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Abstract
Most graphs are asymmetric, i.e. they lack any nontrivial automorphisms. Even in the case of highly symmetric graphs,
removing just a single vertex from a graphical regular representation may result in a graph with a trivial automorphism
group. Nevertheless, asymmetric graphs can still contain relatively large induced subgraphs which do admit nontrivial
automorphisms or relatively large distinct but isomorphic induced subgraphs. Such symmetric local structures play a crucial
role in Babai’s quasipolynomial algorithm for solving the Graph Isomorphism Problem. These observations called for the
use of the concept of a partial automorphism of a graph Γ, which is either an isomorphism between two distinct induced
subgraphs of Γ or an automorphism of one of its induced subgraphs. Based on the concept of a partial automorphism, the
symmetry level of a graph Γ is defined as the ratio between the largest order of the domain of a nontrivial partial automorphism
of Γ and the graph’s order |𝑉 (Γ)|.

In our paper, we address several open questions concerning the symmetry levels of graphs posted by Cingel, Gál &
Jajcayová (2023), and derive additional results using both computer aided and theoretical methods. We improve the best
previously known lower bound for the symmetry levels of general graphs by proving that the symmetry level of any finite
simple graph is at least 1

2
. In case of disconnected graphs without a unique isolated vertex, we prove that the symmetry level

of such graphs is at least 3

4
. Furthermore, we present graphs that provide an answer to Question 3 posted by Cingel, Gál &

Jajcayová by showing that higher symmetry level does not necessarily imply a larger number of partial automorphisms. We
take the initial steps toward answering the main question of Cingel, Gál & Jajcayová. Finally, we discuss the relation between
a measure of asymmetry introduced by Erdős & Rényi (1963) and the level of symmetry of graphs considered in our paper.
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1. Introduction
Almost all graphs are known to be asymmetric [4],

i.e., having no nontrivial ‘global’ automorphisms. At the
same time, all of them contain local symmetries. These
observations remain true even if one restricts the graphs
considered to the class of regular graphs, which is the
class containing some of the most symmetric graphs - the
vertex-transitive graphs [8]. Taking the opposite point of
view, deleting a single vertex from a (vertex-transitive)
graphical regular representation of odd order leads to an
asymmetric graph. It is important to note, however, that
the distorted graph obtained this way still has many in-
duced subgraphs with nontrivial partial automorphisms
[7], which suggests that the line between symmetric and
asymmetric objects is surprisingly thin. Furthermore,
local structures exhibiting high levels of symmetry are
of significant importance in Babai’s quasipolynomial al-
gorithm for solving the Graph Isomorphism Problem [1].
These observations provide the motivation behind the
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study of partial automorphisms of graphs [6] and the
related concept of the level of symmetry of graphs de-
fined using the order of the largest domain of a nontrivial
partial automorphism of a graph [3]. In the absence of a
universally accepted name, we call a graph that possesses
at least one nontrivial automorphism as non-asymmetric.
The following definitions introduce two fundamental
concepts used throughout our paper.

Definition 1.1 (Partial automorphism). Let Γ be a graph,
and let 𝐷 and 𝑅 be non-empty subsets of the vertex set
𝑉 (Γ) of equal cardinalities. A partial automorphism 𝜙 :
𝐷 → 𝑅 is an isomorphism between the induced subgraphs
Γ[𝐷] and Γ[𝑅]; where the rank of 𝜙 is the cardinality
|𝐷| = |𝑅|. We say that a partial automorphism is non-
trivial if it maps at least one vertex in𝐷 to another (distinct)
vertex in 𝑅.

Definition 1.2 (Symmetry level). Let Γ be a graph of
order 𝑛 ≥ 2, and let 𝑘 be the largest postive integer for
which Γ admits a nontrivial partial automorphism 𝜙 of
rank 𝑘. The symmetry level of Γ is the ratio 𝑆(Γ) := 𝑘

𝑛
.

The set of all partial automorphisms, denoted
PAut(Γ), along with the operations of partial composi-
tion and partial inverse of partial maps, forms an inverse
monoid, which was fully characterized for graphs by Ja-
jcay et al. in [6]. Some of the basic results concerning
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partial automorphisms can be found in [5, 3, 2, 9].

2. Addressing open questions of
Cingel, Gál & Jajcayová

In the article [3], the authors posed several questions
we will address (and possibly answer) in this section.

2.1. Minimal level of symmetry
Question 1 ([3]). What is the minimal level of symmetry
of a graph Γ of order 𝑛 as a function of 𝑛?

