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Abstract
A Siamese color graph is an edge decomposition of a complete graph into strongly regular subgraphs sharing a spread. Using
a computer aided exhaustive search we complete the classification of Siamese color graphs on 40 vertices.
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1. Introduction
Siamese color graphs were initially introduced by
Kharaghani and Torabi in [1] using algebraic methods
and later studied by Klin, Reichard, and Woldar in [2, 3]
from the geometric point of view. Kharaghani and Torabi
provided an infinite class of Siamese color graphs aris-
ing from an infinite class of balanced generalized weigh-
ing matrices supplied by Gibbons and Mathon in [4].
Klin, Reichard, and Woldar presented a complete list of
Siamese color graphs on 15 vertices and some geometric
Siamese color graphs on 40 vertices [2, 3]. Last year we
completed the classification of geometric Siamese color
graphs on 40 vertices in [5]. Our current aim is to classify
the pseudo-geometric and mixed cases, thereby complete
the classification of Siamese color graphs on 40 vertices.

2. Preliminaries

2.1. Partial geometries and strongly
regular graphs

A partial geometry is defined as an incidence structure
characterized by the parameters (𝐾,𝑅, 𝑇 ). In this struc-
ture, each block (or line) includes 𝐾 points, each point
is on 𝑅 lines, any pair of distinct points lies on at most
one line, and for any line 𝑙 and point 𝑝 not on 𝑙, there are
exactly 𝑇 lines through 𝑝 that intersect 𝑙.

By employing double-counting, it becomes evident
that such a structure comprises 𝐾 ((𝐾−1)(𝑅−1)/𝑇 + 1)
points and 𝑅 ((𝐾−1)(𝑅−1)/𝑇 + 1) lines.

A related concept to an incidence structure is its point
graph (or collinearity graph), which vertices represent the
points of the incidence structure, and two vertices are
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connected by an edge if and only if they lie on the same
line.

A strongly regular graph with parameters (𝑣, 𝑘, 𝜆, 𝜇)
is defined as a regular graph with order 𝑣 and valency
0 < 𝑘 < 𝑣 − 1, where each pair of adjacent vertices
has 𝜆 common neighbors, and each pair of non-adjacent
vertices has 𝜇 common neighbors.

It can be demonstrated that the point graph of any
partial geometry is strongly regular with parameters:

𝑣 = 𝐾

(︂
(𝐾 − 1)(𝑅− 1)

𝑇
+ 1

)︂
,

𝑘 = (𝐾 − 1)𝑅,

𝜆 = (𝐾 − 2) + (𝑅− 1)(𝑇 − 1),

𝜇 = 𝑅𝑇.

Conversely, a strongly regular graph that is the point
graph of a suitable partial geometry is termed geometric.
The pseudo-geometric strongly regular graph has the same
parameter set as a geometric one, but does not come as a
point graph of a given partial geometry.

A spread in a partial geometry is a set of pair-
wise disjoint lines that collectively cover all the
points of the geometry. Since a spread partitions
the 𝐾 ((𝐾−1)(𝑅−1)/𝑇 + 1) points of the partial ge-
ometry into disjoint sets of 𝐾 points, there are
𝐾((𝐾−1)(𝑅−1)/𝑇+1)/𝐾 lines in a spread.

In the point graph, any two points on the same line in
the spread are adjacent, thus forming a clique. If a spread
is present in a partial geometry, it partitions the point
set into 𝑣

𝐾
cliques of size 𝐾 . Consequently, any graph

𝐺 with a disjoint set of equal-sized cliques spanning 𝐺
is said to have a spread.

Consider a spread 𝑆 in a partial geometry with param-
eters (𝐾,𝑅, 𝑇 ). For any distinct lines 𝑙 and 𝑚 in 𝑆, and
any point 𝑝 on 𝑚, exactly 𝑇 lines through 𝑝 intersect 𝑙
at 𝑇 distinct points. Similarly, for any point 𝑞 on 𝑙, ex-
actly 𝑇 lines through 𝑞 intersect 𝑚 at 𝑇 distinct points.
Therefore, precisely 𝐾𝑇 lines intersect both 𝑙 and 𝑚,
intersecting in distinct pairs of points on 𝑙 and 𝑚.
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Lemma 1. Let (𝐾,𝑅, 𝑇 ) be a partial geometry with a
spread. Then, for any two lines 𝑙 and𝑚 in the spread, there
are exactly 𝐾𝑇 other lines that intersect both. Each point
on 𝑙 is contained in exactly 𝑇 of these lines.

