
Integer sequences from 𝑘-iterated line digraphs
D. Závacká

1
, C. Dalfó

2
and M. A. Fiol

3

1Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Applied Informatics, Bratislava, Slovakia
2Dept. de Matemàtica, Universitat de Lleida, Igualada (Barcelona), Catalonia
3Dept. de Matemàtiques, Universitat Politècnica de Catalunya, Barcelona Graduate School of Mathematics, and Institut de Matemàtiques de la
UPC-BarcelonaTech (IMTech), Barcelona, Catalonia

Abstract
In this paper, we focus on integer sequences corresponding to the number of vertices in 𝑘-iterated line digraphs. We begin by

introducing the core concepts related to digraphs. Then, we describe a method, proposed by Dalfó and Fiol, for calculating

the order of 𝑘-iterated line digraphs. We explore various families of digraphs, such as De Bruijn, Kautz, Cyclic Kautz, and

Square-free digraphs. To generate integer sequences representing the number of vertices in 𝑘-iterated line digraphs, we

implement an algorithm that constructs induced subdigraphs by not allowing vertices containing forbidden subwords. The

results include comparisons of the obtained integer sequences with those in the OEIS database and identification of new

integer sequences. Our algorithm is implemented in the computational system GAP.

Keywords
digraph, line digraph, integer sequence, words

1. Introduction
This article primarily focuses on digraphs (directed

graphs), which consist of vertices connected by directed

edges. These directed edges indicate a one-way rela-

tionship between the vertices. By iteratively applying

a specific method to obtain new digraphs, we can cre-

ate a sequence of digraphs and, consequently, an integer

sequence representing the numbers of vertices in these

digraphs. In our work, this method involves creating

line digraphs and forming sequences of 𝑘-iterated line

digraphs.

Section 2 covers the preliminary concepts related to

digraphs. We define the essential terms, such as line

digraph and its iterations, regular partitions, and quo-

tient digraphs. We also describe a method introduced

by Dalfó and Fiol in [1] for computing the orders of 𝑘-

iterated line digraphs. In Section 3, we present definitions

and examples of some families of digraphs, including De

Bruijn digraphs, Kautz digraphs, Cyclic Kautz digraphs,

and Square-free digraphs, whose vertices are represented

by words over some alphabet. Section 4 discusses the

main algorithm for obtaining integer sequences of the

numbers of vertices of 𝑘-iterated line digraphs. This al-

gorithm constructs an induced subdigraphs by removing

vertices (containing forbidden subwords) from a digraph

of a given family. In Section 5, we present the various

ITAT’24: Computational Aspects of Large-Scale Problems in Discrete
Mathematics, September 20–24, 2024, Drienica, Slovakia
*

Corresponding author.

$ dominika.mihalova@fmph.uniba.sk (D. Závacká);

cristina.dalfo@udl.cat (C. Dalfó); miguel.angel.fiol@upc.edu

(M. A. Fiol)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

integer sequences that we obtained and compare them to

those in the OEIS database. We list new integer sequences

not found there.

2. Preliminaries
We introduce fundamental concepts related to digraphs,

which are utilized throughout this paper. A digraph 𝐺 =
(𝑉,𝐸) consists of a (finite) set of vertices 𝑉 = 𝑉 (𝐺) and

a multiset of arcs (directed edges) 𝐸 = 𝐸(𝐺) between

vertices of 𝐺. An arc is an ordered pair of vertices (𝑢, 𝑣),
where 𝑢 is adjacent to vertex 𝑣 and vertex 𝑣 is adjacent

from vertex 𝑢. We allow loops and multiple arcs in di-

graphs. A loop is an arc from vertex 𝑣 to itself, that is,

an arc (𝑣, 𝑣). Multiple arcs are present in digraph 𝐺 if

there is more than one arc (𝑢, 𝑣) in 𝐸(𝐺). The in-degree
of a vertex 𝑣 in 𝐺, denoted 𝛿−(𝑣), is the number of arcs

in 𝐺 adjacent to vertex 𝑣. The out-degree of a vertex 𝑣
in 𝐺, denoted 𝛿+(𝑣), is the number of arcs in 𝐺 adja-