Although we will not settle Question 1, in what follows,

we improve the lower bound 𝑆(Γ) ≥ log√
2
𝑛

𝑛
stated in

[3] for graphs of order 𝑛. Let Γ be a finite simple graph
of order 𝑛 ≥ 2, 𝑉 (Γ) = {𝑢1, 𝑢2, . . . , 𝑢𝑛}, let 𝑢𝑖 and
𝑢𝑗 be two distinct vertices of Γ, and let 𝜙 be the partial
map mapping the subset of vertices of 𝑉 (Γ) not con-
tained in the symmetric difference of the neighborhoods
𝑁Γ(𝑢𝑖)△𝑁Γ(𝑢𝑗) of 𝑢𝑖 and 𝑢𝑗 in Γ onto itself by swap-
ping 𝑢𝑖 and 𝑢𝑗 , 𝜙(𝑢𝑖) = 𝑢𝑗 and 𝜙(𝑢𝑗) = 𝑢𝑖, and fixing
all vertices of Γ distinct from 𝑢𝑖 and 𝑢𝑗 and not contained
in the symmetric difference 𝑁Γ(𝑢𝑖)△𝑁Γ(𝑢𝑗), 𝜙(𝑢𝑙) =
𝑢𝑙, for all 𝑢𝑙 ∈ 𝑉 (Γ)− (𝑁Γ(𝑢𝑖)△𝑁Γ(𝑢𝑗))− {𝑢𝑖, 𝑢𝑗}.
It is easy to see that 𝜙 is a partial automorphism of Γ of
rank |𝑉 (Γ)− (𝑁Γ(𝑢𝑖)△𝑁Γ(𝑢𝑗))|. Denoting the cardi-
nality of the symmetric difference of the neighbourhoods
of 𝑢𝑖 and 𝑢𝑗 by ∆𝑗𝑘 allows us now to derive the first
(and in some sense, the most general) lower bound on
the symmetry level of Γ that will serve as the basis of
our forthcoming arguments:

𝑆(Γ) ≥ 𝑛−min{∆𝑖𝑗}
𝑛

= 1− min{∆𝑖𝑗}
𝑛

, (1)

where the minimum is taken over all pairs of distinct
vertices 𝑢𝑖, 𝑢𝑗 ∈ 𝑉 (Γ).

Using the notation introduced above and mimicking a
proof from [4] yields now the following.

Theorem 2.1. For any simple graph Γ of order 𝑛 ≥ 2,

𝑆(Γ) ≥ 1− 𝑛− 1

2𝑛
>

1

2
.

Proof. Let Γ be a simple graph of order 𝑛. Using inequal-
ity (1) together with the obvious fact that

min
1≤𝑖<𝑗≤𝑛

{∆𝑖𝑗} ≤ avg
1≤𝑖<𝑗≤𝑛

{∆𝑖𝑗} =

∑︀
1≤𝑖<𝑗≤𝑛 ∆𝑖𝑗

𝑛(𝑛−1)
2

,

yields

𝑆(Γ) ≥ 1−
2
∑︀

1≤𝑖<𝑗≤𝑛 ∆𝑖𝑗

𝑛2(𝑛− 1)
. (2)

Next, we use the following fact observed already in Erdős
& Rényi [4]. The sum

∑︀
1≤𝑖<𝑗≤𝑛 ∆𝑖𝑗 is equal to the

number of ordered triples (𝑣𝑖, 𝑣𝑗 , 𝑣𝑙) of vertices inΓ such
that Γ contains the edge {𝑣𝑖, 𝑣𝑙} but does not contain
{𝑣𝑗 , 𝑣𝑙}, 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛. Note that each of such triples
consists of a vertex 𝑣𝑙 together with one of its neighbors
and one of its ‘non-neighbors’. This implies that the
number of such triples containing 𝑣𝑙 is equal to 𝑛𝑙(𝑛−
1− 𝑛𝑙). Hence,

∑︁
1≤𝑖<𝑗≤𝑛

∆𝑖𝑗 =

𝑛∑︁
𝑙=1

𝑛𝑙(𝑛− 1− 𝑛𝑙), (3)

and therefore

𝑆(Γ) ≥ 1−
2
∑︀𝑛

𝑙=1 𝑛𝑙(𝑛− 1− 𝑛𝑙)

𝑛2(𝑛− 1)
. (4)

Taking advantage of another simple algebraic identity
used in Erdős & Rényi:

𝑛𝑙(𝑛− 1− 𝑛𝑙) = (
𝑛− 1

2
)2 −

(︂
𝑛𝑙 −

𝑛− 1

2

)︂2

,

we obtain

𝑆(Γ) ≥ 1−
2
∑︀𝑛

𝑙=1(
𝑛−1
2

)2 −
(︀
𝑛𝑙 − 𝑛−1

2

)︀2
𝑛2(𝑛− 1)

≥

1−
2
∑︀𝑛

𝑙=1(
𝑛−1
2

)2

𝑛2(𝑛− 1)
= 1−

𝑛 (𝑛−1)2

2

𝑛2(𝑛− 1)
= 1− 𝑛− 1

2𝑛
≥

1

2
.