A (finite) generalized quadrangle with parameters (𝑠, 𝑡)
is an incidence structure 𝑊 satisfying:

1. Each point is incident with 𝑡 + 1 lines (𝑡 ≥ 1),
and two distinct points are incident with at most
one line.

2. Each line is incident with 𝑠 + 1 points (𝑠 ≥ 1),
and two distinct lines are incident with at most
one point.

3. For any point 𝑥 and line 𝑙 not incident with 𝑥,
there is exactly one line through 𝑥 that intersects
𝑙.

The pair (𝑠, 𝑡) is called the order of 𝑊 . Hereinafter,
a generalized quadrangle of order (𝑠, 𝑡) is referred to as
𝐺𝑄(𝑠, 𝑡).

Generalized quadrangles are a specific case of partial
geometries. Specifically, each generalized quadrangle
of order (𝑠, 𝑡) corresponds to a partial geometry with
parameters (𝑠+ 1, 𝑡+ 1, 1).

Thus, the point graph of a generalized quadrangle of
order (𝑠, 𝑡) is a strongly regular graph with parameters:

𝑣 = (𝑠+ 1)(𝑠𝑡+ 1),

𝑘 = 𝑠(𝑡+ 1),

𝜆 = 𝑠− 1,

𝜇 = 𝑡+ 1.

Each line in𝐺𝑄(𝑠, 𝑡) forms a clique of size 1+𝑠 in the
point graph. There are no other cliques due to the third
condition in the definition of generalized quadrangles,
which ensures that any three points inducing a𝐾3 in the
point graph must lie on the same line.

There is a one-to-one correspondence between spreads
in 𝐺𝑄(𝑠, 𝑡) and spreads in its point graph consisting of
1 + 𝑠𝑡 cliques of size 1 + 𝑠.

By Lemma 1 we have that any two cliques in the spread
are connected by exactly 1 + 𝑠 edges, forming a perfect
matching. This is articulated as follows:

Lemma 2. If the vertices of the point graph of 𝐺𝑄(𝑠, 𝑡)
with a spread 𝑆 are arranged according to their corre-
sponding cliques, the resulting adjacency matrix can be
represented by (1 + 𝑠𝑡) × (1 + 𝑠𝑡) blocks, each of size
(1 + 𝑠) × (1 + 𝑠). The diagonal blocks of the matrix
correspond to the adjacency matrices of the cliques (i.e.,
𝐽1+𝑠 − 𝐼1+𝑠), while the off-diagonal blocks are permu-
tation matrices, representing the incidence matrices of 1-
factors.

A graph 𝐺 with diameter 𝑑 is distance-regular if and
only if there is an array of integers (𝑏0, 𝑏1, . . . , 𝑏𝑑−1;
𝑐1, 𝑐2, . . . , 𝑐𝑑) such that for all 1 ≤ 𝑗 ≤ 𝑑, and any pair
of vertices 𝑢 and 𝑣 at distance 𝑗 in𝐺, 𝑏𝑗 gives the number
of neighbors of 𝑢 at distance 𝑗 + 1 from 𝑣, and 𝑐𝑗 gives
the number of neighbors of 𝑢 at distance 𝑗 − 1 from 𝑣.
This array of integers is known as the intersection array
of a distance-regular graph.

As demonstrated by Brouwer in [6], removing the
edges of a spread S from a strongly regular graph 𝐺
with parameters given by the point graph of 𝐺𝑄(𝑠, 𝑡)
results in a distance-regular graph of diameter 3 with
an antipodal system 𝑆. In this system, the relation of
being at distance 3 in the distance-regular graph 𝐺− 𝑆
is an equivalence relation, with blocks corresponding to
the cliques of 𝑆. Hence Lemma 2 can also be applied to
pseudo-geometric strongly regular graph with spread.

Lemma 3. Let 𝐺 be a pseudo-geometric or geometric
strongly regular graph with a spread 𝑆 consisting of 𝑛
cliques of size 𝑘. If the vertices of𝐺 are arranged according
to their corresponding cliques in 𝑆, the resulting adjacency
matrix can be represented by 𝑛 × 𝑛 blocks, each of size
𝑘 × 𝑘. The diagonal blocks of the matrix correspond to the
adjacency matrices of the cliques (i.e., 𝐽𝑘 − 𝐼𝑘), while the
off-diagonal blocks are permutation matrices, representing
the incidence matrices of 1-factors.

If the strongly regular graph𝐺 is geometric or pseudo-
geometric, the resulting distance-regular graph 𝐺− 𝑆 is
termed geometric or pseudo-geometric, respectively.

2.2. Siamese color graphs
A color graphΓ is defined as a pair (𝑉,ℛ)where𝑉 is a set
of vertices and ℛ is a partition of 𝑉 2, meaning that the
elements of ℛ are pairwise disjoint and

⋃︀
𝑅∈ℛ𝑅 = 𝑉 2.

