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Abstract

A sure-fire way of answering “How many of these objects are there?” is to generate them all and simply keeping a counter.

However, if it so happens that the true count is about 1024
, this way of doing it becomes a “sure-fire way of getting nowhere”.

This is exactly what happens with so called 𝑟-regular families of permutations, which are a generalisation of the notion

of transitivity in groups. They also measure how Cayley-like a vertex-transitive graph is. Therefore, another approach is

required for this (and many other) cases. In this article, we shall describe a general-purpose algorithm that utilises complex

cyclotomic numbers to give upper bounds to the counts of these families. Additionally, we present a probabilistic algorithm

to give heuristic estimates of the true counts of these families.
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1. Introduction
As defined in [1], for any set 𝑀 , an “𝑟-regular family”

of permutations is a set ℱ ⊆ S𝑀 , such that for every

𝑥, 𝑦 ∈ 𝑀 , there are exactly 𝑟 permutations 𝜑 ∈ ℱ ,

such that 𝜑(𝑥) = 𝑦. Sometimes we will take 𝑀 =
{1, 2, 3, . . . , 𝑛}, in which case we will use the standard

shorthand [𝑛] := {1, 2, 3, . . . , 𝑛}. The 𝑟-regular family

as an object is closely related to transitive groups, when

their stabiliser is of size 𝑟. Indeed, such a group does

follow the property of 𝑟-regular families and is therefore

a special case of them. On the other hand, the 𝑟-regular

families are combinatorial approximations of these tran-

sitive groups, as they themselves need not to follow the

group axioms, only the “𝑟 regularity”.

The authors of [1] investigated “how close to a Cayley

graph a given vertex-transitive graph is”, which is a ques-

tion that has been asked many times in prior research in

different variations. As such, there are multiple measures

of this “closeness” notion. One such notion is to find

the smallest transitive subgroup of 𝐴𝑢𝑡(Γ). A different

notion relies precisely on the aforementioned 𝑟-regular

families, and also gets investigated in [1]. There, one

seeks small 𝑟-regular families as subsets of the 𝐴𝑢𝑡(Γ),
the group of automorphisms of the given graph Γ. The

paper [1] is the first instance we could find which men-

tions the use of 𝑟-regular families.
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The simpler version of 1-regular family (or simply

just regular family) was introduced much earlier in [2]

already. In this paper, the author was looking at the well

known issue of graph theory, that there are some vertex

transitive graphs, which are not Cayley graphs, most

famously the Petersen graph. Her method involved the

construction of “quasi-Cayley graphs”, which are tied to

the existence of 1-regular families of automorphisms as

follows: “a graph Γ is quasi-Cayley if and only if 𝐴𝑢𝑡(Γ)
contains a 1-regular family as a subset”. This is similar

to what Sabidussi did in [3] with Cayley graphs and their

automorphism groups: “a graph Γ is Cayley if and only

if 𝐴𝑢𝑡(Γ) contains a subgroup, which acts regularly on

𝑉 (Γ)”.
With definitions laid out as we have, we can rephrase

the result of Sabidussi as “a graph Γ is Cayley if and only

if 𝐴𝑢𝑡(Γ) contains a subgroup, which is also a 1-regular

family (with respect to its action on 𝑉 (Γ))”.
One year after the paper [1], in his bachelor thesis

[4], the author investigated 𝑟-regular families from a

computational perspective, specifically, by generating

these families with the help of a computer.

In Section 2, we will summarise Kerák’s main result

from [4], which is relevant to our work, introduce the

main problem we will be solving, and describe how gen-

erating functions and Fourier transformations can help

us get upper bounds on the number of 𝑟-regular families.

Continuing that, in Section 3, we talk about some of the

implementation details of these methods to get said up-

per bounds. In Section 4, we briefly describe the method

[4] used and expand on it with a randomised algorithm,

which can be used as an estimation heuristic to approx-

imate the number of 𝑟-regular families on 𝑛 elements.

Finally, in Section 5, we summarise our findings.
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Table 1
Generated counts of 𝑟-regular families:

𝑟 = 0 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑟 = 5 𝑟 = 6 𝑟 = 7 · · ·
𝑛 = 1 1 1 - - - - - - · · ·
𝑛 = 2 1 1 - - - - - - · · ·
𝑛 = 3 1 2 1 - - - - - · · ·
𝑛 = 4 1 24 255 640 255 24 1 - · · ·
𝑛 = 5 1 1344 11073216 NG NG NG NG NG · · ·
𝑛 = 6 1 1128960 NG NG NG NG NG NG · · ·

...
...

...
...

...
...

...
...

...
. . .

2. Ground Work

2.1. Establishing notions
Our work picks up where [4] left off, where the author

was generating the 𝑟-regular families with the help of a

computer. One of his outputs was the Table 1 containing

information on how many distinct 𝑟-regular families on

𝑛 elements are there for some small 𝑟, 𝑛. Within this

table, “NG” means that for those parameters, the families

were only partially generated or not at all.

For the rest of the paper, we fix 𝑛 ∈ N and also let

𝑀 = {𝑚1,𝑚2, . . . ,𝑚𝑛} be a fixed set of 𝑛 positive in-

tegers with 𝑚1 ≤ 𝑚2 ≤ . . . ≤ 𝑚𝑛. Borrowing some

notation from [4], instead of writing down permutations

of S𝑀 with the cycle notation as is usual in algebra, e.g.

(1, 2, 4, 6) or (2, 7, 3)(5, 11), we will write down all the

numbers in one sequence into a list. In this list, the num-

ber 𝑘 is in the 𝑝th

position in the list precisely when𝑚𝑝 is

mapped to the number 𝑘 by this permutation. Put another

way, to each permutation 𝜑 ∈ S𝑀 , we associate the list of

numbers 𝐿(𝜑) = [𝜑(𝑚1), 𝜑(𝑚2), 𝜑(𝑚3), . . . , 𝜑(𝑚𝑛)].
For 𝑀 = [6] and 𝜑 = (1, 2, 4, 6), this list will thus

be [2, 4, 3, 6, 5, 1] and for 𝑀 = {2, 3, 5, 7, 11, 13} and

𝜑 = (2, 7, 3)(5, 11), the list will be [7, 2, 11, 3, 5, 13].
When we talk about the elements of S𝑀 from now on,

we will mostly talk about the set of lists induced by the

previous construction.