In order to obtain another formulation of Theorem 2.1,
let 𝑛𝑖 denote the degree of the 𝑖-th vertex of Γ, and let
𝑛𝑖𝑗 denote the cardinality of 𝑁Γ(𝑢𝑖) ∩𝑁Γ(𝑢𝑗), the set
of shared neighbors of 𝑢𝑖 and 𝑢𝑗 . Using this notation, it
is easy to see that

∆𝑖𝑗 = 𝑛𝑖 + 𝑛𝑗 − 2𝑛𝑖𝑗 − 2𝛿𝑖𝑗 , (5)

for all 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛, where 𝛿𝑖𝑗 = 1 if 𝑢𝑖 and 𝑢𝑗 are
distinct and adjacent, and 𝛿𝑖𝑗 = 0 otherwise. Then,∑︁

1≤𝑖<𝑗≤𝑛

∆𝑖𝑗 =

∑︁
1≤𝑖<𝑗≤𝑛

(𝑛𝑖 + 𝑛𝑗)− 2 ·
∑︁

1≤𝑖<𝑗≤𝑛

𝑛𝑖𝑗 − 2 ·
∑︁

1≤𝑖<𝑗≤𝑛

𝛿𝑖𝑗 ≤

4𝑛𝑠− 2

𝑛∑︁
𝑙=1

(︃
𝑛𝑙

2

)︃
− 2𝑠 = (4𝑛− 2)𝑠−

𝑛∑︁
𝑙=1

𝑛𝑙(𝑛𝑙 − 1) =



(4𝑛− 2)𝑠−
𝑛∑︁

𝑙=1

(𝑛2
𝑙 − 𝑛𝑙) = 4𝑛𝑠−

𝑛∑︁
𝑙=1

𝑛2
𝑙 , (6)

where 𝑠 is the size (the number of edges) of Γ. Based on
the above, we obtain the following corollary.

Corollary 2.2. For any simple graph Γ of order 𝑛 ≥ 2
and size 𝑠,

𝑆(Γ) ≥ 1−
8𝑛𝑠− 2

∑︀𝑛
𝑙=1 𝑛

2
𝑙

𝑛2(𝑛− 1)
.

Proof. Returning to the inequality (2) and substituting
the identity (6) yields the desired result.

Revisiting the more precise (1), we note that com-
puter searches we have conducted yielded many asym-
metric graphs of order 𝑛 and symmetry level 𝑆(Γ) =

1− min{Δ𝑖𝑗}
𝑛

, i.e., graphs whose symmetry level matches
the lower bound in (1). On the other hand, despite consid-
erable computational effort, we have not found a graph
with symmetry level close to 1

2
. In his 2023 master thesis

[5], Gál found graphs of order 14 and symmetry level
equal to 5

7
. In our own investigation, we have found dis-

tinct graphs of the same order and the same symmetry
level. We present one such graph Γ in Figure 1, for which
𝑆(Γ) = 5

7
matches the lower bound from (1).

Figure 1: Graph Γ with 14 vertices and symmetry level
𝑆(Γ) = 5

7
.

Note that the lower bound in (1) can be computed in
𝑂(𝑛2𝐾) time, where 𝐾 is the maximum degree in the
graph. Computationally testing the relation between the
lower bound in (1) and the true symmetry level of all
graphs of order at most 10, we have learned that only
1210694
8110708

≈ 15% of all asymmetric graphs up to the or-
der 𝑛 = 10 have symmetry levels exceeding the lower
bound 1 − min{Δ𝑖𝑗}

𝑛
. This means that for most asym-

metric graphs of order not exceeding 10, a partial auto-
morphism of maximal rank can be obtained by swapping

two vertices and fixing all vertices not belonging to the
symmetric difference of their neighborhoods. In the re-
maining 15% of the asymmetric graphs, all graphs were
of order 10. In this subset of graphs, almost all graphs
have the largest nontrivial partial automorphism of rank
(𝑛−min{∆𝑗𝑘}) + 1 = 𝑛− 1, which exceeds the rank
predicted by the lower bound by 1, i.e., it is the closest
possible to the considered lower bound. Moreover, the
majority of these graphs have only few nontrivial par-
tial automorphisms of the maximal rank 𝑛− 1, most of
which swap only two vertices. Finally, there were also
tens of graphs in which the largest rank of a nontrivial
automorphism exceeds the lower bound by 2 and is equal
to 𝑛−min{∆𝑗𝑘}+ 2 = 𝑛− 1. For one such example,
see Figure 2.

Figure 2: Graph in which min
𝑗 ̸=𝑘

{Δ𝑗𝑘} = 3 but there is a

nontrivial partial automorphism of rank 𝑛− 1 which can be
obtained by deleting the red vertex and acts on the remaining
vertices.