The relations in ℛ are referred to as the colors of Γ, and
the number |ℛ| of its colors is called the rank of Γ.

In other words, a color graph is any edge coloring
of a complete digraph with a loop at each vertex. We
define an adjacency matrix of a color graph to be a 𝑣× 𝑣
matrix 𝐴 = (𝑎𝑖,𝑗) such that 𝑎𝑖,𝑗 = 𝑡 if (𝑥𝑖, 𝑥𝑗) ∈ 𝑅𝑡
for 𝑅𝑡 ∈ ℛ.

Throughout this paper, we will consider only color
graphs where all their colors represent symmetric rela-
tions, i.e., underlying graphs of non-trivial relations are
simple and undirected, and one of them is the identity
relation..

Let Γ and Γ′ be color graphs. An isomorphism 𝜑 :
Γ → Γ′ is a bijection of 𝑉 onto 𝑉 ′ which induces a
bijection 𝜓 : ℛ → ℛ′ of colors. A weak (or color)
automorphism of Γ is an isomorphism 𝜑 : Γ → Γ. If, in
addition, the induced map 𝜓 is the identity on ℛ, we call
𝜑 a (strong) automorphism of Γ.



In 2003, Kharaghani and Torabi introduced the concept
of a Siamese color graph, i.e., the decomposition of a com-
plete graph into strongly regular graphs sharing a spread.
This notion is formalized in the following definition.

Definition 4. Let𝑊 = (𝑉, {𝐼𝑑𝑉 , 𝑆,𝑅1, 𝑅2, . . . , 𝑅𝑛})
be a color graph such that

1. (𝑉, 𝑆) is a partition of 𝑉 into cliques of equal
size.

2. For all 𝑖, the graph (𝑉,𝑅𝑖) is an imprimitive
distance-regular graph of diameter 3 with antipo-
dal system 𝑆.

3. For all 𝑖, the graph (𝑉,𝑅𝑖 ∪ 𝑆) is a strongly reg-
ular graph with fixed parameters.

Then 𝑊 is a Siamese color graph. We call 𝑆 the spread of
Γ and 𝑛 — the number of distance-regular graphs — the
Siamese rank of 𝑊 .

We shall denote 𝑊 by 𝑆𝐶𝐺(𝑣, 𝑘, 𝜆, 𝜇, 𝜎) where
(𝑣, 𝑘, 𝜆, 𝜇) are the common parameters of all 𝑠𝑟𝑔(𝑉,𝑅𝑖∪
𝑆) and 𝜎 is the valency of the spread 𝑆. Kharaghani and
Torabi used the term Siamese to indicate that all these
strongly regular graphs share a common spread.

Moreover, Kharaghani and Torabi in [1] proved the
existence of an infinite family of Siamese color graphs
with special parameters.

Theorem 5. For any prime power 𝑞, there exists an
𝑆𝐶𝐺(1 + 𝑞 + 𝑞2 + 𝑞3, 𝑞 + 𝑞2,−1 + 𝑞, 1 + 𝑞, 𝑞), which
is an SCG on 1 + 𝑞 + 𝑞2 + 𝑞3 vertices consisting of 1 + 𝑞
strongly regular graphs sharing 1 + 𝑞2 disjoint cliques of
size 1 + 𝑞.

The parameters of the strongly regular graphs men-
tioned above are of interest as they match those of a
point graph of a generalized quadrangle 𝐺𝑄(𝑞, 𝑞). Here-
after, Siamese color graphs with these parameters are
referred to as Siamese color graphs of order 𝑞, denoted
as 𝑆𝐶𝐺(𝑞). According to Brouwer’s Theorem [6], for
this class of Siamese color graphs, the verification of the
second condition in Definition 4 is unnecessary if the
remaining two conditions are met.

A Siamese color graph 𝑆𝐶𝐺(𝑞) is termed geometric if
all its strongly regular graphs (𝑉,𝑅𝑖 ∪ 𝑆) are geometric,
pseudo-geometric if all its strongly regular graphs (𝑉,
𝑅𝑖 ∪ 𝑆) are pseudo-geometric, and mixed if it contains
both pseudo-geometric and geometric strongly regular
graphs (𝑉,𝑅𝑖 ∪ 𝑆).

3. Some Known Results on
Siamese Color Graphs

Geometric Siamese color graphs were studied by Re-
ichard in his thesis [7] and further by Klin, Reichard,

and Woldar in a series of articles [2, 3]. In these papers,
the authors constructed an infinite family of geometric
Siamese color graphs, conjectured to be isomorphic to
the family of Kharaghani and Torabi, and proved the
following result.