Observation 1. Within this list association, an 𝑟-regular

family of S𝑀 is such a collection of the lists ℱ ⊆ S𝑀 , so
that when the lists in ℱ are aligned below one another,
each column contains each 𝑚 ∈𝑀 precisely 𝑟 times.

Later, we will want to talk about individual en-

tries of these lists and for that reason, we shall ac-

cess them via indices written with square brackets, i.e.

𝐿(𝜑)[𝑖] = 𝜑(𝑚𝑖). For us, the first entry has index 1, e.g.

[7, 2, 11, 3, 5, 13][1] = 7, [2, 4, 3, 6, 5, 1][4] = 6.

Definition 1. For a given non-negative integer 𝑟, let
𝑅𝑀

𝑟 ⊆ 𝒫(S𝑀 ) be the set of 𝑟-regular families of S𝑀 .
Also let 𝑅𝑀 =

⋃︀
𝑟≥0𝑅

𝑀
𝑟 .

Given any 𝑟 ≤ (𝑛 − 1)!, we know that ∀ℱ ∈ 𝑅𝑀
𝑟 :

|ℱ| = 𝑛𝑟. This facilitates the fact that the only 0-regular

set is the empty set and so

⃒⃒
𝑅𝑀

0

⃒⃒
= 1 for all𝑀 regardless

of its size. Since we have chosen |𝑀 | = 𝑛, we have that

|S𝑀 | = 𝑛!, which means that for all 𝑟 > (𝑛 − 1)!, the

set 𝑅𝑀
𝑟 is empty, so ∀𝑟 > (𝑛− 1)! :

⃒⃒
𝑅𝑀

𝑟

⃒⃒
= 0.

Our main effort for the remainder of this paper is to

get upper bounds for the total number of 𝑟-regular fam-

ilies for 𝑛 = 5. In Section 4 we will also describe a

randomised algorithm that provides a heuristic estimate

for the number of 𝑟-regular families on 𝑛 elements are

there in that specific case. We are also going to reference

the values within the row for 𝑛 = 4 in the Table 1 to

check the correctness of our methods.

2.2. Generating functions
To bound the values of the numbers of 𝑟-regular families,

we will use generating functions and their properties. To

be able to use generating functions, we require a weight

function on the subsets of S𝑀 , namely𝑊 : 𝒫(S𝑀 )→ N.

Instead of producing a weight for every subset, we assign

each permutation a weight with the function 𝑤 : S𝑀 →
N and the total weight of a subset of S𝑀 shall simply be

the sum of individual weights.

The weight function of single permutations𝑤 : S𝑀 →
N will depend on a chosen list w = [𝑤1, . . . , 𝑤𝑛] of

weights (and also the chosen set 𝑀 ) and is defined by

𝑤(𝜑) =
∑︀𝑛

𝑖=1 𝑤𝑖 · 𝐿(𝜑)[𝑖]. In a sense, we really should

call this weight function 𝑤w , but we will omit it in this

section. For example, if 𝑀 = [4] and w = [1, 2, 5, 15],
for the identity permutation we have 𝑤(𝑒) = 1 · 1 +
2 · 2 + 5 · 3 + 15 · 4 = 80. For 𝜑 = (1, 2), we have

𝐿(𝜑) = [2, 1, 3, 4] and𝑤(𝜑) = 79, and for 𝜑 = (1, 4, 3),
we have 𝐿(𝜑) = [4, 2, 1, 3] and 𝑤(𝜑) = 62.

As mentioned before, the weight function for sets

of permutations 𝑊 : 𝒫(S𝑀 ) → N, will be the sum

of the individual permutation weights, i.e., 𝑊 (𝑋) =∑︀
𝜑∈𝑋 𝑤(𝜑). For any 𝐴 ⊆ N, we can ask for the set

𝐶𝐴 = {𝐹 ⊆ S𝑀 |𝑊 (𝐹 ) ∈ 𝐴}. Ideally we want to con-

struct the function 𝑊 (that is, choose the list w as well

as the set 𝑀 in a clever way) so that there exists an 𝐴



with ℱ ∈ 𝑅𝑀
𝑟 ⇔𝑊 (𝐹 ) ∈ 𝐴. However, ensuring both

implications hold while also ensuring that he entries of

𝑀 and w are sufficiently small is highly non-trivial (for

𝑀,w big, it is not so difficult to come up with examples),

so we will relax the requirement and demand that only

ℱ ∈ 𝑅𝑀
𝑟 ⇒ 𝑊 (𝐹 ) ∈ 𝐴 holds. This is why our algo-

rithms will, in general, produce upper bounds for those

counts, and occasionally produce the exact values.

Continuing the simple example above with 𝑀 = [4],
one can see that for any 𝑟-regular family ℱ , each weight

is multiplied 𝑟 times by each 𝑚𝑖 ∈ 𝑀 , so 𝑊 (ℱ) =
(1+2+5+15) · 𝑟 · (1+ 2+3+4) = 230𝑟. In general

we have the following lemma.

Lemma 1. Fix w = [𝑤1, . . . , 𝑤𝑛], and let ℱ ⊆ S𝑀 be
an 𝑟-regular family. Then 𝑊 (ℱ) = 𝑟 ·

∑︀
𝑚𝑖∈𝑀 𝑚𝑖 ·∑︀

𝑤𝑖∈w 𝑤𝑖. Therefore, with 𝑑 =
∑︀

𝑚𝑖∈𝑀 𝑚𝑖 ·∑︀
𝑤𝑖∈w 𝑤𝑖 and 𝐴 = {𝑘 · 𝑑|𝑘 ∈ N}, the condition

ℱ ∈ 𝑅𝑀
𝑟 ⇒ 𝑊 (ℱ) ∈ 𝐴 is satisfied for all 𝑟, in par-

ticular ℱ ∈ 𝑅𝑀 ⇒𝑊 (ℱ) ∈ 𝐴.

Proof. Let ℱ be an 𝑟-regular family. By definition,

𝑊 (ℱ) =
∑︁
𝜑∈ℱ

𝑤(𝜑) =
∑︁
𝜑∈ℱ

∑︁
𝑤𝑖∈w

𝑤𝑖 · 𝐿(𝜑)[𝑖],

where the𝐿(𝜑)[𝑖] are elements of𝑀 . This is a finite sum

and hence we can swap the order of summations:

𝑊 (ℱ) = . . . =
∑︁

𝑤𝑖∈w

𝑤𝑖 ·
∑︁
𝜑∈ℱ

𝐿(𝜑)[𝑖].