cent from vertex 𝑣. We say a digraph 𝐺 is 𝛿-regular if

𝛿−(𝑣) = 𝛿+(𝑣) = 𝛿 for all 𝑣 ∈ 𝑉 (𝐺). The line digraph
𝐿(𝐺) of a digraph 𝐺 is a digraph in which each vertex

represents an arc of 𝐺. The vertex set of 𝐿(𝐺) is defined

as 𝑉 (𝐿(𝐺)) = {𝑢𝑣 : (𝑢, 𝑣) ∈ 𝐸(𝐺)}. Two vertices 𝑢𝑣
and 𝑤𝑧 of 𝐿(𝐺) are adjacent if and only if 𝑣 = 𝑤, mean-

ing that the arc (𝑢, 𝑣) in 𝐺 is adjacent to arc (𝑤, 𝑧) in 𝐺.

The 𝑘-iterated line digraph 𝐿𝑘(𝐺) is recursively defined

as follows: 𝐿0(𝐺) = 𝐺 and 𝐿𝑘(𝐺) = 𝐿(𝐿𝑘−1(𝐺)) for

𝑘 ≥ 0. A regular partition of 𝑉 (𝐺) is a partition of the

vertices into 𝑚 subsets 𝑉1, 𝑉2, . . . , 𝑉𝑚 such that every

vertex 𝑣 ∈ 𝑉𝑖 is adjacent to the same number of vertices

in 𝑉𝑗 , where 𝑖 and 𝑗 belong to {1, 2, . . . ,𝑚}. Given a

digraph 𝐺 and and one of its regular partition of vertex

set {𝑉1, 𝑉2, . . . , 𝑉𝑚}, a quotient matrix ℬ is an 𝑚×𝑚

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:dominika.mihalova@fmph.uniba.sk
mailto:cristina.dalfo@udl.cat
mailto:miguel.angel.fiol@upc.edu
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

matrix, where ℬ𝑖𝑗 = 𝑏𝑖𝑗 if there are 𝑏𝑖𝑗 arcs from parti-

tions 𝑉𝑖 to 𝑉𝑗 , otherwise ℬ𝑖𝑗 = 0. A quotient digraph of

digraph 𝐺, denoted 𝜋(𝐺), has its adjacency matrix equal

to the quotient matrix of 𝐺.

We focus on integer sequences of the orders of the

𝑘-iterated line digraphs. Dalfó and Fiol [1] introduced a

method to compute the order of 𝑘-iterated line digraph

𝐿𝑘(𝐺) of digraph𝐺. They explained that each vertex in a

𝑘-iterated line digraph is a directed walk 𝑣0, 𝑣1, . . . 𝑣𝑘 of

length 𝑘 in𝐺, where (𝑣𝑖−1, 𝑣𝑖) ∈ 𝐸(𝐺) for 𝑖 = 1, . . . , 𝑘.

Taking the 𝑘 power of the adjacency matrix 𝒜𝐺 of 𝐺, the

𝑢𝑣-entry in 𝒜𝑘
𝐺 corresponds to the number of 𝑘-walks

from vertex 𝑢 to vertex 𝑣 in𝐺. Consequently, the number

of vertices 𝑛𝑘 in 𝐿𝑘(𝐺) is:

𝑛𝑘 = 𝑗𝒜𝑘
𝐺𝑗

𝑇

where 𝑗 = (1, . . . , 1). In the case where 𝐺 is a 𝛿-regular

of order 𝑛, the 𝐿𝑘(𝐺) is also a 𝛿-regular digraph, and

the computation of its order can be simplified to:

𝑛𝑘 = 𝛿𝑘𝑛

However, if 𝐺 is not a 𝛿-regular digraph, the complexity

of computing the order of 𝐿𝑘(𝐺) depends completely on

the dimension of 𝒜𝐺, that is, the number of vertices in 𝐺.

Dalfó and Fiol [1] introduced a method to compute 𝑛𝑘 of

𝐿𝑘(𝐺) as shown in Theorem 1. They start by obtaining

a quotient matrix ℬ based on a regular partition of the

vertex set of 𝐺. The size of ℬ is the same or smaller than

that of 𝒜𝐺 based on the partition of vertices. The quo-

tient matrix is used to compute the initial values 𝑛𝑘 for

the recurrence equation depending on the minimal poly-

nomial of the quotient matrix. The subsequent values of

𝑛𝑘 are determined by the recurrence equation.