To complete the section, let us consider the special case
of 𝑘-regular graphs. Inequality (4) applied to 𝑘-regular
graphs of order 𝑛 yields

𝑆(Γ) ≥ 1−
2
∑︀𝑛

𝑙=1 𝑘(𝑛− 1− 𝑘)

𝑛2(𝑛− 1)
= 1−2𝑛𝑘(𝑛− 1− 𝑘)

𝑛2(𝑛− 1)
.

Thus, for any fixed 𝑘 ≥ 1, and any infinite family of
𝑘-regular graphs Γ:

lim
|𝑉 (Γ)|→∞

𝑆(Γ) = 1.

In case of unbounded 𝑘 proportional to the order 𝑛 of
the 𝑘-regular graph, 𝑘 = 𝑛

𝑝
, we obtain for any infinite

family of 𝑛
𝑝

-regular graphs

lim
𝑛→∞

(︂
1−

2
∑︀𝑛

𝑙=1 𝑘(𝑛− 1− 𝑘)

𝑛2(𝑛− 1)

)︂
=



= lim
𝑛→∞

(︃
1−

2
∑︀𝑛

𝑙=1
𝑛
𝑝
(𝑛− 1− 𝑛

𝑝
)

𝑛2(𝑛− 1)

)︃
=

= lim
𝑛→∞

(︂
1− 2(𝑛(𝑝− 1)− 𝑝)

(𝑛− 1)𝑝2

)︂
=

= 1− 2

𝑝2
lim

𝑛→∞

(𝑛𝑝− 𝑛− 𝑝)

(𝑛− 1)
=

= 1− 2

𝑝2
lim

𝑛→∞

1
𝑛
(𝑛𝑝− 𝑛− 𝑝)
1
𝑛
(𝑛− 1)

=

= 1− 2

𝑝2
lim

𝑛→∞

(𝑝− 1− 𝑝
𝑛
)

1− 1
𝑛

= 1− 2 · (𝑝− 1)

𝑝2

which gives a better lower bound than the 1
2

from Theo-
rem 2.1 for all 𝑝 > 2.

2.2. Relations between the symmetry
level of a graph and the size of its
inverse monoid of partial
automorphisms

Question 2 ([3]). When given two graphs of the same
order, does a higher symmetry level of one of them neces-
sarily mean that it will also have a larger monoid of partial
automorphisms?

Relying on the combination of trial and error attempts
and exhaustive search of graphs of order at most 10 again,
we found a pair of graphs of order 8 that provides a nega-
tive answer to Question 2, and is shown in Figure 3. While
𝑆(Γ1) = 1 and 𝑆(Γ2) = 7

8
, and thus 𝑆(Γ2) < 𝑆(Γ1),

the graph Γ1 has fewer partial automorphisms than Γ2;
the exact numbers being 11033 vs. 13871 partial auto-
morphisms.

This pair of graphs appears to be the first member of
an infinite family of examples where every new pair is
constructed from the previous pair by attaching two new
vertices (one on each side) as shown in Figure 4. Each
new pair consists of a graph of symmetry level 1 and
an asymmetric graph of strictly smaller symmetry level
𝑛−1
𝑛

, with the second graph apparently having a larger
monoid of partial automorphisms.

By determining the orders of the corresponding
monoids, we have verified this observation for the first
three pairs of graphs in the family. Specifically, the
order of the monoid of partial automorphisms of the
more symmetric graph of order 10 consists of 195779
vs. 255414 partial automorphisms in favor of the less
symmetric graph. The pattern repeats for the next pair
with 3859889 versus 5327803 partial automorphisms
for graphs of order 12. As the difference between the
orders of inverse monoids of partial automorphisms of
the corresponding graphs keeps increasing, we formu-
late our observation in the form of a conjecture. Its proof
would require a determination of the orders of the two

corresponding monoids for all pairs of members of the
infinite family.

Conjecture 2.3. The order of the inverse monoid of partial
automorphisms of the graph with a smaller symmetry level
is larger than that of the graph of the symmetry level 1 for
each pair of graphs constructed in the above described way
from the pair in Figure 3.

Γ1

Γ2

𝑆(Γ1) = 1, |PAut(Γ1)| = 11033

𝑆(Γ2) =
7
8
, |PAut(Γ2)| = 13871

Figure 3: Graphs providing an answer to Question 2.

Γ1

Γ2

𝑆(Γ1) = 1, |PAut(Γ1)| = 195779

𝑆(Γ2) =
9
10

, |PAut(Γ2)| = 255414

Figure 4: Extension of graphs providing an answer to Ques-
tion 2.