Theorem 6 ([2, 3]). Let 𝑊 be a geometric Siamese color
graph of order 𝑞. For each point graph (𝑉,𝑅𝑖 ∪ 𝑆), con-
struct the corresponding generalized quadrangle. Let 𝐵
denote the union of all lines in all resulting generalized
quadrangles. Then the incidence structure

𝒮 = (𝑉,𝐵)

is a Steiner design

𝒮 = 𝑆

(︂
2, 𝑞 + 1,

𝑞4 − 1

𝑞 − 1

)︂
.

Using Theorem 6, Klin, Reichard, and Woldar com-
pletely classified Siamese color graphs of order 2 and
found hundreds of geometric Siamese color graphs of
order 3. The classification of Siamese color graphs of
order 2 was expressed in the following theorem.

Theorem 7 ([2, 3]). Every Siamese color graph on 15
vertices is necessarily geometric. There are exactly two
non-isomorphic Siamese color graphs on 15 vertices. Their
corresponding Steiner triple systems are 𝑆𝑇𝑆(15)#1 and
𝑆𝑇𝑆(15)#7 in the notation of [8].

Last year we contributed to this research in [5] by
completing the classification of geometric Siamese color
graphs of order 3 which can be summarised in the fol-
lowing theorem.

Theorem 8. There are exactly 399 non-isomorphic
Siamese color graphs on 40 vertices. Their corresponding
Steiner systems 𝑆(2, 4, 40) are all non-isomorphic.

4. Siamese color graphs of order 3
According to the definition, Siamese color graphs must
have a spread consisting of ten 𝐾4 and include four
strongly regular graphs with parameters (40, 12, 2, 4).
Among the 28 strongly regular graphs of order 40 [9, 10],
only two posses a spread: one geometric — #26 in [10]
and one pseudo-geometric — #27 in [10]. The geometric
one shall be denoted 𝐺 and pseudo-geometric 𝑃 . For
both of these graphs, the distance-regular graphs have
intersection arrays {9, 6, 1; 1, 2, 9}. The case of a purely
geometric Siamese color graph was resolved in [5]. How-
ever, as we seek to classify both purely pseudo-geometric
Siamese color graphs and the mixed case, we will pro-
vide a characterisation of both types of strongly regular
graphs and their distance-regular graphs.



4.1. Strongly regular and distance-regular
graphs with spread on 40 vertices

The geometric strongly regular graph 𝐺 is the point
graph of𝐺𝑄(3, 3). It contains 40 cliques of size 4. It pos-
sesses 36 different spreads, all of which can be mapped
onto each other under the group of automorphisms. Its
group of automorphisms comprises 51 840 elements,
with the stabilizer of the spread having 1 440 elements.
However, there is only one non-trivial automorphism
that also fixes the order of cliques in the spread. Distance-
regular graph of 𝐺 will be denoted 𝐺1.

The pseudo-geometric strongly regular graph 𝑃 con-
tains only 22 cliques of size 4, with only four possible
spreads. One of these is stable under the group of auto-
morphisms while other three map onto each other. Its
group of automorphisms comprises 432 elements. We
analyse this scenario in two distinct cases, especially
since removing all edges of one of these spreads from
the graph always results in one of two non-isomorphic
distance-regular graphs.

In case of one stable spread, the stabilizer of the spread
is identical to the group of automorphisms and there are
three non-trivial automorphisms that also fix the order
of cliques in the spread. The distance-regular graph of 𝑃
is then denoted 𝑃1.

In case of three isomorphic spreads, the stabilizer of
the spread has 144 elements, and the only automorphism
that fixes the order of cliques in spread is trivial e.g. the
identity. The distance-regular graph of 𝑃 is then denoted
𝑃2.

4.2. (Siamese) twins and preferred twins
In what follows 𝑆 will always be the spread on
40 vertices with cliques {1, 2, 3, 4}, {5, 6, 7, 8}, . . . ,
{37, 38, 39, 40} and any distance regular graph will
have parameters {9, 6, 1; 1, 2, 9} and antipodal system 𝑆.
Graphs 𝐺1, 𝑃1, 𝑃2 mentioned above will be lexicograph-
ically maximal elements of their orbits 𝑂(𝐺1), 𝑂(𝑃1)
and 𝑂(𝑃2) of 𝐴𝑢𝑡(𝑆), respectively.

We say that two distance regular graphs 𝐺 and 𝐺′ are
twins if they are edge-disjoint.

During our computations we found all twins 𝐺,𝐺′

such that 𝐺 is one of the above mentioned graphs
𝐺1, 𝑃1, 𝑃2 and 𝐺′ is isomorphic to one of them. Num-
bers of possible twins are summarised in the following
table.