Theorem 1 ([1]). Let𝐺 = (𝑉,𝐸) be a digraph on𝑛 ver-
tices, and consider a regular partition 𝜋 = (𝑉1, . . . , 𝑉𝑚)
with quotient matrix ℬ. Let 𝑚(𝑥) = 𝑥𝑟 − 𝛼𝑟−1𝑥

𝑟−1 −
· · · − 𝛼0 be the minimal polynomial of ℬ. Then, the num-
ber of vertices 𝑛𝑘 of the 𝑘-iterated line digraph 𝐿𝑘(𝐺)
satisfies the recurrence

𝑛𝑘 = 𝛼𝑟−1𝑛𝑘−1 + · · ·+ 𝛼0𝑛𝑘−𝑟, for 𝑘 = 𝑟, 𝑟 + 1, . . .

initialized with the values 𝑛𝑘 , for 𝑘 = 0, 1, . . . , 𝑟 − 1,
given by

𝑛𝑘 =
𝑚∑︁
𝑖=1

|𝑉𝑖|
𝑚∑︁

𝑗=1

(ℬ𝑘)𝑖𝑗 = 𝑠ℬ𝑘𝑗𝑇 ,

where 𝑠 = (|𝑉1|, . . . , |𝑉𝑚|) and 𝑗 = (1, . . . , 1).

The recurrence equation in Theorem 1 is an efficient

way of calculating the order of a 𝑘-iterated line digraph

for digraphs that are not 𝛿-regular. Moreover, it allows us

to solve other problems more effectively. The authors in

[2] apply the method by [1] to determine the number of

words of length ℓ over a given alphabet in some digraphs.

Their approach involves constructing a digraph 𝐺 that

represents the connections between words of length ℓ
(excluding specific subwords) over the alphabet. By ap-

plying Theorem 1 to such digraphs, they determine the

number of valid words. The resulting number of words

of length ℓ + 𝑘 corresponds to the number of vertices

𝑛𝑘 in the 𝑘-iterated line digraph of 𝐺, where 𝐺 is the

digraph with vertices represented by words of length ℓ.
We discuss the problem in the following sections.

3. Some families of digraphs
Part of our research is to develop an efficient method

for computing the number of words of length ℓ over an

alphabet of 𝑑 symbols, where words do not contain any

subword from a given set 𝒮 . To simulate this problem

on digraphs, we decided to choose families of digraphs

whose vertices are represented by words over some al-

phabet. Each family has its specific restrictions about

the words, represented by vertices and connections (arcs)

between them. We swiftly introduce four known families

of digraphs and show some examples.

The De Bruijn digraph 𝐵(𝑑, ℓ) has vertices labeled by

all possible words 𝑎1𝑎2 . . . 𝑎ℓ with 𝑎𝑖 ∈ {0, 1, . . . , 𝑑−
1}. There is an arc from vertex 𝑎1𝑎2 . . . 𝑎ℓ to vertex

𝑎2 . . . 𝑎ℓ𝑎ℓ+1. An example of the De Bruijn digraph is

shown in Figure 1.

The Kautz digraph 𝐾(𝑑, ℓ) has vertices labeled by all

possible words 𝑎1𝑎2 . . . 𝑎ℓ with 𝑎𝑖 ∈ {0, 1, . . . , 𝑑− 1},

where 𝑎𝑖 ̸= 𝑎𝑖+1 for 𝑖 = 1, . . . , ℓ − 1.There is an arc

from vertex 𝑎1𝑎2 . . . 𝑎ℓ to vertex 𝑎2 . . . 𝑎ℓ𝑎ℓ+1, when-

ever 𝑎ℓ ̸= 𝑎ℓ+1. An example of a Kautz digraph is shown

in Figure 2.

Figure 1: 𝐵(2, 3) on the left and one of its quotient digraphs
on the right.