Based on our negative answer to Question 2, we know
that a higher symmetry level does not necessarily imply
a larger number of partial automorphisms. This may be
the consequence of the fact that the absence of nontrivial
(global) automorphism does not negatively affect the ex-
istence of a large number of small partial automorphisms.
However, it might be the case that the absence of non-
trivial automorphisms in a graph of order 𝑛 could have a



negative impact on the number of partial automorphisms
of rank 𝑛− 1. That is why we propose a new question.

Question 3. When given two graphs of the same order
𝑛, does one of them being asymmetric and another non-
asymmetric necessarily mean that the asymmetric one will
have fewer partial automorphisms of rank 𝑛− 1?

Graph Γ1 with |Aut(Γ1)| = 2 and 50 partial
automorphisms of rank 𝑛− 1

Graph Γ2 with |Aut(Γ2)| = 1 and 666 partial
automorphisms of rank 𝑛− 1

Figure 5: Graphs Γ1 and Γ2 of order 𝑛 = 19 which provide
a negative answer to Question 3.

We again answer this question in negative by con-
structing two graphs of order 19 shown in Figure 5. The
first one, Γ1, is non-asymmetric with |Aut(Γ1)| = 2
and has 50 partial automorphisms of rank 𝑛 − 1. The
second graph, Γ2, is asymmetric, |Aut(Γ2)| = 1, but it
has 666 partial automorphisms of rank 𝑛− 1. Thus, we
have shown that if a graph is asymmetric, we cannot ex-
pect it to have necessarily fewer partial automorphisms
of rank 𝑛−1 than more symmetric graphs, which further
emphasises the need to improve our understanding of
the correspondence between the symmetry levels and

the corresponding orders of monoids of partial automor-
phisms.

We note that the non-asymmetric graph from Figure 5
has only a small automorphism group. Despite both our
computational effort and trial and error attempts, we
were unable to find graphs with larger automorphism
groups such that some asymmetric graph of the same
order 𝑛 has more partial automorphisms of rank 𝑛− 1.

2.3. Asymmetric depth of almost all
graphs

Next, we address the following question.

Question 4 ([3]). Does there exist a graph Γ of order 𝑛
and level of symmetry equal to 𝑛−𝑑

𝑛
for arbitrarily large

𝑑 ≥ 2?

To simplify our discussion, we shall refer to 𝑑 as the
asymmetric depth of Γ. By Theorem 2.1, we know that
asymmetric depth cannot be greater than 1

2
𝑛. We pro-

pose to use a probabilistic approach to build more intu-
ition with regard to Question 4.

Recall that a graph Γ of order 𝑛 is asymmetric if and
only if 𝑆(Γ) ≤ 𝑛−1

𝑛
. That means that the result asserting

that almost all graphs are asymmetric proven in [4] can
be reformulated using the language of partial automor-
phisms as follows.

Theorem 2.4. The limit of probabilities

lim
𝑛→∞

𝑃

(︂
𝑆(Γ) ≤ 𝑛− 1

𝑛

)︂
= 1,

where 𝑃
(︀
𝑆(Γ) ≤ 𝑛−1

𝑛

)︀
represents the probability that

the symmetry level of a randomly chosen graph Γ of order
𝑛 does not exceed 𝑛−1

𝑛
.

This formulation raises the question of whether the
constant asymmetric depth 1 in the above formula can be
replaced with any fixed integral asymmetric depth 𝑑 ≥ 1.
We feel that the following conjecture stated originally in
[2] is very likely true as well.

Conjecture 2.5. Let 𝑑 ≥ 1 be an integer. The limit of
probabilities

lim
𝑛→∞

𝑃

(︂
𝑆(Γ) ≤ 𝑛− 𝑑

𝑛

)︂
= 1,

where 𝑃
(︀
𝑆(Γ) ≤ 𝑛−𝑑

𝑛

)︀
represents the probability that

the symmetry level of a randomly chosen graph Γ of order
𝑛 does not exceed 𝑛−𝑑

𝑛
.

So far, we were unable to prove this conjecture. How-
ever, it might be easier to address a closely related ques-
tion which focuses exclusively on partial automorphisms
which are also automorphisms of some induced subgraph



of a graph Γ. In order to formalize our reformulation, we
define the adjusted level of symmetry of a graph Γ, 𝑆′(Γ),
to be the ratio of the order of a largest non-asymmetric
induced subgraph of Γ and the order of Γ.

Clearly, for any graph Γ, 𝑆′(Γ) ≤ 𝑆(Γ), since Γ can
also have partial automorphisms that do not have the
same domain and range (are not nontrivial automor-
phisms of an induced subgraph).

We believe the following conjecture might be shown
to be true if one could show that if we remove a constant
number of randomly chosen vertices from a large random
graph, we will again have a large random graph of a
smaller order, which is also likely to be asymmetric. A
formal proof of this statement would however require
very careful manipulation of the concepts from the theory
of random graphs.