Because ℱ is 𝑟-regular, together over all 𝑖 and all 𝜑,

𝐿(𝜑)[𝑖] equals each 𝑚𝑗 ∈𝑀 precisely 𝑟 times:

𝑊 (ℱ) = . . . =
∑︁

𝑤𝑖∈w

𝑤𝑖 ·
∑︁

𝑚𝑗∈𝑀

𝑟 ·𝑚𝑗 .

To finish the proof of the claim, pull 𝑟 out of both sums,

since it is independent of the sums, and substitute in the

defined 𝑑:

𝑊 (ℱ) = . . . = 𝑟 ·
∑︁

𝑤𝑖∈w

𝑤𝑖 ·
∑︁

𝑚𝑗∈𝑀

𝑚𝑗 = 𝑟 · 𝑑.

This means that 𝑑 divides 𝑊 (ℱ), so 𝑊 (ℱ) ∈ 𝐴.

Said another way that is more usual in the context of

generating functions, if 𝑎𝑘 = |{𝐹 ⊆ S𝑀 :𝑊 (𝐹 ) = 𝑘}|,
then the following bound is a direct consequence of the

previous lemma: ⃒⃒⃒
𝑅𝑀

⃒⃒⃒
≤
∑︁
𝑟∈N

𝑎𝑟𝑑 (1)

We take 𝑔(𝑥) to be the generating function for this se-

quence of numbers, that is, 𝑔(𝑥) =
∑︀

𝑛∈N 𝑎𝑛 · 𝑥
𝑛

. By

standard theory of generating functions (see e.g. [5]),

we know this generating function 𝑔 is also equal to

𝑔(𝑥) =
∏︀

𝜑∈S𝑀 (1 + 𝑥𝑤(𝜑)), creating the following es-

sential equation:∑︁
𝑘∈N

𝑎𝑘 · 𝑥𝑘 = 𝑔(𝑥) =
∏︁

𝜑∈S𝑀

(1 + 𝑥𝑤(𝜑)) (2)

Utilising a standard trick of Fourier transformations,

let 𝜁 a primitive 𝑑th

root of unity. Then to get the bound-

ing sum

∑︀
𝑟∈N 𝑎𝑟𝑑, we can average the values of 𝑔(𝑥) at

all the 𝑑𝑡ℎ roots of unity, that is:

∑︁
𝑟∈N

𝑎𝑟𝑑 =
1

𝑑
·

𝑑∑︁
𝑖=1

𝑔(𝜁𝑖) (3)

Combining Equation 1 and Equation 3, we get

⃒⃒⃒
𝑅𝑀

⃒⃒⃒
≤
∑︁
𝑟∈N

𝑎𝑟𝑑 =
1

𝑑
·

𝑑∑︁
𝑖=1

𝑔(𝜁𝑖) (4)

The evaluation of this average requires the evaluations

of 𝑔 on the right hand side. Those values depend on

the weight function 𝑤, which in turn depends on the

particular choice of 𝑀 and w. This constitutes the first

algorithm, which accepts inputs 𝑀,w and outputs the

upper bound from Equation 4, see Section 3.1 for imple-

mentation.

2.3. Generating functions in more than
one variable

In the previous section, we transformed a permutation

𝜑 into its weight 𝑤(𝜑) =
∑︀

𝑤𝑖∈w 𝑤𝑖 · 𝐿(𝜑)[𝑖] and we

transformed a permutation set 𝐹 ⊆ S𝑀 into 𝑊 (𝐹 ) =∑︀
𝜑∈𝐹 𝑤(𝜑). Enconding each set of permutations into

a single number caused us to lose a lot of information

about said set of permutations. Instead, let us assign

the “weight” of the permutation to be the permutation

itself in the list notation: 𝑤(𝜑) = 𝐿(𝜑). Treating these

lists of integers as vectors for the purposes of addition

and scalar multiplication, we may now define 𝑊 (𝐹 ) =∑︀
𝜑∈𝐹 𝑤(𝜑) for any 𝐹 ⊆ S𝑀 . This way, we retain more

information about 𝐹 .

Lemma 2. Let ℱ ⊆ S𝑀 be an 𝑟-regular family. Then
𝑊 (ℱ) = 𝑟·

∑︀
𝑚∈𝑀 𝑚·[1, 1, . . . , 1], where the vector has

|𝑀 | = 𝑛 ones. With d =
∑︀

𝑚∈𝑀 𝑚 · [1, 1, . . . , 1] and
𝐴 = {𝑘 ·d|𝑘 ∈ N}, the condition ℱ ∈ 𝑅𝑀

𝑟 ⇒𝑊 (ℱ) ∈
𝐴 is satisfied for all 𝑟, in particularℱ ∈ 𝑅𝑀 ⇒𝑊 (ℱ) ∈
𝐴.

Proof. The proof is analogous to the proof of the one-

dimensional case from the previous subsection. Each

position within the lists gets each number 𝑚 ∈𝑀 pre-

cisely 𝑟 times in the expression for 𝑊 (ℱ), when ℱ is an

𝑟-regular family.



To avoid the tiny writing of double indexing in a multi-

variable coefficient, let I = [𝑖1, 𝑖2, . . . , 𝑖𝑛]. Denoting by

𝑏I = |{𝐹 ⊆ S𝑀 :𝑊 (𝐹 ) = I}|, Lemma 2 tells us that⃒⃒⃒
𝑅𝑀

⃒⃒⃒
≤
∑︁
𝑟∈N

𝑏𝑟·d (5)

Once again, take 𝐺(x) = 𝐺(𝑥1, 𝑥2, . . . , 𝑥𝑛) to be the

multivariate generating function for the values of 𝑏:

𝐺(x) =
∑︁
I∈N𝑛

𝑏I · 𝑥𝑖11 · 𝑥
𝑖2
2 · . . . · 𝑥

𝑖𝑛
𝑛 .