𝐺∖𝐺′ 𝐺1 𝑃1 𝑃2

𝐺1 1 244 574 11 247 360 2 880
𝑃1 3 374 208 33 567 444 18 144
𝑃2 288 6 048 4 608

Graphs are ordered by the size of their automor-
phism group (|𝐴𝑢𝑡(𝐺1)| = 1440, |𝐴𝑢𝑡(𝑃1)| = 432,

|𝐴𝑢𝑡(𝑃2)| = 144). Let us note that elements of our table
comply with the following lemma:

Lemma 9. Let 𝑛𝑖,𝑗 denote the number of graphs in
Γ
𝐴𝑢𝑡(𝑆)
𝑗 , which are edge-disjoint with Γ𝑖. Then 𝑛𝑖,𝑗 ·

|𝐴𝑢𝑡(Γ𝑗)| = 𝑛𝑗,𝑖 · |𝐴𝑢𝑡(Γ𝑖)|.

Furthermore, we observed that some instances of
distance-regular graphs form twins with the three afore-
mentioned distance-regular graphs in a significantly bet-
ter way than others. Specifically, they produce a much
greater number of Siamese color graphs that contain
them compared to the relatively small number of graphs
that do not contain any such distance regular graphs. A
notion of preferred twin is introduced to describe this
surprising phenomenon in our results. A twin Γ′ of Γ is
defined as a preferred twin if there exists a further divi-
sion of vertices in the cliques of the spread into pairs such
that the mapping 𝜙 : 𝐸(𝐺) → 𝐸(𝐺), which exchanges
vertices in these pairs, is a fixed-point-free involution and
an automorphism on𝐺. The preferred twin𝐺′ is a graph
on the same set of vertices as 𝐺, with edges such that
(𝑎, 𝑏) ∈ 𝐸(𝐺) ⇔ (𝑎, 𝜙(𝑏)) ∈ 𝐸(𝐺′). This mapping 𝜙
shall be called a preferred pairing.

It can be shown that𝐺′ is a strongly regular graph with
the same set of parameters as 𝐺. All the preferred twins
found in our computations consist of two isomorphic
distance-regular graphs .

The graph 𝐺1 has a unique preferred twin. Its auto-
morphism group is identical to𝐴𝑢𝑡(𝐺1). There are three
preferred twins for 𝑃1, forming one orbit under the ac-
tion of 𝐴𝑢𝑡(𝑃1) ∩𝐴𝑢𝑡(𝑆). All the referred twins of 𝑃1

are also preferred twins pair-wise. There is no preferred
twin for 𝑃2.

Remark 10. Let 𝐺 and 𝐺′ be preferred twins, 𝜙 be their
preferred pairing, and 𝑀 and 𝑀 ′ be their adjacency
matrices, respectively. Then 𝑀 ′ can be derived from 𝑀
by applying 𝜙 only to the rows or only to the columns
of 𝑀 . Hence, if the rows and columns within cliques are
arranged so that rows exchanged by 𝜙 are adjacent, this
further subdivides the blocks of size 4×4 in both𝑀 and
𝑀 ′ into 2 × 2 blocks in such a way that each of them
is either all-zero, 𝐼2, or 𝐽2 − 𝐼2. Moreover, 𝑀 and 𝑀 ′

have all all-zero blocks in the same positions, and 𝑀 has
its 𝐼2 blocks in the positions where 𝑀 ′ has 𝐽2 − 𝐼2, and
vice versa. This phenomenon is further illustrated by the
following minor of the matrix 𝐺1 + 2×𝐺′

1.
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From Remark 10, it can be observed that for any preferred
twins 𝐺,𝐺′, the complement of the graph 𝐺+𝐺′ + 𝑆
again appears as𝐻+𝐻 ′ for some preferred twins𝐻,𝐻 ′.
Indeed, it can be easily verified that this is the case.

Lemma 11. For any two pairs of preferred twins 𝐺,𝐺′

and 𝐻,𝐻 ′, it holds that (𝑆 +𝐺+𝐺′) ∼=𝑆 𝐺+𝐺′ ∼=𝑆
𝐻 +𝐻 ′, where ∼=𝑆 indicates that there exists an isomor-
phism belonging to 𝐴𝑢𝑡(𝑆).

This also explains the existence of some mixed Siamese
color graphs. Clearly, in any Siamese color graph with a
preferred twin𝐺,𝐺′, this twin can always be substituted
by some other preferred twin 𝐻,𝐻 ′, for 𝐺 not isomor-
phic to 𝐻 and the result will again be a Siamese color
graph. To explain the prevalence of Siamese color graphs
with preferred twins, the following results will be useful.

Lemma 12. Let 𝐺 be a distance-regular graph and 𝐺′

be its preferred twin. Then |𝐴𝑢𝑡(𝐺+𝐺′)| = 220 × 1440
and 𝐴𝑢𝑡(𝐺+𝐺′) ≤ 𝐴𝑢𝑡(𝑆).