Conjecture 2.6. Let 𝑑 ≥ 1 be an integer. The limit of
probabilities

lim
𝑛→∞

𝑃

(︂
𝑆′(Γ) ≤ 𝑛− 𝑑

𝑛

)︂
= 1,

where 𝑃
(︀
𝑆′(Γ) ≤ 𝑛−𝑑

𝑛

)︀
represents the probability that

the adjusted symmetry level of a randomly chosen graph Γ
of order 𝑛 does not exceed 𝑛−𝑑

𝑛
.

2.4. Computer assisted searches for
graphs of increasing asymmetric
depth

Since the above probabilistic arguments appear to sug-
gest a positive answer to Question 4, we set to find
an explicit construction of an infinite family of graphs
with increasing asymmetric depth. For this reason, we
set to investigate the record graphs that increase 𝑑 in
𝑆(Γ) ≥ 𝑛−𝑑

𝑛
. Previously, the record 𝑑 for the graph

symmetry level found in [3] was 𝑆(Γ) ≥ 𝑛−𝑑
𝑛

; 𝑑 = 5;
which means that one can delete any subset of up to 4
vertices without obtaining a graph admitting nontrivial
partial automorphisms.

Some graphs of order 9 can already have millions of
partial automorphisms. To determine the asymmetry
depth 𝑑, we have to look at isomorphisms between all in-
duced subgraphs of decreasing order until we find some
nontrivial partial automorphism. In a graph of order 𝑛,
there are

(︀
𝑛

𝑛−𝑑

)︀
induced subgraphs of order 𝑛− 𝑑. For

each of these induced subgraphs, we have to compute
its automorphism group, and then determine isomor-
phisms between all combinations of induced subgraphs
of order 𝑛 − 𝑑. Thus, computing the whole inverse
monoid for a graph is already intractable for rather small
graphs. However, taking advantage of the inequality
𝑆(Γ) ≥ 𝑛−min{Δ𝑗𝑘}

𝑛
, determining the parameter 𝑆(Γ)

can be done without computing the entire monoid of

partial automorphisms of a given graph. Therefore, be-
fore computing partial automorphisms, we minimise the
branching factor by introducing the following ad hoc
heuristics.

1. Eliminating complements since 𝑆(Γ) = 𝑆(Γ̃)
[3].

2. Utilising the result of Theorem 2.1 and by com-
puting the bound using min{∆𝑗𝑘} for some ver-
tices 𝑣𝑗 , 𝑣𝑘 , omitting the graphs which have small
min{∆𝑗𝑘}.

3. Omitting the graphs with many small or large
degrees since for increasing the 𝑑, most of the
vertices of the asymmetric graphs should have a
degree roughly equal to 𝑛

2
[5].

With these ideas, we parallelised the search through
the space of asymmetric graphs that are possible to be
reached by extending the previous database of record
graphs from [5]. After roughly three days of computa-
tions, we found a new record graph with 𝑛 = 27, 𝑑 = 7.
It turns out that while most of the graphs are asymmet-
ric, with our computations we find that most have only
rather small 𝑑. We analysed the record graphs, but due
to lack of any clear global structure of these graphs, we
were unable to extend our example to larger graphs.

To further our experiments with regard to Question 4,
we changed the approach by considering very "symmet-
ric" graphs and making them asymmetric. Specifically,
we considered 𝑛-dimensional hypercubes which have
the property that min{∆𝑗𝑘} increases with growing 𝑛,
while they remain arc-transitive. Instead of necessarily
removing vertices from these graphs, we noticed that
multiple 𝑛-dimensional hypercubes can be joined asym-
metrically. For example, one can glue hypercubes to-
gether and construct two columns of 𝑛-dimensional hy-
percubes, the first column with two𝑛-dimensional hyper-
cubes and the second column with three 𝑛-dimensional
hypercubes; with the adjacent hypercubes sharing an
(𝑛− 1)-dimensional hyperface. For 𝑛 = 2, see Figure 6.
As 𝑛 increases, we add some diagonals to each hypercube
to prevent the early occurrence of mirror symmetry. This
allowed us to computationally increase 𝑑 starting with
𝑑 = 1 for 2-dimensional-hypercubes, to 𝑑 = 5 for 5-
dimensional-hypercubes. For this construction, we have
not yet proved that increasing the dimension 𝑛 of the
hypercubes, necessarily makes 𝑑 grow indefinitely and
cover all 𝑑 ≥ 2. In fact, our construction skipped 𝑑 = 4.



Figure 6: Asymmetric graph constructed of 2-dimensional
hypercubes.

3. Further results on symmetry
levels of graphs

3.1. Disconnected graphs and graphs with
small cut sets

As we have seen at the end of Section 2.1, certain
classes of graphs allow further improvements on the
lower bounds on their symmetry levels. A slightly dif-
ferent version of the following theorem was proven for
disconnected graphs in [2].