Just like in the one dimensional case, 𝐺 can be written

as a product, which we record in the next equation:∑︁
I∈N𝑛

𝑏I · 𝑥𝑖11 · 𝑥
𝑖2
2 · . . . · 𝑥

𝑖𝑛
𝑛 =

= 𝐺(𝑥1, 𝑥2, . . . , 𝑥𝑛) =

=
∏︁

𝜑∈S𝑀

(1 +

𝑛∏︁
𝑖=1

𝑥
𝑤(𝜑)[𝑖]
𝑖 )

(6)

Let 𝑠 =
∑︀

𝑚𝑖∈𝑀 𝑚𝑖, which means that d can be written

as [𝑠, 𝑠, . . . , 𝑠]. Here too, we want to use the trick of

Fourier transformations. In this case we can start with

the observation that:

1

𝑠𝑛
·
∑︁
I∈Z𝑛

𝑠

𝐺(𝜁𝑖1 , . . . , 𝜁𝑖𝑛) =
∑︁

I≡0 (mod 𝑠)

𝑏I (7)

Here, the second sum is over all vector-indices, whose

each coordinate is a multiple of 𝑠. Clearly, the sum on

the right-hand-side includes all coefficients with indices

𝑘 · d, therefore we have the following upper bound as a

consequence:⃒⃒⃒
𝑅𝑀

⃒⃒⃒
≤
∑︁
𝑟∈N

𝑏𝑟·d ≤
1

𝑠𝑛
·
∑︁
I∈Z𝑛

𝑠

𝐺(𝜁𝑖1 , . . . , 𝜁𝑖𝑛) (8)

The algorithm implementing this approach and its

optimisations is described in Subsection 3.3.

3. Algorithmic Upper Bounds

3.1. The basic algorithm
Let us return to the ideas from Section 2.2 and create an

algorithm based on them. For the Subsection 3.1, fix w =
[𝑤1, . . . , 𝑤𝑛] and also 𝑀 . Furthermore, as before, let

𝑑 =
∑︀

𝑚𝑖∈𝑀 𝑚𝑖 ·
∑︀

𝑤𝑖∈w 𝑤𝑖. At the end of Subsection

2.2, we ended up with the bounding inequality described

in 4. Our algorithm will thus, for every 𝜁𝑖, evaluate the

polynomial 𝑔 at that value and average these results. We

remark that by fixing 𝑀,w (which will be the inputs of

the algorithm), we are also fixing the value 𝑑 as well as

the polynomial 𝑔. This means that the values 𝑔(𝜁𝑖) are

unambiguously determined by the input.

To evaluate these products, we will need a program

that can handle addition and multiplication of these kinds

of complex numbers - formally known as cyclotomic num-
bers - with exact precision. Fortunately, the GAP system

[6] has rich support for arithmetic with complex roots

of unity, cyclotomic numbers, their sums, their products

(and of much more). This - alongside our previous expe-

rience with the system - is why GAP is our software of

choice for these computations, the pseudocode for which

we present in Algorithm 1.

Algorithm 1 One variable bounding algorithm

Input: 𝑀,w
Output: Upper bound for the size

⃒⃒
𝑅𝑀

⃒⃒
𝑝𝑜𝑤𝑒𝑟𝑠_𝑜𝑓_𝑥← [ ]
for 𝑝𝑒𝑟𝑚 ∈ S𝑀 do ◁ Here, 𝑝𝑒𝑟𝑚 is taken as a list.

𝑝𝑜𝑤𝑒𝑟𝑠_𝑜𝑓_𝑥.append(
∑︀𝑛

𝑖=1 𝑝𝑒𝑟𝑚[𝑖] · 𝑤𝑖)
end for
𝑑←

∑︀
𝑚𝑖∈𝑀 𝑚𝑖 ·

∑︀
𝑤𝑖∈w 𝑤𝑖

𝜁 ← 𝐸(𝑑) ◁ Primitive root of unity.

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ← 0
for 1 ≤ 𝑖 ≤ 𝑑 do

𝑝𝑟𝑜𝑑𝑢𝑐𝑡← 1
for 𝑝𝑜𝑤𝑒𝑟 ∈ 𝑝𝑜𝑤𝑒𝑟𝑠_𝑜𝑓_𝑥 do

𝑝𝑟𝑜𝑑𝑢𝑐𝑡← (1 + 𝜁𝑖·𝑝𝑜𝑤𝑒𝑟) · 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
end for
𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ← 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

end for
return 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟/𝑑 ◁ Always an integer.

Testing this algorithm on various inputs, we recog-

nised that to get a meaningful decrease of the computed

upper bound, we needed to substantially increase the

value of 𝑑. Because 𝑔(𝜁𝑖) =
∏︀

𝜑∈S𝑀 (1 + 𝜁𝑖·𝑤(𝜑)), the

computation of each 𝑔(𝜁𝑖) is done in linear time with

respect to the order of 𝜁 (which is 𝑑), and therefore the

runtime complexity is 𝑂(𝑛! · 𝑑2). Coupled with the fact

that we had to substantially increase 𝑑 to get a signifi-

cant improvement, we stopped using this exact approach,

even if the further algorithms share the same core idea.

Still, we include the description of the algorithm here

to illustrate this core idea. Later, in the results, we will

highlight where the particular approaches had their com-

putational limits.

3.2. Long lists of coefficients
To make matters for the previous algorithm worse, even

if we could reduce the time complexity of the algorithm

down, we still have a memory overflow waiting to hap-

pen. In fact, one of our intermediate algorithm iterations

had time complexity just 𝑂(𝑛! · 𝑑), because instead of



evaluating 𝑑 different values 𝑔(𝜁𝑖), this algorithm ex-

panded the product form of 𝑔 symbolically. This is be-

cause what the computation actually needs is the sum of

certain polynomial coefficients of 𝑔 - specifically those

whose index is≡ 0 (mod 𝑑). To perform this expansion

of 𝑔(𝑥), whose product form we established in Equation

(2), we represent each intermediate step as a long list

of coefficients, in which each position is the sum of all

coefficients, whose indices have the same remainder

(mod 𝑑). At the end, the result we seek is then simply

the 0th

coefficient of this list.

While this provided a significant time-improvement,

given that we only “evaluated” the polynomial once, the

memory requirement was roughly 𝑂(𝑑), i.e., an approxi-

mately linear amount of memory is required for this com-

putation. On our laptop, even with tricks of the “meet in

the middle” character, choosing 𝑑 ≈ 1.2·108 was roughly

the limit of its memory capabilities. A stronger machine

could be employed for the task, but that too does not

solve the problem. This is because the memory problem

is, in a sense, unavoidable. Once we start to dabble with

cyclotomic numbers that we need to represent exactly,

and we need to have 𝜙(𝑑), where 𝜙 is the Euler totient

function, coefficients to represent those. Choosing 𝑑 to

have many distinct prime factors seemed to yield worse

upper bounds than when 𝑑 had only a few of those and

then 𝜙(𝑑) is still 𝑂(𝑑), so we cannot escape the issue, at

least not in this way.

