about reliability (but any
ordinary SAT solver can be easily turned into an AllSAT

solver by repeatedly adding clauses excluding already
found solutions to the input formula). There is a fair
chance this might work if the number of solutions is in
thousands or perhaps millions. With billions of solutions
(or larger input instances in general), solvers tend to run
out of memory or experience a significant slowdown.

As an example of this method, it is much easier to
describe a 2-factor than a Hamiltonian cycle (because
the conditions encoded into the Boolean formula are
local, around a single vertex)—the resulting formula has a
linear number of variables. For each 2-factor𝐹 computed
by an AllSAT solver, we then check if 𝐹 is connected.
This approach is comparable to or even somewhat faster
than direct SAT solving for cubic graphs with around 30
vertices, but it fails for graphs above 40 vertices because
the number of 2-factors grows exponentially [16].

One possible reason for the success of generic SAT
solvers on graph problems (versus other approaches tai-
lored to solve specific problems) is that a solver can see
more than is obvious. We have experienced this when
considering an alternative approach to colourings: in-
stead of running an exponential algorithm on the whole
graph at once, what if we split the graph along a small
cut, ran the slow algorithm on the much smaller parts
separately, and then combined the results? It turned out
it is no big win (unless the graph in question contains
many isomorphic subgraphs), possibly because all the
small cuts are reflected in the Boolean formula (as subsets
of clauses barely sharing variables), and thus the solver
can work with all the cuts as it sees fit anyway. Also,
leading solvers include tricks like random restarts, so
e.g. if the colouring conflict is in a specific subgraph, the
solver does not get stuck outside of this subgraph for too
long.

SAT solvers also have a disadvantage: there is no ef-
fective way of reporting computation progress (unlike
for plain backtracking having at least a somewhat bal-
anced search tree). In case one wants to solve a single
particularly hard instance, when does one give up?. . .

A note on integer/mixed linear programming (ILP):
every SAT instance can be expressed as a problem of
ILP, and there are powerful ILP solvers, so ILP might be
worth a try for your problem. Our limited experience
shows that ILP is significantly slower, and it comes with
numerical and rounding problems, so perhaps the best
use of it would be for refuting working hypotheses or for

guessing optimal values which are then proved otherwise
(by hand or using a SAT solver).

Our feeling is that a SAT solver should perhaps be the
first tool to try (unless there exists a solver specifically
designed or easily adaptable for your purpose, e.g. for
the travelling salesman problem).

Acknowledgments
We thank J. Karabáš, R. Lukoťka, and R. Nedela for in-
teresting discussions related to the topics covered in this
article.

This work was partially supported from the research
grants APVV-19-0308, VEGA 1/0743/21, VEGA 1/0727/22
and Operational Program Integrated Infrastructure for
the project Advancing University Capacity and Compe-
tence in Research, Development a Innovation (ACCORD,
ITMS2014+:313021X329), co-financed by the European
Regional Development Fund.

Part of the research results was obtained using the
computational resources procured in the national project
National competence centre for high performance com-
puting (project code: 311070AKF2) funded by European
Regional Development Fund, EU Structural Funds In-
formatization of society, Operational Program Integrated
Infrastructure.

References
[1] J. Mazák, J. Rajník, M. Škoviera, Morphology of

small snarks, Electronic Journal of Combinatorics
29(4) (2022) P4.30.

[2] J. Karabáš, E. Máčajová, R. Nedela, M. Škoviera,
Girth, oddness, and colouring defect of snarks, Dis-
crete Mathematics 345 (2022) 113040. doi:10.1016/
j.disc.2022.113040.

[3] G. Mazzuoccolo, E. Steffen, Nowhere-zero 5-
flows on cubic graphs with oddness 4, Journal
of Graph Theory 85 (2017) 363–371. doi:10.1002/
jgt.22065.

[4] X. Zhu, Circular chromatic number: a survey,
Discrete Mathematics 229 (2001) 371–410. doi:10.
1016/S0012-365X(00)00217-X.

[5] P. Afshani, M. Ghandehari, M. Ghandehari,
H. Hatami, R. Tusserkani, X. Zhu, Circular chro-
matic index of graphs of maximum degree 3, Jour-
nal of Graph Theory 49 (2005) 325–335.