Lemma 13. Let𝑊 = (𝑉, {𝐼𝑑𝑉 , 𝑆,𝐺,𝐺′, 𝐺′′, 𝐺′′′}) be
a Siamese color graph with preferred twins 𝐺,𝐺′, and let
𝜓 ∈ 𝐴𝑢𝑡(𝐺 + 𝐺′). Then 𝑊 ′ = (𝑉, {𝐼𝑑𝑉 , 𝑆,𝐺,𝐺′,
𝜓(𝐺′′), 𝜓(𝐺′′′)}) is also a Siamese color graph.

Remark 14. The size of the automorphism group for any
Siamese color graph is at most 4×(𝐴𝑢𝑡(𝐺)∩𝐴𝑢𝑡(𝑆)) =
5760 for 𝐺 ∈ {𝐺1, 𝑃1, 𝑃2}, as there are at most 4
possible ways to map 4 distance-regular graphs in a
Siamese color graph onto each other. Hence for there is
at most 5760 maps that return the same Siamese color
graph. Number of different but isomorphic Siamese
color graphs containing given preferred twins 𝐺,𝐺′ is
at most 4 × 𝐴𝑢𝑡(𝐺) (if all distance-regular graphs in
Siamese color graph are isomorphic). Compared with
the size of 𝐴𝑢𝑡(𝐺 + 𝐺′) from Lemma 12, and using
Lemma 13 and the pigeonhole principle, there are at
least |𝐴𝑢𝑡(𝐺 + 𝐺′)|/|4 × (𝐴𝑢𝑡(𝐺) ∩ 𝐴𝑢𝑡(𝑆)) × 4 ×
𝐴𝑢𝑡(𝐺)| ≥ (220 × 1440)/(4 × 1440 × 4 × 1440) =
216/1440 ∼ 45.5 non-isomorphic Siamese color graphs
containing the pair 𝐺,𝐺′ of preferred twins.

However, the bound on the size of the group of auto-
morphisms mentioned in Remark 14 is achieved only for
one geometric and one pseudo-geometric Siamese color
graph, and it is usually much smaller. Hence the number

of Siamese color graphs containing any given preferred
pair up to isomorphism is actually much larger.

5. Computer-aided search
Although our primary emphasis in the search was on
pseudo-geometric Siamese color graphs of order 3, the
mixed case was also examined. The classification of
pseudo-geometric and mixed Siamese color graphs is
computationally more difficult in comparison to the clas-
sification of geometric Siamese color graphs in [5]. We
succeeded thanks to significant improvements made in
the original program.

One of the main differences compared to the purely
geometric case is that there are two non-isomorphic
pseudo-geometric distance-regular graphs. Therefore,
for a fixed spread 𝑆, the pseudo-geometric distance-
regular graphs with the antipodal system 𝑆 form two
distinct orbits under 𝐴𝑢𝑡(𝑆). For the sake of simplic-
ity, the following four-step strategy was employed, fo-
cusing on Siamese color graphs containing four iso-
morphic distance-regular graphs, ensuring that all eligi-
ble distance-regular graphs are in the same orbit under
𝐴𝑢𝑡(𝑆). Strategies for Siamese color graphs containing
non-isomorphic distance-regular graphs, either geomet-
ric or pseudo-geometric, will be considered in subsequent
sections.

5.1. Computer-aided search for
pseudo-geometric Siamese color
graphs of order 3

Naive approach:

1. For a fixed spread𝑆, a pseudo-geometric distance-
regular graph Γ1 with the antipodal system 𝑆 is
chosen.

2. All automorphisms of 𝑆 are applied to obtain all
pseudo-geometric distance-regular graphs with
𝑆 as the antipodal system, and the set 𝐴 is found
containing all such distance-regular graphs that
have no common edges with Γ1.

3. Triples Γ2, Γ3, Γ4 of mutually edge-disjoint
distance-regular graphs are identified in 𝐴.

4. The resulting system of Siamese color graphs is
checked for isomorphism.

Various improvements were implemented to expedite
computations. Here we introduce the most significant
modifications made in each step.

Representation of distance-regular graphs : The
spread 𝑆 was fixed with cliques {1, . . . , 4}, {5, . . . , 8},



. . . , {37, . . . , 40}. This choice of 𝑆 facilitated represen-
tation of graphs during computations by:

• adjacency matrix – 40× 40 matrices that can
be divided into 10×10 blocks of size 4×4. From
the Lemma 3, off-diagonal blocks are permutation
matrices. The distance-regular graphs have zero
matrices in place of diagonal blocks – Step 1, 3

• binary number representation – numbers
such that the binary AND of any two returns zero
if and only if the distance-regular graphs they rep-
resent are edge-disjoint. These are generated by
concatenating rows of each block matrix above
the diagonal into one 16 digit binary number, and
then concatenating these – Steps 2 and 3.