3.3. Thinking in more dimensions
As we have argued, the basic algorithms have large mem-

ory requirements, some with bad runtimes in relation to

the results we were getting from them. Our third and

most recently used method for this problem seeks to im-

prove this via generating polynomials of many variables,

as was discussed and introduced in Section 2.3.

In what follows, 𝑀 is still the set {𝑚1,𝑚2, . . . ,𝑚𝑛}
and let 𝑠 =

∑︀
𝑚𝑖∈𝑀 𝑚𝑖. To simplify the optimisation

arguments that follow in the later part of the section,

assume that 𝑠 is a prime number bigger than 𝑛, hence 𝑛
and 𝑠 are coprime. Finally, let 𝜁 be a primitive 𝑠th

root

of unity, just as in the Section 2.3. In that section, we

arrived at the inequality in (8), which bounded the total

number of all 𝑟-regular families on 𝑛 elements by the

expression:

1

𝑠𝑛
·
∑︁
I∈Z𝑛

𝑠

𝐺(𝜁𝑖1 , . . . , 𝜁𝑖𝑛).

This means that all our algorithm needs to do is to

evaluate the multinomial 𝐺 on all possible vectors of

roots of unity and average the result. However, this is

outrageously slow. Notice that for that to happen, we

require 𝑠𝑛 evaluations of 𝐺. Moreover, as we discussed

in Section 3.1, the evaluations themselves are linear in 𝑠
in terms of time, so the total time complexity is roughly

𝑂(𝑛! · 𝑠𝑛+1). For just 𝑛 = 5 and 𝑠 = 127, that causes

the algorithm to run for about 15 hours, while giving a

weak bound.

Since the evaluations of𝐺 themselves cannot be easily

sped up, let us try to decrease the number of evaluations.

We will choose some properties of the set 𝑀 that will

lead to optimisation of our algorithm’s speed. With the

claims that follow, we will prove that we can reduce the

complexity down to only 𝑂(𝑠𝑛−1). Also, to simplify

the further expressions, we will write 𝐺[𝑖1, . . . , 𝑖𝑛] in-

stead of 𝐺(𝜁𝑖1 , . . . , 𝜁𝑖𝑛). Because of the equality in (6),

it easily follows that:

Lemma 3. For any [𝑖1, . . . , 𝑖𝑛] ∈ Z𝑛
𝑠 and any 𝜙 ∈ S𝑛

we have

𝐺[𝑖1, . . . , 𝑖𝑛] = 𝐺[𝑖𝜙(1), . . . , 𝑖𝜙(𝑛)].

For fixed 𝑛, the next lemma will gain us a much more

significant speed-up:

Lemma 4. Adding 1 to all the exponents of the roots of
unity does not change the value of 𝐺, i.e.:

𝐺[𝑖1, . . . , 𝑖𝑛] = 𝐺[𝑖1 + 1, . . . , 𝑖𝑛 + 1].

Proof. Focus on the specific product 𝑥𝑚1
1 ·𝑥

𝑚2
2 · . . . ·𝑥𝑚𝑛

𝑛

within 𝐺. Evaluating it at the powers of 𝜁 from the left-

hand-side, we of course get another power of 𝜁 . The

value of that power is

𝑛∑︁
𝑘=1

𝑖𝑘 ·𝑚𝑘.

On the other hand, evaluating that product on the right-

hand-side gives us (again omitting the 𝜁 itself and writing

down just the power):

𝑛∑︁
𝑘=1

(𝑖𝑘 + 1) ·𝑚𝑘 =

𝑛∑︁
𝑘=1

𝑖𝑘 ·𝑚𝑘 + 𝑠.

These two expressions only differ by the +𝑠 at the end

and both of these expressions represent powers of 𝜁 .

Since 𝜁 is a primitive 𝑠th

root of unity, the +𝑠 makes

no difference to the product.

As such, this product within 𝐺 has the same value on

the inputs we started with and, analogously, so will every

other product in 𝐺. This proves our claim.

We can iteratively repeat this argument to get the

following equality as an immediate corollary

𝐺[𝑖1, . . . , 𝑖𝑛] = 𝐺[𝑖1 + 𝑘, . . . , 𝑖𝑛 + 𝑘] (9)

that holds for all 1 ≤ 𝑘 ≤ 𝑠, with 𝑘 = 𝑠 being the trivial

case, as exponents of 𝜁 operate (mod 𝑠).



Picking 𝑠 to be prime is essential for the second big

optimisation. Before we get to that optimisation, we men-

tion a bit about how GAP internally stores cyclotomic

numbers. We touched on this earlier in Section 3.2, and

we will be more specific here. For prime 𝑠 the cyclo-

tomic field Q(𝜁) is an 𝑠 − 1 dimensional linear space

over Q. Instead of “the standard basis” 1, 𝜁, . . . , 𝜁𝑠−2
,

GAP uses the basis 𝜁, 𝜁2, . . . , 𝜁𝑠−1
, that is, each element

of Q(𝜁) is expressed as 𝑐1𝜁 + 𝑐2𝜁
2, . . .+ 𝑐𝑠−1𝜁

𝑠−1
and

it is internally represented as vector [𝑐1, 𝑐2 . . . , 𝑐𝑠−1]. In

GAP, it is possible to obtain this vector via the function

CoeffsCyc. Let us note that any rational number 𝑞 is

represented by the vector [−𝑞,−𝑞, . . . ,−𝑞].
Let us also note that this basis is invariant under the

Galois group of Q(𝜁) which consists of automorphisms

𝜓𝑘 , which map 1 ↦→ 1, 𝜁 ↦→ 𝜁𝑘 and act on the roots

of unity as a permutation for all 1 ≤ 𝑘 < 𝑠. Note

that 𝜓1 is the identity map. With all the notation and

knowledge of this subsection, we are ready to state the

next optimisation claim:

Lemma 5. Let [𝑖1, . . . , 𝑖𝑛] ∈ Z𝑛
𝑠 and let𝐺[𝑖1, . . . , 𝑖𝑛] =∑︀𝑠−1

𝑗=1 𝑐𝑗𝜁
𝑗 . Then

𝑠−1∑︁
𝑘=1

𝐺[𝑘𝑖1, . . . , 𝑘𝑖𝑛] =

𝑠−1∑︁
𝑘=1

𝜓𝑘(𝐺[𝑖1, . . . , 𝑖𝑛]) = −
𝑠−1∑︁
𝑗=1

𝑐𝑗

(10)

Proof. Let us note that for any [𝑎1, . . . , 𝑎𝑛] ∈ Z𝑛
we

have𝜓𝑘((𝜁
𝑖1)𝑎1 ·. . .·(𝜁𝑖𝑛)𝑎𝑛) = (𝜁𝑘𝑖1)𝑎1 ·. . .·(𝜁𝑘𝑖𝑛)𝑎𝑛

.