Theorem 3.1. Let Γ be a disconnected graph of order 𝑛
with 𝑐 components 𝐶1, 𝐶2, ..., 𝐶𝑐.

(i) For every 𝐶𝑗 , 1 ≤ 𝑗 ≤ 𝑐, of cardinality bigger than
one, we obtain the following lower bound for the
symmetry level of Γ:

𝑆(Γ) ≥ |𝑉 (𝐶𝑗)| · 𝑆(𝐶𝑗)

𝑛
+

1

𝑛

∑︁
𝑖∈{1,...,𝑐}∖{𝑗}

|𝑉 (𝐶𝑖)|.

(ii) If at least two of the components 𝐶1, 𝐶2, ..., 𝐶𝑐 are
of cardinality 1, 𝑆(Γ) = 1.

(iii) If exactly one of the components 𝐶1, 𝐶2, ..., 𝐶𝑐

is of cardinality 1, say, 𝐶1 = {𝑢1}, 𝑆(Γ) =
1+(𝑛−1)𝑆(Γ∖{𝑢1})

𝑛
.

Proof. We only provide a quick sketch of the proof that is
based on ideas introduced in Section 2.1. If |𝑉 (𝐶𝑗)| > 1,
a partial automorphism acting on a subset of 𝐶𝑗 the same
way as one of the partial automorphisms of 𝐶𝑗 of the
rank |𝑉 (𝐶𝑗)|𝑆(𝐶𝑗) and fixing vertices in all components
distinct from 𝐶𝑗 has the rank appearing in part (i) of the
theorem. If at least two components, 𝐶𝑖 = {𝑢𝑖} and
𝐶𝑗 = {𝑢𝑗}, are of cardinality one, the map swapping 𝑢𝑖

and 𝑢𝑗 and fixing all other vertices of Γ is an automor-
phism of Γ. If 𝐶1 = {𝑢1} is the unique component of
cardinality 1, any non-trivial partial automorphism 𝜙 of
Γ∖{𝑢1} (Γ with 𝑢1 removed) can be extended by adding
𝜙(𝑢1) = 𝑢1.

Using the above theorem and Theorem 2.1, it is possible
to prove the following corollary.

Corollary 3.2. Let Γ be a disconnected graph without a
unique isolated vertex. Then 𝑆(Γ) ≥ 3

4
.

Proof. Let Γ be a disconnected graph of order 𝑛 without
a unique isolated vertex with components 𝐶1, 𝐶2, ..., 𝐶𝑐.
If there are at least two isolated vertices in Γ, then
𝑆(Γ) = 1. If Γ contains no isolated vertices, let 𝐶𝑗

denote a smallest component of Γ. Then, |𝑉 (𝐶𝑗)| ≤ 𝑛
2

.
Theorem 2.1 yields that 𝑆(𝐶𝑗) ≥ 1

2
. Therefore, by Theo-

rem 3.1,

𝑛𝑆(Γ) ≥ 1

2
|𝑉 (𝐶𝑗)|+

∑︁
𝑖∈{1,...,𝑐}∖{𝑗}

|𝑉 (𝐶𝑖)| =

=
1

2
|𝑉 (𝐶𝑗)|+ (𝑛− |𝑉 (𝐶𝑗)|) = 𝑛− 1

2
|𝑉 (𝐶𝑗)| ≥

≥ 𝑛− 1

2
· 1
2
𝑛 =

3

4
𝑛.

Furthermore, if a graph Γ has a relatively small vertex
cut set, it is usually possible to remove a small number of
vertices from Γ and obtain a disconnected graph, which
will have a level of symmetry at least 3

4
.

Corollary 3.3. Let Γ be a graph of order 𝑛 with a vertex

separator𝑆. Then𝑆(Γ) ≥
3
4
(𝑛−|𝑆|−1)

𝑛
. Moreover, if Γ∖𝑆

does not contain a unique isolated vertex, then 𝑆(Γ) ≥
3
4
(𝑛−|𝑆|)

𝑛
.

Proof. Let Γ be a graph of order 𝑛 with a vertex separator
𝑆. If Γ ∖ 𝑆 contains a unique isolated vertex 𝑣, then by
Corollary 3.2𝑆(Γ∖𝑆∖{𝑣}) ≥ 3

4
. Therefore, by removing

𝑆 and 𝑣 from Γ, we obtain 𝑆(Γ) ≥
3
4
(𝑛−|𝑆|−1)

𝑛
. If Γ ∖

𝑆 does not contain a unique isolated vertex, then by

Corollary 3.2 𝑆(Γ) ≥
3
4
(𝑛−|𝑆|)

𝑛
.