• permutation matrix representation – matri-
ces 10 × 10 such that every entry represents a
4 × 4 block in their adjacency matrices. Since
these blocks are either permutation matrices
or all-zero, they can be represented by num-
bers in {0, 1, . . . , 24}. Specifically, all-zero is
represented by 0, and permutation matrices by
{1, . . . , 24} in such a way that the greater the 16
digit number derived by concatenation of rows
of a block, the smaller the entry in matrix repre-
sentation, e.g., 𝐼 is represented by 1 – Steps 1, 2,
and 4.

The binary number representation allows us to compare
individual graphs and to introduce an ordering both on𝐴
a set of all Siamese color graphs. Hereinafter the ordering
of distance-regular graphs in 𝐴 is given by the ordering
of their binary representations. Siamese color graphs are
represented by quadruple of their distance-regular graphs
in descending order and ordered by this representation
as well.

To avoid the repetitions of the Siamese color graphs
in Step 3 we are striving to find only the greatest repre-
sentation for each Siamese color graph.

Step 1:
As we are looking for greatest representation for each of
the Siamese color graphs, Γ1 was chosen as the graph
with the greatest binary number representation. Conse-
quently, all blocks beside the first one in the first row of
the adjacency matrix of Γ1 are 𝐼 , and all entries except
the first one of the permutation matrix representation
are 1.

Step 2:
In order to obtain all images of Γ1 in 𝐴𝑢𝑡(𝑆) the action
of 𝐴𝑢𝑡(𝑆) = 𝑆4 ≀ 𝑆10 = 𝑆10

4 ⋊ 𝑆10 on the cliques of
𝑆 was utilized in the following way. For each 𝜑 in 𝑆10,
an auxiliary graph Γ′ = Γ𝜑1 was constructed, and then a
backtrack procedure was used to filter all 𝜓 ∈ 𝑆10

4 such
that Γ′𝜓 is edge-disjoint with Γ1.

To further accelerate the computation, the fact that
𝐻 = 𝐴𝑢𝑡(Γ1) ≤ 𝐴𝑢𝑡(𝑆) was exploited. Specifi-
cally, only permutations 𝜑 from a transversal of 𝑆10 =
𝐴𝑢𝑡(𝑆)/𝑆10

4 with respect to𝐻/𝑆10
4 were tested, and for

a given 𝜑, only 𝜓 from different cosets of 𝐻 in 𝑆10
4 were

considered.
Step 3:

Graphs in the set 𝐴 are sorted into sets by the second to
fifth block (of size 4× 4) in the first row of its adjacency
matrix. We shall refer to these blocks as 𝐵2, 𝐵3, 𝐵4, and
𝐵5. The first block is zero, since Γ𝑖 is a distance-regular
graph. In Γ1 we have 𝐵2 = 𝐵3 = 𝐵4 = 𝐵5 = 𝐼4.

Firstly the graphs in the set𝐴 are sorted into three sets
denoted𝐴2,𝐴3, and𝐴4, based on the position of 1 in the
first row of 𝐵2 in their adjacency matrices. Since Γ1 has
1 at position (1, 1), adjacency matrices of each graph in
𝐴 must have 1 at exactly one of the positions (1, 𝑖), 𝑖 ∈
{2, 3, 4}. The division of 𝐴 into 𝐴2, 𝐴3, and 𝐴4 follows
naturally. It is easy to see, that for any triples Γ2, Γ3, Γ4

of mutually edge-disjoint distance-regular graphs in 𝐴,
no two Γ𝑖,Γ𝑗 belong to the same𝐴𝑘 . Therefore, without
the loss of generality we can assume that Γ𝑖 ∈ 𝐴𝑖 for
𝑖 = 2, 3, 4.

This is further subdivided into subsets by the blocks
𝐵2, 𝐵3, 𝐵4, and 𝐵5. There are only 4 combinations
of three permutation matrices (of size 4 × 4) such that
the sum of these matrices and an identity matrix yields
an all-ones matrix. A list of all possible combinations
of permutation matrices in the blocks 𝐵2, 𝐵3, 𝐵4, and
𝐵5 for Γ𝑖, 𝑖 = 2, 3, 4 was made and the computations
were distributed in such a way that in each instance we
restricted candidates for Γ2 and Γ3 to graphs with the
prescribed second to fifth block of the first row of the
adjacency matrix.