[6] D. Kráľ, E. Máčajová, J. Mazák, J.-S. Sereni, Circular
edge-colorings of cubic graphs with girth six, Jour-
nal of Combinatorial Theory, Series B 100 (2010)
351–358. doi:10.1016/j.jctb.2009.10.003.

[7] J. Mazák, Circular edge-colourings of cubic graphs,
PhD thesis, 2011.

[8] T. Kaiser, D. Král’, R. Škrekovski, X. Zhu, The circu-
lar chromatic index of graphs of high girth, Journal
of Combinatorial Theory, Series B 97 (2007) 1–13.
doi:10.1016/j.jctb.2006.03.002.

[9] R. Lukoťka, J. Mazák, Cubic graphs with given
circular chromatic index, SIAM Journal on Discrete
Mathematics 24 (2010) 1091–1103. doi:10.1137/
090752316.

[10] K. Coolsaet, S. D’hondt, J. Goedgebeur, House of
graphs 2.0: A database of interesting graphs and
more, Discrete Applied Mathematics 325 (2023)
97–107. doi:10.1016/j.dam.2022.10.013.

[11] O. Kunertová, Circular chromatic index of small
snarks, Diploma thesis supervised by J. Mazák, 2017.
URL: http://www.dcs.fmph.uniba.sk/diplomovky/
obhajene/getfile.php/kunertova.pdf?id=426&fid=
756&type=application%2Fpdf.

[12] T. Balyo, M. Heule, M. Iser, M. Järvisalo, M. Suda
(Eds.), Proceedings of SAT Competition 2023:
Solver, Benchmark and Proof Checker Descriptions,
Department of Computer Science Series of Publica-
tions B, Department of Computer Science, Univer-
sity of Helsinki, Finland, 2023.

[13] R. Lukoťka, J. Tětek, A 3-edge-coloring algorithm,
Bordeaux Graph Workshop (2019). URL: https://
bgw.labri.fr/2019/booklet.pdf.

[14] H. Metin, S. Baarir, M. Colange, F. Kordon, Cd-
clsym: Introducing effective symmetry breaking in
sat solving, in: D. Beyer, M. Huisman (Eds.), Tools
and Algorithms for the Construction and Analy-
sis of Systems, Springer International Publishing,
Cham, 2018, pp. 99–114.

[15] T. Toda, T. Soh, Implementing efficient all solutions
sat solvers, ACM J. Exp. Algorithmics 21 (2016).
doi:10.1145/2975585.

[16] L. Esperet, F. Kardoš, A. D. King, D. Kráľ, S. Norine,
Exponentially many perfect matchings in cubic
graphs, Advances in Mathematics 227 (2011) 1646–
1664. doi:10.1016/j.aim.2011.03.015.

http://dx.doi.org/10.1016/j.disc.2022.113040
http://dx.doi.org/10.1016/j.disc.2022.113040
http://dx.doi.org/10.1002/jgt.22065
http://dx.doi.org/10.1002/jgt.22065
http://dx.doi.org/10.1016/S0012-365X(00)00217-X
http://dx.doi.org/10.1016/S0012-365X(00)00217-X
http://dx.doi.org/10.1016/j.jctb.2009.10.003
http://dx.doi.org/10.1016/j.jctb.2006.03.002
http://dx.doi.org/10.1137/090752316
http://dx.doi.org/10.1137/090752316
http://dx.doi.org/10.1016/j.dam.2022.10.013
http://www.dcs.fmph.uniba.sk/diplomovky/obhajene/getfile.php/kunertova.pdf?id=426&fid=756&type=application%2Fpdf
http://www.dcs.fmph.uniba.sk/diplomovky/obhajene/getfile.php/kunertova.pdf?id=426&fid=756&type=application%2Fpdf
http://www.dcs.fmph.uniba.sk/diplomovky/obhajene/getfile.php/kunertova.pdf?id=426&fid=756&type=application%2Fpdf
https://bgw.labri.fr/2019/booklet.pdf
https://bgw.labri.fr/2019/booklet.pdf
http://dx.doi.org/10.1145/2975585
http://dx.doi.org/10.1016/j.aim.2011.03.015

	1 Introduction
	2 Computing χc'
	3 Results of computations
	4 SAT solvers for graph theory
	4.1 Construction of Boolean formulas
	4.2 Number of variables and clauses
	4.3 Which solver should I use?
	4.4 Should I strive for the best solver configuration?
	4.5 Alternatives to SAT