The Cyclic Kautz digraph 𝐶𝐾(𝑑, ℓ) was introduced

by Böhmová, Dalfó, and Huemer in [3]. The Cyclic

Kautz digraph has vertices labeled by all possible words

𝑎1𝑎2 . . . 𝑎ℓ with 𝑎𝑖 ∈ {0, 1, . . . , 𝑑−1}, where 𝑎𝑖 ̸= 𝑎𝑖+1

for 𝑖 = 1, . . . , ℓ − 1, and 𝑎1 ̸= 𝑎ℓ. There is an arc

from vertex 𝑎1𝑎2 . . . 𝑎ℓ to vertex 𝑎2 . . . 𝑎ℓ𝑎ℓ+1, when-

ever 𝑎ℓ+1 ̸= 𝑎ℓ and 𝑎ℓ+1 ̸= 𝑎2. An example of a Cyclic

Kautz digraph is shown in Figure 3.

Figure 2: 𝐾(3, 3) on the left and one of its quotient digraphs
on the right.

Figure 3: 𝐶𝐾(3, 4) on the left with one of its quotient di-
graphs on the right.

Figure 4: 𝑆𝐹 (3, 4) on the left with one of its quotient di-
graphs on the right.

The Square-free digraph 𝑆𝐹 (𝑑, ℓ) has vertices la-

beled by all possible words 𝑎1𝑎2 . . . 𝑎ℓ with 𝑎𝑖 ∈
{0, 1, . . . , 𝑑− 1}, that does not contain an adjacent rep-

etition of any subword of length at most 2. There is an

arc from 𝑎1𝑎2 . . . 𝑎ℓ to 𝑎2 . . . 𝑎ℓ𝑎ℓ+1 when 𝑎ℓ+1 ̸= 𝑎ℓ

and, if 𝑎ℓ−2 = 𝑎ℓ, then 𝑎ℓ+1 ̸= 𝑎ℓ−1. An example of a

Square-free digraph is shown in Figure 4.

4. Algorithm
To compute the number of vertices in a 𝑘-iterated line

digraph of digraph 𝐺, we decided to implement an al-

gorithm based mostly on Theorem 1 and the method

suggested by the authors in [2]. We programmed the

algorithm in the system for computational discrete alge-

bra - GAP [4]. It is a widely used, free, and open-source

system with its own programming language and various

importable packages containing numerous functions. It is

particularly effective for computational problems involv-

ing groups, graphs, and other combinatorial structures.

For the implementation of our algorithm, we imported

the packages Digraphs and GRAPE. The Digraphs pack-

age [5] was implemented to create, store, and compute

various properties of digraphs. The digraph structure

can be a mutable or immutable structure. The GRAPE
package [6] is automatically imported with the Digraphs
package. The package is intended for the construction,

computation, and analysis of graphs in relation to groups.

The algorithms were implemented in GAP with version

4.12.2.

The main goal of our computational method is to de-

termine all possible integer sequences of values of 𝑛𝑘 up

to a given 𝑘, where 𝑛𝑘 represents the number of words of

length ℓ+ 𝑘 over an alphabet of size 𝑑 avoiding all possi-

ble combinations of subwords (forbidden subwords) from

a set of subwords 𝒮 . Initially, we employed the method

described in [2] in a for-cycle and evaluated all possi-

ble combinations of forbidden subwords. However, this

method was computationally very challenging as the al-

gorithm required significant processing time to evaluate

all the combinations, and it frequently produced numer-

ous identical digraphs. To address these challenges, we

opted to examine all possible induced subdigraphs in-

stead. This alternative approach allows us to efficiently

generate all integer sequences and determine the set of

forbidden subwords based on forbidden and allowed ver-

tices.

Algorithm 1 Pseudocode: obtaining integer sequences

for all subdigraphs of a given digraph 𝐺

SequencesForAllSubdigraphs(𝐺, 𝑘𝑚𝑎𝑥)
for all combination of 𝑉 (𝐺) do

forbiddenSubwords = Difference(vertices of 𝐺, com-

bination)

subdigraph = InducedSubdigraph(𝐺, combination)

sequence = LGSequence(subdigraph, 𝑘𝑚𝑎𝑥)

print (forbiddenSubwords, sequence, subdigraph)

end for
end function

Our Algorithm 1 takes two input parameters: a

digraph structure (𝐺) and 𝑘𝑚𝑎𝑥. The digraph is cho-

sen from one of the families of digraphs discussed in Sec-

tion 3, with each family imposing its own specific restric-

tions on the possible words and the connections between

them. The vertices of digraph represent words of length ℓ
over an alphabet of 𝑑 symbols. The parameter 𝑘𝑚𝑎𝑥 spec-