Therefore, by (6), we have 𝜓𝑘(𝐺[𝑖1, . . . , 𝑖𝑛]) =
𝐺[𝑘𝑖1, . . . , 𝑘𝑖𝑛], which is the first claimed equation.

As 𝑠 is prime, Galois group of Q(𝜁) acts regularly on

{𝜁, . . . , 𝜁𝑠−1}. Therefore

∑︀𝑠−1
𝑘=1 𝜓𝑘(𝐺[𝑖1, . . . , 𝑖𝑛]) =∑︀𝑠−1

𝑖=1

(︁∑︀𝑠−1
𝑗=1 𝑐𝑗

)︁
𝜁𝑖. Because

∑︀𝑠−1
𝑖=1 𝜁

𝑖 = −1, rear-

ranging the last double-sum yields −
∑︀𝑠−1

𝑗=1 𝑐𝑗 .

Previous lemmas describe how corresponding actions

of S𝑛, Z𝑠, and Z*
𝑠 on the set Z𝑛

𝑠 modify evaluation of

𝐺(X). Combining these lemmas we obtain information

about the action of group Γ = S𝑛 × Z𝑠 × Z*
𝑠 on the set

Z𝑛
𝑠 and its behaviour with the evaluations of 𝐺(X).

Theorem 1. Let I = [𝑖1, . . . , 𝑖𝑛] ∈ Z𝑛
𝑠 and let

𝐺[𝑖1, . . . , 𝑖𝑛] = 𝑐1𝜁 + . . .+ 𝑐𝑠−1𝜁
𝑠−1. Then there exists

a number 𝐵I which depends only on (the conjugacy class
of) the stabilizer ΓI such that∑︁

J∈IΓ

𝐺[𝑗1, . . . , 𝑗𝑛] = 𝐵I(−𝑐1 − . . .− 𝑐𝑠−1) (11)

The exact correspondence between 𝐵I and ΓI is too

complicated to present here. Let us just point out that

(in the case that 𝑠 is prime and greater than 𝑛) for I =
[0, . . . , 0] we have 𝐵I = 1 and for ΓI = {𝑒Γ} we have

𝐵I = 𝑠 · 𝑛!.
A standard way to utilize the Theorem 1 is to choose

canonical representatives of orbits of Γ. Then one needs

to derive efficient ways of determining whether given

vector I is the representative of its orbit as well as how

to compute 𝐵I. One possible way to pick the canonical

representative is to choose those I’s, which are lexico-

graphically smallest as vectors. For this choice of repre-

sentatives, we have the following restrictions:

• A canonical representative has non-decreasing

elements, because of Lemma 3.

• Thanks to Lemma 4, the representative has sum

of its coefficients ≡ 0 (mod 𝑠).

• As a consequence of Theorem 1, the first non-zero

coordinate of a canonical representative is 1.

However not all such vectors are representatives of

their orbits and the algorithm needs to be able to de-

termine which is “the representative”. For example, if

𝑀 = [1, 2, 3, 4, 7] and 𝑠 = 17 both [0, 1, 2, 3, 11] and

[0, 1, 9, 10, 14] belong to the same orbit of Γ.

The pseudocode for this improved algorithm is in Algo-

rithm 2. For full implementation details of this algorithm,

see our Github repository [7].

4. Heuristic Counting with
Backtracking and Probability

Let us return to the work of Kerák [4] and his recursive

algorithm to generate all 𝑟-regular families on𝑛 elements.

In what follows, assume 𝑛 = 5 is fixed and, since the

specific choice of 𝑀 does not change the number of 𝑟-

regular families, let 𝑀 = [5] = {1, 2, 3, 4, 5}. On top of

that, partition the set S𝑀 into five sets𝑆1, . . . , 𝑆5, so that

the set 𝑆𝑖 contains precisely those permutations 𝜑 ∈ S𝑀 ,

such that 𝜑(1) = 𝑖. We remark that this makes all 𝑆𝑖

have equal size: |𝑆1| = . . . = |𝑆5| = (5− 1)! = 24.

Secondly, with this partition in place, we can see that

any 𝑟-regular family ℱ ⊆ S𝑀 must arise as a union of

𝑟-sized subsets 𝑇𝑖 ⊆ 𝑆𝑖, such that all the other positions

contain each 𝑖 precisely 𝑟 times too.

That is precisely what Kerák’s algorithm does - recur-

sively trying out all subsets 𝑇𝑖 ⊆ 𝑆𝑖 of size 𝑟, exiting

early if any position overflows , i.e., if any position has

more than 𝑟 of any number 𝑖 ∈ {1, 2, 3, 4, 5}. Once a

𝑇𝑖 ⊆ 𝑆𝑖 has been found to not overflow any position

with any number, his algorithm proceeds recursing in a

depth-first manner, until all possible combinations of sub-

sets of the 𝑆𝑖’s have been tested. After all these families

have been generated, counting them up is easy.

This approach is correct and it generates everything,

but the caveat here is that there are too many possibilities.



Algorithm 2 Multivariate bounding

Input: 𝑀
Output: Upper bound for the size

⃒⃒
𝑅𝑀

⃒⃒
𝑛← Length(𝑀)
𝑠← Sum(𝑀) ◁ We could test 𝑠 for primality.

𝐺← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛( ) ◁ Helper

function.