Corollary 3.4. Let 𝑠 ∈ N. Let Γ𝑘 be an infinite family
of graphs such that every graph in this infinite family has
a vertex separator of size at most 𝑠. Then

lim
𝑘→∞

𝑆(Γ𝑘) ≥
3

4
.



3.2. Relation to measure of asymmetry
introduced by Erdős & Rényi

In their 1963 paper [4], Erdős & Rényi considered a
measure of asymmetry that might at first appear quite dif-
ferent from the one we consider in our paper. Their idea
is based on deleting edges to obtain a non-asymmetric
graph.

Definition 3.5 (Degree of asymmetry). The degree of
asymmetry of a graph Γ, 𝐴−(Γ), is the minimum number
of edges that need to be deleted so that Γ becomes non-
asymmetric.

As we have already pointed out in Section 2.1, both the
general bounds for the symmetry levels proven therein
and the degree of asymmetry results of Erdős & Rényi
rely on the same idea of considering the minimum of
the symmetric difference of the neighbourhoods over
all pairs of vertices. This often results in asymmetric
depth and degree of asymmetry of a graph being equal.
This is further confirmed by the corresponding results
concerning forests as listed in Table 1.

𝐴−(Γ) 𝑑 𝑆(Γ)

general lower bound 1
2
𝑛 1

2
𝑛 1

2

lower bound for forests 1 1 𝑛−1
𝑛

[3]

Table 1
Comparison of lower bounds for the parameters 𝐴−(Γ), 𝑑
and 𝑆(Γ) where 𝑛 is the order of the considered graph. The
results in the first column come from [4].

It is therefore natural to ask how big can the differ-
ence between these two parameters be in general graphs.
When addressing this question, we constructed graphs
for which 3 = 𝐴−(Γ) > 𝑑 = 1, where 𝑑 corresponds to
the number of vertices that have to be removed from Γ
to obtain a non-asymmetric subgraph. One such graph
can be seen in Figure 7.

On the other hand, there are also graphs where
𝐴−(Γ) < 𝑑; e.g., the graph in Figure 8 for which
𝐴−(Γ) = 1 and 𝑑 = 3. We also entertained the ques-
tion of what is the maximum possible difference between
𝐴−(Γ) and 𝑑. We have empirically discovered that find-
ing graphs for which the difference would be greater than
two is rather hard. We formulate questions inspired by
our results in the most generalized form in Question 5.
Despite the generality of this question, we believe that
the answer is positive for any pair 𝑎 and 𝑑. Some kind
of a generalization of either the graph in Figure 7 or the
graph in Figure 8 might be a good starting point in the
construction of such graphs.

Question 5. Does there exist for any pair of positive in-
tegers 𝑎 and 𝑑 a graph Γ such that 𝐴−(Γ) = 𝑎, and the
asymmetry depth of Γ is equal to 𝑑?

Figure 7: A graph where 𝑑 = 1 and 𝐴−(Γ) = 3. The graph
was constructed by trial and error from three disjoint cycles of
length 14 and one isolated vertex. We connected the isolated
vertex to the first cycle in such a way that the vertex and the
first cycle resulted in an asymmetric graph. This was done as
follows. We connected the isolated vertex to some starting
vertex from the cycle. We continued in the clockwise direction
where we omitted the possible edge to the next neighbouring
vertex. We made two subsequent edges and again omitted the
next vertex. Lastly, we connected three subsequent vertices to
the isolated vertex and omitted the remaining ones. We made
the same kind of connections to the second cycle. We rotated
the second cycle counterclockwise with the step of 5. We then
linked the cycles as shown. Thus, all of the asymmetry is
linked to just the one special vertex.

4. Final remarks
In this paper, we established that the level of symmetry

of any simple graph is at least 1
2

, and for disconnected
graphs without a unique isolated vertex, it is at least
3
4

(and is even more for many other classes of graphs).
By answering Question 2, we exhibited computationally
that a higher level of symmetry does not imply a larger
number of partial automorphisms; further emphasising
the importance of studying local symmetries. We have
also applied probabilistic and computational methods to
build more intuition in understanding Question 4.

For the implementation and testing of our algorithms
we used the mathematical software system - SageMath,
version 10.1 [11] taking advantage of the existence of ex-
tensive and useful libraries in the Sage ecosystem. In de-
termining the inverse monoids of the considered graphs,
we used the interface to the system for discrete computa-
tional algebra - GAP, version 4.12.2 [10]. We also used
GAP to represent the inverse monoids of partial automor-



Figure 8: Graph where 𝑑 = 3 and 𝐴−(Γ) = 1. All of the
asymmetry is linked to the red edge.

phisms of graphs. All our computations were utilised on
a computer with a 12th Gen Intel Core i5-12450H proces-
sor, 4400 MHz, 8 cores, 12 logical processors, and 32GB
of RAM.
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