CEUR-WS.org/Vol-3792/paper2.pdf

C

CEUR

Workshop
Proceedings

Extrapolation Problems in Kinetic Modelling of Catalytic
Reactions with Neural Networks

Aleksandr Fedorov® T, David Linke®

Leibniz-Institut fiir Katalyse e. V., Albert-Einstein-Straf3e 29a, 18059 Rostock, Germany

Abstract

In the present study we investigated the behaviour of different types of neural networks in data extrapolation. The application
is modelling a tubular chemical reactor in which a heterogeneous catalytic reaction (CO, hydrogenation to methanol) is
performed. Since data are slow and expensive to measure we focused on small data sets for training. The different models
(feed-forward neural network (NN), physics-informed NN, neural ordinary differential equation (ODE), kinetics-constrained
neural ODE) were trained in a way to achieve approximately the same values of loss function in the cross-validation. Although
the obtained models have the same generalization ability, the extrapolation capability varies significantly. Wherein, a neural
network model that is additionally constrained by the general chemical and chemical engineering knowledge demonstrated
much better extrapolation ability compared to unconstrained models. Methods how to validate the generalization of the

neural network kinetic models without using additional experimental data were suggested and discussed.
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1. Introduction

The kinetic model development of catalytic reactions is
one of the difficult but important part of chemical engi-
neering for the process and industrial plant simulation
[1]. The kinetic models of chemical reactions are ide-
ally based on the knowledge of the reaction mechanisms.
Due to complexity of the reaction mechanisms and the
existence of a lot of parameters which have to be es-
timated from the data in data-driven kinetic modelling,
several assumptions (postulating rate-determining stages,
quasi-equilibrium approximation etc.) are usually used
to convert the mechanisms to a set of reaction rate ex-
pressions for describing the dynamic of the process [2].
The complexity of this traditional approach is related
to the necessity of having deep knowledge of the reac-
tion mechanism as well as the difficulty of performing
the screening of different possible assumptions. Notably,
solving the inverse kinetic task (the estimation of kinetic
model parameters from the data) is still a nontrivial task
in the modelling process [3]. For these reasons, a ma-
chine learning approach is an attractive alternative for
kinetic model development because only the data are
needed to develop the models.

Neural networks are ones of popular methods of ma-
chine learning due to their flexibility which led to the
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development of a wide range of different types of neural
network architectures [4, 5, 6, 7, 8] that are used in var-
ious fields. However, the overfitting problem of neural
network models limits their wide usage especially in the
case of small data that is typical available in the kinetic
model development. Strategies for improving the neural
network models significantly have been proposed, for
example, by using the knowledge about the process via
modifying the loss function [5, 9, 10] or by constraining
the architecture of the models [11, 12, 13]. In our recently
published work [13], we suggested a new approach for
kinetic modelling with NNs. The approach is based on
constraining neural ODE models by the general chemical
and chemical engineering knowledge. This enabled us to
obtain reliable NN models describing the complex process
of CO, hydrogenation using only small data. During the
method development we have found that different neural
network models demonstrating the similar generaliza-
tion ability in the cross validation differed significantly
in their data prediction and extrapolation capabilities.
Here, it is worth noting the difference between the gen-
eralization and extrapolation ability of the NN models.
The generalization refers the ability to fit the test data
that lies within the bounds of training dataset. By the
extrapolation we mean in general the ability to predict
the data at different residence time that lies out of the
bounds of training data.

To investigate the observed phenomena in more de-
tails, in the present study we investigated the ability of
different types of neural networks in the extrapolation
of the kinetic catalytic data. For this, we generated small
and large data sets for model training, validation, as well
as for testing the model ability to extrapolate. The follow-
ing different types of NN model were used: feed-forward
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neural networks [4], physics-informed neural networks
[5], neural ordinary differential equations (neural ODEs)
[6], kinetics-constrained neural ODE [13]. To compare
the neural networks based modelling approach with the
traditional one, we also developed a simple power-law
kinetic model assuming first order with respect to the
reagents in the reaction rate expressions.