ifies the maximum value of 𝑘. The algorithm begins with

a for-cycle that iterates over all combinations of vertices

𝑉 (𝐺), as this method has been demonstrated to be more

effective. The set of forbidden subwords is obtained and

stored in the parameter forbiddenSubwords. We con-

struct an induced subdigraph of 𝐺 based on the current

combination of𝑉 (𝐺). The subdigraph structure and

the required 𝑘𝑚𝑎𝑥 parameter are subsequently passed

to the LGSequence() function. The function returns

the integer sequence of 𝑛𝑘 for 𝑘 = 0, . . . , 𝑘𝑚𝑎𝑥, where

𝑛𝑘 represents the order of a 𝑘-iterated line digraph of

subdigraph. In the context of the previously mentioned

problem concerning the number of words of length ℓ over

some alphabet, the value of 𝑛𝑘 corresponds to the num-

ber of words of length ℓ+ 𝑘 over alphabet of 𝑑 symbols

avoiding subwords in forbiddenSubwords. At the end

of the for-cycle, the algorithm prints a triple consisting of

an example of forbidden subwords, the integer sequence

with values of 𝑛𝑘 and the subdigraph. The set of all

possible combination of forbidden subwords generating

the subdigraph can be computed by a separate function,

which is not described here.

Figure 5: 𝑆𝐹 (3, 4) on the left and 𝑆𝐹 (3, 4) without sub-
words 021, 120 on the right.

We demonstrate our algorithm using the Square-free

digraph 𝑆𝐹 (3, 4) shown in Figure 5. The input for our

algorithm was the digraph 𝑆𝐹 (3, 4) with 𝑘𝑚𝑎𝑥 set to

10. One of the combinations in the for-cycle included

the vertices represented by the words: 0102, 0121, 0201,

1012, 1020, 1210, 2010, 2012, 2101 and 2102. We identified

the forbidden subwords as 0120, 0210, 0212, 1021, 1201,

1202, 2021 and 2120 in forbiddenSubwords. These

forbidden subwords can be simplified to forbidden sub-

words 021 and 120. The induced subdigraph is shown

in Figure 5. Subsequently, we obtained the integer se-

quence of value 𝑛𝑘 for 𝑘 = 0, . . . , 10, which in this case

is 10, 12, 14, 18, 22, 26, 32, 40, 48, 58, 72.

5. Results
We ran our algorithm on various types of digraphs dis-

cussed in Section 3. We focused on the integer sequences

Table 1
Forbidden subwords in the 𝑆𝐹 (3, 4) digraphs with 16 vertices
and the integer sequence of the numbers of vertices 𝑛𝑘 of 𝑘-
iterated line digraphs.

Forbidden subwords Sequence

1201, 2102 16, 22, 28, 36, 46, 58, 72, 90, . . .
2012, 2102 16, 22, 28, 38, 52, 70, 92, 124, . . .
0120, 2120 16, 23, 31, 43, 60, 82, 112, 155, . . .
0120, 0212 16, 23, 31, 43, 60, 83, 114, 157, . . .
2101, 2120 16, 23, 31, 43, 61, 85, 118, 165, . . .
1021, 1210 16, 23, 32, 45, 63, 87, 121, 170, . . .
0102, 1201 16, 23, 32, 46, 67, 97, 139, 200, . . .
0210, 1021 16, 23, 33, 48, 68, 96, 137, 196, . . .
1202, 2010 16, 24, 34, 48, 68, 96, 136, 194, . . .
0102, 0121 16, 24, 34, 48, 69, 97, 137, 196, . . .
1020, 1202 16, 24, 34, 48, 70, 100, 142, 206, . . .
0201, 1202 16, 24, 34, 49, 70, 100, 144, 207, . . .
1201, 2010 16, 24, 34, 49, 71, 102, 146, 211, . . .
0121, 1020 16, 24, 34, 50, 74, 108, 158, 232, . . .
0102, 0212 16, 24, 35, 50, 74, 109, 158, 233, . . .
1012, 1210 16, 24, 36, 54, 80, 120, 180, 268, . . .
0212, 2021 16, 25, 36, 54, 81, 120, 180, 269, . . .
0201, 1020 16, 25, 38, 59, 90, 139, 214, 329, . . .

of the orders of 𝑘-iterated line digraphs and their pres-

ence in the database of integer sequences. Specifically,

we compared the obtained integer sequences with the

OEIS [7] database (On-Line Encyclopedia of Integer Se-

quences). It is a comprehensive database of integer se-

quences, where each sequence is uniquely identified by

an ID number and accompanied by information such

as definitions, references, links, and examples. We use

ID numbers from OEIS database to identify the found

integer sequences.