𝐵𝑖𝑔𝑆𝑢𝑚← 0
for I ∈ Z𝑛

𝑠 do
if Sum(𝐼) ̸= 0 (mod 𝑠) then

continue ◁ Not a canonical representative.

end if
if not(IsSortedList(I)) then

continue ◁ Not a canonical representative.

end if
if First(I, 𝑥→ 𝑥 > 0) ̸= 1 then

continue ◁ Not a canonical representative.

end if
𝐼𝑠𝑀𝑖𝑛𝑖𝑚𝑎𝑙← true
for 𝑘 ∈ Difference(I, [0]) do

J← I/𝑘 (mod 𝑠)
if J < I then

𝐼𝑠𝑀𝑖𝑛𝑖𝑚𝑎𝑙← false
break ◁ Not a canonical representative.

end if
end for
if 𝐼𝑠𝑀𝑖𝑛𝑖𝑚𝑎𝑙 then

𝐵I ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐵I(I) ◁ Helper function.

𝐵𝑖𝑔𝑆𝑢𝑚 ← 𝐵𝑖𝑔𝑆𝑢𝑚 + 𝐵I ·
Sum(CoeffsCyc(𝐺[I], 𝑠))

end if
end for
return 𝐵𝑖𝑔𝑆𝑢𝑚/𝑠𝑛

Even for 2-regular families on 5 elements, each 𝑆𝑖 has

24 permutations, which means that at each level, we

have

(︀
24
2

)︀
= 276 choices to pick from. Doing that on 5

different levels, the total amount of possibilities is 2765 =
1601568101376, which is starting to be too much for a

laptop. Even for a more powerful machine, it quickly gets

unruly and completely infeasible for families of higher

regularity - for example the naive strategy for 8-regular

families on 5 elements has the amount of possibilities on

the order of ≈ 2 · 1029.

To simplify matters of memory usage, let us use this

algorithm to only count the number of the families with

this algorithm, not fully generate them all. This means

that at the bottom level, if we confirm that the chosen set

is an 𝑟-regular family, we just increment a global counter.

Since our tree of possibilities is too big, let us assume

that “it will look about the same in every branch”.

This is not an outrageous assumption as we are study-

ing regular sets of permutations, which are quite sym-

Table 2
Assorted results of the heuristic counting algorithm:

Sum of all counts exactly Scientific notation

1344808311315380068372992 1.345 · 1024
1687144238754283380215130 1.687 · 1024
4952098573211019632607892 4.952 · 1024
3192278092063163925627380 3.192 · 1024
10722414177898381929138566 1.072 · 1025
5578509063361797937216054 5.579 · 1024
2047532970827157893748616 2.048 · 1024

Average of the trials: (rounded)
4217826489633026395275233 4.218 · 1024

metric. Still, providing concrete bounds for the error this

creates is something we have not done, so it cannot be

said that this algorithm is much more than a method

for obtaining a heuristic estimation of the true counts of

𝑟-regular families on 𝑛 elements.

The trick is to only explore a handful of the branches

into full depth, thus substantially reducing the number

of explored nodes. Specifically, we will assign each re-

cursion depth a probability, with which we let a branch

deeper. We keep track, for each of the levels, how many

branches reached the level, and how many branches were

let through. At the end, thanks to our “all branches look

the same” assumption, we can just divide the final count

by the “numbers of branches let through” and multiply

by the “numbers of branches reaching that level”.

The probabilities for recursion depths for 𝑛 = 5 and

𝑟 ∈ {2, 3, 4, . . . , 12} were determined by experimenta-

tion, so that the expected number of branches that are

let through on each recursion depth is between 20 and

200. This lets us get a non-trivial sample of the decision

tree without making the algorithm absurdly long. The

eleven instances usually run to completion in 7-8 hours,

depending on the random branches that are picked by

the algorithm.

We experimented with this algorithm, when 𝑛 = 4,

where the actual count of all 𝑟-regular families is 1200.

On the vast majority of the trials, the algorithm outputs

a number between 1150-1250, so we are reasonably con-

fident that the algorithm does not give wildly incorrect

results. The average of the results of the last couple of

recorded trials is 1202. At the time of writing, we ran the

algorithm for 𝑛 = 5 seven times, and those results are in

the Table 2. We also include the average of the trials. We

considered excluding the largest and the smallest value

from the average, but because we only have 7 data points

until now, we decided against it.

For more detailed results, see the table in our Github

repository [7]. We remark that in 𝑛 = 5 case, one does

not need to go past 𝑟 = 12, even though 𝑟-regular fami-

lies exist up to 𝑟 = 24, because for each 𝑟-regular family



Algorithm 3 Probabilistic backtracking algorithm

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
𝑑𝑒𝑝𝑡ℎ_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠← [350, 2000, 3000, 200, 1] ◁ Chosen for 𝑛 = 5, 𝑟 = 4.

𝑑𝑒𝑝𝑡ℎ𝑠_𝑙𝑒𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑, 𝑑𝑒𝑝𝑡ℎ𝑠_𝑟𝑒𝑎𝑐ℎ𝑒𝑑← [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]
procedure RecursiveBacktrack(𝑝𝑎𝑟𝑡𝑖𝑎𝑙, 𝑑𝑒𝑝𝑡ℎ)

if 𝑑𝑒𝑝𝑡ℎ = 𝑛 then ◁ End of recursion and it has been checked already.

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
else

for 𝑛𝑒𝑤_𝑝𝑒𝑟𝑚𝑠 ∈ 𝑟-sized subsets of 𝑆𝑖 do ◁ The sets 𝑆𝑖 have been created already.

𝑛𝑒𝑤_𝑝𝑎𝑟𝑡𝑖𝑎𝑙← 𝑛𝑒𝑤_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 ∪ 𝑛𝑒𝑤_𝑝𝑒𝑟𝑚𝑠
if ∃𝑥, 𝑦 ∈ [𝑛], ∃𝑇 ⊆ 𝑛𝑒𝑤_𝑝𝑎𝑟𝑡𝑖𝑎𝑙 : |𝑇 | > 𝑟 ∧ ∀𝜑 ∈ 𝑇 : 𝜑(𝑥) = 𝑦 then ◁ Check overflows.

continue ◁ Too many permutations mapping 𝑥 to 𝑦. Try another one.

else
𝑑𝑒𝑝𝑡ℎ𝑠_𝑟𝑒𝑎𝑐ℎ𝑒𝑑[𝑑𝑒𝑝𝑡ℎ]← 𝑑𝑒𝑝𝑡ℎ𝑠_𝑟𝑒𝑎𝑐ℎ𝑒𝑑[𝑑𝑒𝑝𝑡ℎ] + 1
if randint(1, 𝑑𝑒𝑝𝑡ℎ_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠[𝑑𝑒𝑝𝑡ℎ]) = 1 then