2. Experimental part

2.1. Data generation

For the data generation, the kinetic model of CO, hy-
drogenation to methanol was used from the work [14].
This kinetic model was based on the following chemical
reactions:

CO, + 3H, 2 CH;0H + H,0, (1)
CO, + H, 2 CO + Hy0, (2)
CO, + 4H, 2 CHy + 2H,0. (3)

A dual-site Langmuir-Hinshelwood kinetic model was
used for describing the dynamics of the suggested reac-
tions:
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where r; is the rate of the chemical reaction i; P; is the par-
tial pressure of compound i; k; is the rate constant of the
reaction i; Koy ; - the equilibrium constant of the reaction
i; Kco, - the equilibrium constant of CO, adsorption; K,
- the equilibrium constant of dissociative adsorption of
H,. It is worth mentioning that the thermodynamic part
of the reaction 3 was removed from the equation in the
present study because the equilibrium constant of this re-
action is very high (A,G° < 0 and |A,G°|/RT = 19.6 > 1,
Keg3 = exp (—AG"/RT) = 3.3 10%). For comparison, the
values of equilibrium constants of the reactions 1 and 2
are 2.6 - 102 and 5.7 - 107°, respectively. The values are
given for 573.15 K. The following equations were used to
estimate the values of the equilibrium constants of the
reactions 1 and 2:

10g10 Keg.1 = —% +2.029, @)
10g10 Kegz = 3066 _ 10.502. (8)

The rates constant were presented in the form of re-
parameterized Arrhenius equation:

E
ki(T) = ki exp (El (%0 - %))
where k;  is the rate constant of reaction i at the reference
temperature T that was set to 573.15 K; E; - activation en-
ergy of the reaction constant i; R - universal gas constant;
T - temperature. The adsorption equilibrium constants
were presented in the form of Van’t Hoff equation:

AH; (1 1
K = Koo (2 (7, 7))
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where K is the adsorption equilibrium constant at the
reference temperature Ty and AH; is the molar change of
the enthalpy. The parameters of the model were taken
from the original work [14].

To generate the data for the present study, the follow-
ing system of ODE was integrated:

N
df

o = 2N
r 4

where F, is the molar flow of the compound i; 7 is the res-
idence time, N - is the number of the chemical reactions;
v is the stoichiometric coefficient of the compound i in
the reaction j (positive for the products and negative for
reagents). The system of ODE represents the mathemati-
cal model of 1D plug flow reactor for catalytic reaction
assuming the absence of heat and mass transfer limita-
tions. The integration of the system 11 allows one to
estimate the molar flows of compounds along the reactor
(at different residence time).

Table 1 shows the reaction conditions used for gener-
ating the training data. For each reaction conditions, 5
points of the residence time (0.05, 0.1, 0.2, 0.4, 1.0) were
used for the data generation. Thus, the total number of
different reaction conditions was 13 -5 = 65. The total
inlet molar flow was set to a constant value of 1 for each
reaction conditions (only CO, and H, were used in the
inlet flow). Thus, the dataset represent the dependencies
between the outlet molar flows of each compound (ob-
tained by the integration of the system of ODE 11 ) and
the reaction condition (initial molar flows of CO, and H,,
temperature, total pressure, and the residence time). The
partial pressure of compounds (required for the estima-
tion the reaction rates 4, 5, and 6.) was estimated by the
following equation assuming the ideal gas law:

(11)



Table 1
The reaction conditions used for the training data generation.
#  Temperature,"C  Pressure, bar  H,:CO, ratio
1 200 30 3
2 250 30 3
3 300 30 3
4 350 30 3
5 400 30 3
6 300 20 3
7 300 25 3
8 300 35 3
9 300 40 3
10 300 30 1.5
11 300 30 2
12 300 30 4
13 300 30 6
P=ot, (12
Lk

where Pis the total pressure; P; - the partial pressure of
compound i; F; - the molar flow of compound i.