First, we applied our algorithm to some digraphs from

the De Bruijn digraph family. For an alphabet of two sym-

bols (the first non-trivial case), the number of distinct in-

teger sequences increased as the word lengths increased.

Table 2 presents all the obtained integer sequences along

with examples of forbidden subwords. Additionally, we

list the OEIS ID number and the type of each integer

sequence.

Next, we ran the algorithm on some digraphs from the

Kautz digraph family. For an alphabet of two symbols,

we mostly obtained two integer sequences: A000007 and

A007395 (all 2’s sequence). The number of distinct integer

sequences increased with an alphabet of three or more

symbols.

Similarly, for digraphs from the Cyclic Kautz family,

with an alphabet of two symbols, two cases occurred: no

integer sequences were found if the word lengths were

odd, whereas the sequences A000007 and A007395 (all

2’s sequence) were found if the word lengths were even.

With an alphabet of three symbols, we obtained more

integer sequences, where most of them were already

known.

Lastly, we ran our algorithm on some digraphs from

the Square-free digraph family. Similar to the Kautz di-

graph family, for the alphabet of two symbols, integer

sequences were found only for the digraphs 𝑆𝐹 (2, 1),
𝑆𝐹 (2, 2), and 𝑆𝐹 (2, 3). With an alphabet of three sym-

bols, the results were more interesting as we found vari-

ous integer sequences that were not in the OEIS database.

For 𝑆𝐹 (3, 4), we found a total of 4947 integer sequences.

Table 1 shows all integer sequences from digraphs of

𝑆𝐹 (3, 4) with 16 vertices that were not in the OEIS

database.

Acknowledgments
D. Závacká’s research was partially supported by G-24-

158-00 and VEGA 1/0437/23. She would like to thank

her supervisor Tatiana Jajcayová for her guidance and

suggestions. C. Dalfó and M. A. Fiol’s research has been

supported by AGAUR from the Catalan Government un-

der project 2021SGR00434 and MICINN from the Spanish

Government under project PID2020-115442RB-I00. M.

A. Fiol’s research was also supported by a grant from

the Universitat Politècnica de Catalunya with references

AGRUPS-2022 and AGRUPS-2023.

References
[1] C. Dalfó, M. A. Fiol, A note on the order of iter-

ated line digraphs, Journal of Graph Theory 85

(2017) 395–399. doi:https://doi.org/10.1002/
jgt.22068.

[2] N. H. Bong, C. Dalfó, M. A. Fiol, D. Závacká, The

inner diameters of a digraph and its iterated line

digraphs, 2024.

[3] K. Böhmová, C. Dalfó, C. Huemer, The diameter of

cyclic Kautz digraphs, Filomat 31 (2017) 6551–6560.

doi:10.2298/FIL1720551B.

[4] T. G. Group, GAP - Groups, Algorithms, and

Programming, Version 4.12.2, url: https://www.

gap-system.org, 2024.

[5] J. De Beule, J. Jonusas, J. Mitchell, W. A. Wil-

son, M. Young, Digraphs, Version 1.7.1, url: https:

//gap-packages.github.io/digraphs/, 2024. Refereed

GAP package.

[6] L. H. Soicher, GRAPE, graph algorithms using

permutation groups, Version 4.9.0, url: https://

gap-packages.github.io/grape/, 2022. Refereed GAP

package.

[7] O. F. Inc., The on-line encyclopedia of integer se-

quences„ 2024. URL: http://oeis.org.

http://dx.doi.org/https://doi.org/10.1002/jgt.22068
http://dx.doi.org/https://doi.org/10.1002/jgt.22068
http://dx.doi.org/10.2298/FIL1720551B
https://www.gap-system.org
https://www.gap-system.org
https://gap-packages.github.io/digraphs/
https://gap-packages.github.io/digraphs/
https://gap-packages.github.io/grape/
https://gap-packages.github.io/grape/
http://oeis.org

Table 2
Forbidden subwords in the 𝐵(2, 3) digraphs, the integer sequence of the numbers of vertices 𝑛𝑘 of 𝑘-iterated line digraphs
with the number and type of sequence in the OEIS database of sequences.