◁ Going further deep in the recursion with probability 1/𝑑𝑒𝑝𝑡ℎ_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠[𝑑𝑒𝑝𝑡ℎ].
𝑑𝑒𝑝𝑡ℎ𝑠_𝑙𝑒𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑[𝑑𝑒𝑝𝑡ℎ]← 𝑑𝑒𝑝𝑡ℎ𝑠_𝑙𝑒𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑[𝑑𝑒𝑝𝑡ℎ] + 1
RecursiveBacktrack(𝑛𝑒𝑤_𝑝𝑎𝑟𝑡𝑖𝑎𝑙, 𝑑𝑒𝑝𝑡ℎ+ 1)

end if
end if

end for
end if

end procedure
RecursiveBacktrack({}, 0) ◁ To start the recursive algorithm off.

for (𝑟𝑒𝑎𝑐ℎ𝑒𝑑, 𝑙𝑒𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑) ∈ zip(𝑑𝑒𝑝𝑡ℎ𝑠_𝑟𝑒𝑎𝑐ℎ𝑒𝑑, 𝑑𝑒𝑝𝑡ℎ𝑠_𝑙𝑒𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑) do
◁ Python’s zip allows us to iterate through two lists in sync.

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 · 𝑟𝑒𝑎𝑐ℎ𝑒𝑑/𝑙𝑒𝑡_𝑓𝑜𝑟𝑤𝑎𝑟𝑑
end for
return round(𝑐𝑜𝑢𝑛𝑡𝑒𝑟) ◁ To have an integral result.

ℱ ⊆ S𝑀 , its complement 𝒢 = S𝑀 ∖ ℱ is (𝑛− 1)!− 𝑟-

regular. This means, that after 12, whatever the true

counts were in the first half will also be in the second

half, reflected about the column 𝑟 = 12. Hence, the total

number of 𝑟-regular families that exist on 5 elements is

then calculated as double of all the numbers, except for

the 𝑟 = 12 case, that should be counted only once.

5. Conclusion
In this paper, we described methods of both getting up-

per bounds for the number of 𝑟-regular families on 𝑛
elements as well as a method to get a heuristic estima-

tion of the true counts. We checked our work for 𝑛 = 4
elements, where to get a fast enough version of the al-

gorithm 2, we did not need to use Theorem 1, so 𝑠 did

not need to be prime, just coprime to 𝑛. The bounds here

quickly converge to the true count of 1200 (see Table 3)

and the estimation heuristic also gets really close to this

number (see the discussion in Section 4).

For the case 𝑛 = 5, one can immediately see that an

𝑟-regular family has size divisible by 5. Therefore, the

number of subsets of a set with 120 elements, whose sizes

are disivible by 5 constitute a trivial (and very excessive!)

bound for the total number of 𝑟-regular families:⃒⃒⃒
𝑅𝑀

⃒⃒⃒
≤

(︃
120

0

)︃
+

(︃
120

5

)︃
+. . .+

(︃
120

120

)︃
≈ 2.658·1035.

The best bound the basic algorithm could

produce before running out of memory was

10757440577219567348022770930 ≈ 1.076 · 1028.

After that, we switched to the algorithm using the

multivariate generating function and we include a

few of the output results in the table too. The lowest

upper bound we obtained at the time of writing is

4263880475370843510800356 ≈ 4.264·1024. Coupled

with the estimation heuristic makes us fairly confident

the upper bounds are approaching the true count.

Let us also contrast our method to the naive approach

of “test every subset of S5 and check 𝑟-regularity”. We

know there are 2120 subsets of S5 and let us say we

could check 230 of them in a second (this is approaching

roughly the clock speed of a modern computer and is

probably a vast exaggeration of the machine’s capabili-

ties) - this approach would thus take 290 seconds, roughly

3 · 109 ages of the universe.



Table 3
Assorted results of the bounding multivariate algorithm for 𝑛 = 4:

𝑚1 𝑚2 𝑚3 𝑚4 𝑠 =
∑︀

𝑖 𝑚𝑖 Time (ms) Bound

1 2 4 8 15 5 5112

1 4 16 64 85 1268 1200

1 6 36 216 259 85609 1200

1 8 64 512 585 1566917 1200

Table 4
Assorted results of the multivariate algorithm for 𝑛 = 5:

𝑚1 𝑚2 𝑚3 𝑚4 𝑚5 𝑠 =
∑︀

𝑖 𝑚𝑖 Time (ms) Bound
Trivial bound - 0 265845599161775836797571384326161716

One-dimensional method - ? 22669475893267033898649677785186

1 2 4 8 16 31 34 1439304569993444516046531000316

1 2 5 11 24 43 99 388799463844737009990155623596

Long list of coefficients method - ∼ 1800000 10757440577219567348022770930

1 3 9 27 81 127 4925 5109628694684595790776607756

16 24 36 54 93 223 48255 540465527918830847892764076

1 4 16 64 592 677 4561658 12647340576853621194664376

1 5 27 141 733 907 16534644 6248117909711976319109756

1 5 25 125 883 1039 28784230 5348880561458906796605766

1 5 25 125 1403 1559 ∼ 85384605 4263880475370843510800356

1 7 49 343 2401 2801 ? 3926985392178291058321116

On the other hand, for reasons not mentioned in this

paper, choosing 𝑀 = {1, 25, 625, 15625, 390625} is

sufficient to get the precise value of

⃒⃒
𝑅𝑀

⃒⃒
. Here, 𝑠 =

406901, and the algorithm evaluates roughly (in fact

less than) 𝑠3 points of the multinomial 𝐺, which means

roughly 6.737 · 1016 evaluations. Pesimistically, let us

say that one 𝐺 evaluation takes a minute, which would

still “only take” about 128, 177, 239, 751 years, which

is 9.3 ages of the universe. All that is to say that the

competition is not even close.

However, the 𝑛 = 6 case is tricky. For one, because the

upper bounding algorithm has time complexity𝑂(𝑠𝑛−1),
raising 𝑛 increases the runtime drastically. To get a mean-

ingful bound, one will probably need to substantially im-

prove this algorithm further. The estimation algorithm

too will not work too well, because the branching factors

in the probabilistic backtracking themselves get way too

big, e.g.

(︀
120
60

)︀
≈ 9.661 · 1034.
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