The CO, conversion Xcp, and selectivity of i-
compound S;, which are the commonly used measures of
reactor and catalyst performance, were estimated by the
following equations that relate the state at reactor inlet
to the state at reactor outlet:

- 8
2 2
X, = —22, (13)
F
CO,
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CO, CO,

To validate and investigate the extrapolation ability
of the kinetic models, 4 different test datasets were gen-
erated. The 4 test datasets differed in the range of the
residence time selection (0-1, 1-2, 2-5, and 5-10) to inves-
tigate the extrapolation ability of the investigated kinetic
models. Each dataset had 1000 points which were gener-
ated by randomly selecting values from the ranges of the
reaction conditions (temperature in 200-400 °C, pressure
in 20-40 bar, Hy:CO, ratio in 1.5-6.0) using a uniform
distribution. To train physics-informed neural network
model, an additional dataset (labeled as the zero set) was
created. The zero set was generated by a similar pro-
cedure applied for the test data generation except for
setting the residence time to be 0. The zero dataset had
also 1000 points.

2.2. Model architecture and training

Different variants of artificial neural networks were used
to fit the data to CO, hydrogenation. It is important to

note that the architecture and parameters of NN models
(the number of layers and neurons, a type of activation
function etc.) were chosen to achieve approximately the
same value of loss function (Equation 17 ) for 10-fold
cross-validation during the model training.

The first model was the simple feed-forward neural
network denoted as NN. This model has 4 inputs (temper-
ature, pressure, the inlet fraction of CO, and the residence
time). Temperature was transformed in the following
form and used as an input for neural network models:

1.1-100 /1 1
fTn=e| =27, " 7)|

By presenting the temperature in a such way, T;,, was in
arange of = 0.61-1.41. The inlet molar fraction of carbon
dioxide xlé‘o2 was calculated by the following equation:

(15)

1
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(16)

where m is the H,:CO, ratio. The pressure was normal-
ized by dividing by the maximum value of 40 bar. The
NN model has 4 outputs for the molar flow of CO,, CO,
CH,, and CH30H. The NN model has 1 hidden layer with
20 nodes and hyperbolic tangent activation function as
well as the output layer with sigmoid activation function.
To train the NN model, the following loss function was

used:
d 2
Fipre _Fiexp
., (17)
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where Fip " s the molar flow of the compound i in the
outlet predicted by the model; FiexP is the molar flow of
the compound i in the outlet simulated by the kinetic
model; F; ¢4 is a characteristic scale for compound i that
was calculated based on the maximum value for the molar
flow of compound i in the training dataset. This scaling
was also helpful to mitigate the stiffness of neural ODE
models [15] during the model training.

The second model was a physics-informed neural net-
work (PINN). The architecture of this model was similar
to the NN model except for a modification of the outlet
of the NN model:

outl-N N. xg’o2

outiPINN: ~ N
2 out;

(18)

where out’ "NV is the i-outlet of PINN model; out™ is
the i-outlet of NN model. For the training PINN model,
we used the knowledge that there is no change in the
molar flows of compounds when the residence time is to
equal to 0. For this, an additional zero dataset was also
used for training of PINN model and the corresponding
loss function was:



lossy = loss; + Z

i€zero set

The next model (NODE) was based on the neural ODE
[6] that uses neural networks for approximating the right
part of ODEs:

2
Fipred_l:,iexp
T ) 19
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dF,
— = ANN(P, T),
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(20)
where ANN is the feed-forwards neural network. The
inputs of ANN were the partial pressure of compounds
and the re-parameterized temperature (Equation 15). The
NODE model has 7 inputs (partial pressure of compounds
- CO,, CO, CHy, CH30H, H,, H,0 as well as the re-
parameterized temperature (Equation 15)). The NODE
model consists of two hidden layers with hyperbolic tan-
gent and exponential activation functions. The number
of nodes was 3 for both layers. The output of the ANN
was the linear function. The loss function 17 was used
for training NODE model.

The kinetics-constrained neural ODE approach was
used for developing the fourth model (KCNODE). The
idea of the approach is to use the general knowledge
about the process and approximate the rates of chemical
reactions by the following equation:

ri=ki(T>-H(Rf)'(1‘KQ )'ANN(P"’T)’ @
| e
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where k;(T) is the rate constant of the reaction i defined

by Equation 9; Pl’ is the partial pressure of the reagent j
in the reaction i. Q - the reaction quotient. For example,
in the case of reaction 1 the corresponding quotient is:

_ PenyonPr,o0
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The KCNODE model consists of 1 hidden layer with
3 nodes (hyperbolic tangent activation function) and the
outlet layer which has sigmoid activation function. The
sigmoid function is chosen for the output layer because
it ensures positive value, and, thus, Equation 21 aligns
with thermodynamic. So, if (Q < K,), the rate is positive
(forward reaction), and if (Q > Keg), the rate is negative
(backward reaction).