Forbidden subwords Sequence OEIS[7] Type of sequence

11, 10, 000 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . A000007 𝑎(𝑛) = 0𝑛

00, 01, 10 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . A000012 All 1’s sequence
00, 101, 110, 111 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . . A000038 𝑎(𝑛) = 2 * 0𝑛

11, 000, 010 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, . . . A130713 for 𝑛 ≥ 1 𝑎(0) = 𝑎(2) = 1, 𝑎(1) = 2; 𝑎(𝑛) = 0 for
𝑛 > 2

10, 000, 011 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . A054977 𝑎(0) = 2; 𝑎(𝑛) = 1 for 𝑛 ≥ 1
00, 01 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . . A007395 All 2’s sequence

00, 000, 101, 111 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, . . . A143090 for 𝑛 ≥ 5 Aliquot sequence starting at 12
000, 001, 010, 011, 110 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . A121273 for 𝑛 ≥ 4 Number of different 𝑛-dimensional convex reg-

ular polytopes that can tile 𝑛-dimensional
space

000, 001, 010, 011, 111 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, . . . not in OEIS
000, 001, 010, 101, 111 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, . . . A114348 for 𝑛 ≥ 16 The integer difference between the 𝑛-

dimensional unit sphere surface area minus the
(𝑛+ 1)-dimensional unit sphere volume and
the (𝑛+ 2)-dimensional unit sphere volume

000, 001, 011, 101, 110 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, . . . A261143 for 𝑛 ≥ 1 𝑎(𝑛) = 𝐻𝑛(1, 2), where 𝐻𝑛 is the 𝑛-th hy-
peroperator

00, 011, 101 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . . A072751 for 𝑛 ≥ 14 Greatest of the most frequent prime factors of
squarefree numbers ≤ 𝑛; 𝑎(1) = 1

01, 000 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, . . . A010701 All 3’s sequence
00, 010, 101 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, . . . A113311 for 𝑛 ≥ 1 Expansion of (1 + 𝑥)2/(1− 𝑥)

000, 010, 011, 110 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, . . . not in OEIS
000, 010, 011, 111 4, 3, 1, 0, 0, 0, 0, 0, 0, 0, . . . A143090 for 𝑛 ≥ 4 Aliquot sequence starting at 12
000, 011, 100, 101 4, 3, 2, 2, 2, 2, 2, 2, 2, 2,. . . not in OEIS
000, 010, 011, 100 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, . . . not in OEIS
000, 001, 011, 101 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, . . . not in OEIS
000, 001, 010, 011 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, . . . A010709 All 4’s sequence
000, 001, 011, 111 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, . . . A010710 Periodical repetition of 4, 5
001, 010, 100, 101 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, . . . A210032 for 𝑛 ≥ 4 𝑎(𝑛) = 𝑛 for 𝑛 = 1, 2, 3, 4; 𝑎(𝑛) = 5 for

𝑛 ≥ 5
000, 001, 010, 101 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, . . . A101272 for 𝑛 ≥ 4 𝑎(𝑛) = 𝑛 for 𝑛 ≤ 6; 𝑎(𝑛) = 6 for 𝑛 > 6

01 4, 5, 6, 7, 8, 9, 10, 11, 12, . . . A000027 for 𝑛 ≥ 4 Positive integers
11, 000 4, 5, 7, 9, 12, 16, 21, 28, . . . A000931 for 𝑛 ≥ 11 Padovan sequence
00, 010 4, 6, 9, 13, 19, 28, 41, 60, . . . A000930 for 𝑛 ≥ 5 Narayana’s cows sequence

000, 010, 011 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, . . . A010716 All 5’s sequence
000, 001, 101 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, . . . A101101 for 𝑛 ≥ 2 𝑎(1) = 1, 𝑎(2) = 5; 𝑎(𝑛) = 6 for 𝑛 ≥ 3
001, 010, 011 5, 6, 7, 8, 9, 10, 11, 12, . . . A000027 for 𝑛 ≥ 5 Positive integers
000, 010, 111 5, 6, 7, 9, 11, 13, 16, 20, . . . A164317 for 𝑛 ≥ 3 Number of binary strings of length 𝑛 with no

substrings equal to 000, 010, or 111
000, 011, 110 5, 6, 8, 10, 13, 17, 22, 29, . . . A052954 for 𝑛 ≥ 8 Expansion of (2− 𝑥− 𝑥2 − 𝑥3)/((1− 𝑥) *

(1− 𝑥2 − 𝑥3))
000, 010, 101 5, 7, 10, 14, 19, 26, 36, 50, . . . A003269 for 𝑛 ≥ 8 𝑎(0) = 0, 𝑎(1) = 𝑎(2) = 𝑎(3) =

1; 𝑎(𝑛) = 𝑎(𝑛− 1) + 𝑎(𝑛− 4)
001, 010, 100 5, 7, 10, 14, 20, 29, 42, 61, . . . A020711 Pisot sequences 𝐸(5, 7), 𝑃 (5, 7)
000, 001, 010 5, 7, 11, 16, 23, 34, 50, 73, . . . A164316 for 𝑛 ≥ 3 Number of binary strings of length 𝑛 with no

substrings equal to 000, 001, or 010
000, 001, 011 5, 7, 8, 10, 11, 13, 14, 16, . . . A001651 for 𝑛 ≥ 4 Numbers not divisible by 3
001, 010, 101 5, 7, 9, 11, 13, 15, 17, 19, . . . A005408 for 𝑛 ≥ 2 Odd numbers
000, 001, 111 5, 7, 9, 12, 16, 21, 28, 37, . . . A000931 for 𝑛 ≥ 12 Padovan sequence

00 5, 8, 13, 21, 34, 55, 89, 144, . . . A000045 for 𝑛 ≥ 5 Fibonacci numbers
000, 001 6, 10, 16, 26, 42, 68, 110, . . . A090991 Number of meaningful differential operations

of the 𝑛-th order on the space 𝑅6

010, 011 6, 8, 10, 12, 14, 16, 18, 20, . . . A005843 for 𝑛 ≥ 3 Nonnegative even numbers
001, 011 6, 9, 12, 16, 20, 25, 30, 36, . . . A002620 for 𝑛 ≥ 5 Quarter-squares
000, 011 6, 9, 13, 18, 25, 34, 46, 62, . . . A164315 for 𝑛 ≥ 3 Number of binary strings of length 𝑛 with no

substrings equal to 000 or 011
000, 101 6, 9, 13, 19, 28, 41, 60, 88, . . . A000930 for 𝑛 ≥ 6 Narayana’s cows sequence
001, 010 6, 9, 14, 21, 31, 46, 68, 100, . . . A038718 for 𝑛 ≥ 5 Number of permutations 𝑃 of 𝑛-set such that

𝑃 (1) = 1 and |𝑃−1(𝑖+1)−𝑃−1(𝑖)| equals
1 or 2 for 𝑖 = 1, 2, ..., 𝑛− 1

001, 100 6, 9, 14, 22, 35, 56, 90, 145, . . . A020717 Pisot sequences 𝐿(6, 9), 𝐸(6, 9)
000, 010 6, 9, 15, 25, 40, 64, 104, . . . A006498 for 𝑛 ≥ 5 𝑎(0) = 𝑎(1) = 𝑎(2) = 1, 𝑎(3) =

2; 𝑎(𝑛) = 𝑎(𝑛−1)+𝑎(𝑛−3)+𝑎(𝑛−4)
001 7, 12, 20, 33, 54, 88, 143, . . . A020732 for 𝑛 ≥ 1 Pisot sequence 𝑇 (4, 7)
010 7, 12, 21, 37, 65, 114, 200, . . . A010901 for 𝑛 ≥ 1 Pisot sequences 𝐸(4, 7), 𝑃 (4, 7)
000 7, 13, 24, 44, 81, 149, 274, . . . A282718 for 𝑛 ≥ 4 Tribonacci recurrence

none 8, 16, 32, 64, 128, 256, 512, . . . A000079 for 𝑛 ≥ 3 Powers of 2

	1 Introduction
	2 Preliminaries
	3 Some families of digraphs
	4 Algorithm
	5 Results