It is worth noting that the activation energies and the
rate constants were also parameters of the KCNODE
model and were varied during the training of the neural
network model, along with the weights and biases of the
neural network layers.

The last model denoted as Power-Law (PL) model re-
places the ANN part in the KCNODE model by simple
power law rate expressions. Thus, it represents a simple

conventional kinetic model that is based on the assump-
tion that first order kinetics can sufficiently describe the
reactions. The PL model was selected as baseline model
and used for the comparison with the NN models. The
loss function 17 was used for training KCNODE and PL
models.

2.3. Hardware and software specifications

Dormand-Prince-Shampine method (DOPRI5) method
was used for the integration of the neural ODE [16].
Training neural network models was carried out by min-
imizing the loss functions using ADAM [17] optimizer
with a learning rate of 0.005. L,-regularization was used.
The parameter of the regularization was set to 107°. All
calculation were implemented in the Python program-
ming language (version 3.9.12) [18]. The scientific li-
braries NumPy [19] (version 1.23.0), SciPy [20] (version
1.8.1), Pandas [21] (version 1.23.0), Scikit-learn [22] (ver-
sion 1.1.1) were used for data analysis and evaluation.
Pytorch [23] (version 1.12.0) and Torchdyn [24] (version
1.0.3) were used for building and training neural net-
works models. Matplotlib [25] (version 3.7.2) was used
to visualize the results.

3. Results and Discussion

The first step of the present study was to obtain the
trained neural network models with the similar gener-
alization ability. In our work, we have chosen the value
of the loss function in the 10-folds cross validation (CV)
as a metric of the generalization. Firstly, we estimated
the CV value for the PL model which was 1.7 -1073. To
achieve a similar CV value of the loss function for all
neural network models, we trained our models by mini-
mizing the corresponding loss function. Figure 1 shows
the dependency between the value of 10-folds CV of the
loss function and the number of epochs. It can be seen
that the CV loss function decreases with increasing num-
ber of epochs for all the neural network models except
for the NODE one where we observe a significant rise in
the value of the loss function after around 2000 epochs.
From the obtained data we have found the number of
iterations which is needed for training to achieve the cor-
responding value of loss function (1.7 -1073 in our case).
It is worth noting that we did not manage to achieve
this target value for the NODE model. For this model,
the minimum value of the loss function (2.1 -1073) was
therefore chosen which is still close to the targeted value.
Thus, we managed to obtain a set of different neural
network models with similar generalization ability.

To validate the generalization ability of machine learn-
ing models, an additional test dataset is typically used.
However, for kinetic model development, chemical and
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Figure 1: The dependencies between the value of 10-fold
CV and the number of epochs during training for different
models. In the case of neural ODE-based models (NODE and
KCNODE), the number of epochs was multiplied with 10 for
better visualization. The training process was repeated 5 times
to estimate the standard deviation that is shown as error bar
in the figure.

engineering knowledge can be utilized for validation.
We simulated virtual data using the obtained models and
compared them in Figure2. The analysis revealed predic-
tion issues with the NN and NODE models, particularly
with the carbon balance and molar flow predictions. The
NN model predicted non-zero CH;OH flow at zero res-
idence time, and the NODE model predicted negative
molar flows. These issues are illustrated by plotting CO,
conversion and product selectivity, which should range
from 0 to 1 but did not for NN and NODE models. In
contrast, knowledge-integrating models (PINN and KC-
NODE) did not exhibit these problems.

To assess the approximation ability of the obtained
models, the series of the different test datasets was gen-
erated. The datasets differed in the residence time range
(from 0-1 to 5-10). The values of estimated loss function
for the test datasets are presented in Table 2. One can
see that the values of the loss function for the dataset
with the residence time range of 0-1 are similar for all the
models. However, when we try to predict data outside of
the training dataset range, we observe that the values of
the loss function increase with increasing residence time
range for all the models. This increase varies significantly
from model to model. The highest errors in the data pre-
diction for a residence time range of 5-10 were found for
the NN and PINN models. This is due to the fact that the
models were trained on the dataset where the residence
time varied in the range of 0-1. Another limitation of the
NN and PINN models is that both models only represent
the solution of the reactor model. It means that these

models describe the solution of the system of ODE but
not the kinetic model represented in the form of rate
equations. This imposes serious restrictions on using
the resulting models for up-scaling (modelling another
type of reactor or extending the models by adding the
diffusion/heat transfer).

The neural ODE approach does not have such a lim-
itation since the neural ODE models represent the ap-
proximation of the right part of ODE. From Table 2 one
can see that better extrapolation ability is observed for
neural ODE models (NODE and KCNODE) compared
to NN and PINN ones. Wherein, the loss function for
the dataset generated with a residence time range of 5-
10 was 0.66 for KCNODE model and around 5 times
lower then the one for NODE model (3.4). Thus, the neu-
ral ODE model additionally constrained by the general
chemical and chemical engineering knowledge demon-
strates much better extrapolation ability. To compare
the KCNODE model with a traditional approach, Ta-
ble 2 shows the values of loss function for PL model.
One can see that both KCNODE and PL models show
similar predicting ability in fitting the test data. In ad-
dition, another kinetics-constrained neural ODE model
(KCNODE*) was obtained by training after 10000 epochs
to achieve the minimum value of the CV loss function to
compare with other models. The values of loss function
for different test data are also presented in Table 2. On
can see, that the the loss function for the dataset gener-
ated with a range of residence time in 5-10 is around 0.2
and decreased compared to KCNODE model.

4. Conclusions

In the present work, we investigated the behaviour of dif-
ferent neural network models (feed-forward NN, physics-
informed NN, neural ODE, kinetics-constrained neural
ODE) when applied for modelling catalytic data describ-
ing the process of CO, hydrogenation to methanol. To
compare models under the same conditions, we trained
the models in a way to achieve a similar value of the
loss function in the 10-folds cross validation. Although
the obtained models had similar generalization capabil-
ity, we showed that only neural ODE model additionally
constrained by the general chemical and chemical engi-
neering knowledge demonstrate a good fitting of the data
in the context of the residence time. Moreover, its capa-
bility to extrapolate was comparable to the traditional
modelling approach. Due to the extrapolation ability, the
application of neural ODE models for accelerated kinetic
model development can be expected to grow.
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Figure 2: The observed (dots) and fitting (lines) dependencies between: the normalized molar flows of compounds F/F, ;.4
and the residence times 7 (top); the CO, conversion and product selectivity (bottom) estimated by Equations 14 and 13,
respectively. Carbon balance was defined as the sum of the molar flow of all carbon-containing compounds. The following
reaction condition was used for the simulation: temperature was 375 °C, the total pressure was 32 bar, H,:CO, ratio was 2.5.

Table 2
The comparison of the obtained models in the predicting the test datasets differing in the range of residence time selection.
The standard deviation (relative value) is given in brackets

loss function

model cv 0-1 1-2 25 5-10
NN 1.7-107% (£38%)  2.6-107° (£18%) 0.15 (£65%) 11 (£89%) 75 (£82%)
PINN 1.7-1073 (£44%)  1.7-1073 (£18%) 9.6 1072 (£25%) 11 (+81%) 186 (+£85%)
NODE 2.1-107% (24.1%)  2.8-1073 (£17%) 2.0-1072 (£7.9%) 0.48 (£21%) 3.4 (£27%)
KCNODE  1.7-1073 (£9.8%)  4.7-107° (£14%) 2.5-107% (£11%) 0.13 (+8.0%) 0.66 (+7.2%)
PL 1.7-1073(£0.1%)  5.3-1073 (£0.09%)  2.5-1072 (£0.07%) 0.13 (£0.4%) 0.67 (£0.5%)
KCNODE*  5.0-107° (£23%)  4.4-107* (£7.7%) 3.9-107% (£5.2%)  3.5-107% (£4.7%)  0.20 (+4.7%)
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