Previously, when this step was executed for purely geo-
metric Siamese color graphs, possible edge-disjoint pairs
of Γ2 and Γ3 were checked by examining all combina-
tions from two lists. This check involved simply applying
AND to all possible pairs, as this returns 0 exactly when
graphs are edge-disjoint. While this method sufficed for
the purely geometric case, the purely pseudo-geometric
case involved 30 times more possible Γ2,Γ3, and Γ4 ma-
trices. Consequently, comparing two lists would take on
average 900 times longer, and this part of computation
would take almost a month.

However, improvements were made by storing binary
representations of possible Γ2s in a prefix tree data struc-
ture. This class included a method that, given as an input
a binary representation of Γ3, yielded binary represen-
tations of all Γ2 that were edge-disjoint to the given Γ3.
This enhancement significantly accelerated our program,
reducing the computation time to less than an hour1.

1We also ran it for the geometric case and thus have an independent
verification of the results from [5]. This computation previously



Clearly, in each Siamese color graph of order 3, Γ4

is uniquely determined by 𝑆, Γ1, Γ2, and Γ3. It was
found that for given edge-disjoint Γ2 and Γ3, it was
faster to first check whether 𝐾40 − (Γ1 ∪ Γ2 ∪ Γ3)
was a 𝑠𝑟𝑔(40, 12, 2, 4), and only then verify whether
it belongs to set 𝐴. Instances of Γ4 such that Γ4 + 𝑆
is 𝑠𝑟𝑔(40, 12, 2, 4) but Γ4 is not in 𝐴, would be also re-
tained, as they would be useful in constructions of the
mixed Siamese color graphs, however these instances did
not occur.

Interestingly, both in the case of Siamese graphs con-
sisting of four 𝐺1 and of four 𝑃1, one preferred twin of
Γ1 belongs to Γ2 and it has the largest binary represen-
tation in the whole 𝐴. Since we are looking for greatest
representation for each of the Siamese color graphs, we
can divide our search into two cases. First being the case
without the preferred twins, here we discard all the pre-
ferred twins of Γ1 out of 𝐴 and the rest is the same. In
the later case, we start with preferred twins as Γ1,Γ2

and we can discard most of the possible Γ3 in such a way,
that we only check for those Γ3, that have the largest
binary representation in their orbit under the weak au-
tomorphism group of color graph with colors 𝑆,Γ1 and
Γ2.

Step 4:
Instead of testing all obtained Siamese color graphs
for isomorphisms, it suffices to check whether their bi-
nary representation is maximal in the action of 𝐴𝑢𝑡(𝑆).
Graph Γ1 already has a lexicographically maximal bi-
nary representation in its orbit under the action of
𝐴𝑢𝑡(𝑆). Therefore, for any Siamese color graph 𝑊 =
(𝑉, {𝐼𝑑𝑉 , 𝑆,Γ1,Γ2,Γ3,Γ4}), it is sufficient to select one
map 𝜓𝑖 such that 𝜓𝑖(Γ𝑖) = Γ1 for all 𝑖 ∈ {1, 2, 3, 4},
and then check all maps of the form 𝜑𝜓𝑖 where 𝜑 ∈
𝐴𝑢𝑡(Γ1).

5.2. Mixed case
The search for mixed Siamese color graphs is very sim-
ilar to the pure cases. We have to consider how many
geometric and how many and which pseudo-geometric
distance-regular graphs are to be in the final Siamese
color graph and in what order are they to be assigned to
Γ1, Γ2, Γ3, and Γ4. This was facilitated by including a
simple step in the previous cases. In Step 3, we always
first checked if Γ4 + 𝑆 was strongly regular, and only af-
terward verified whether it belonged to set𝐴. As a result
of these computations we have that there are no mixed
Siamese color graphs containing three isomorphic copies
of a distance regular graph. Hence, a mixed Siamese reg-
ular graph contains at most two pairs. However, by the
pigeonhole principle, there must be at least one pair of

took about a day but now was finished in the matter of minutes.

isomorphic distance-regular graphs in a mixed Siamese
color graph.

It is straightforward to count that there are 6 possi-
ble combinations of distance-regular graphs: 3 combi-
nations with two isomorphic pairs and 3 combinations
with one isomorphic pair and one of each remaining
distance-regular graphs. The remaining task is to assign
the order in which these are assigned to Γ1, Γ2, Γ3, and
Γ4. Clearly, for any mixed Siamese color graph and any
distance-regular graph 𝐺 it contains, there exists an iso-
morphic mixed Siamese color graph with Γ1 isomorphic
to𝐺. In other words, for any combination, we can choose
which distance-regular graph is going to be Γ1. Further-
more, the stabilizer of 𝑃1 as Γ1 in 𝐴𝑢𝑡(𝑆) permutes the
block 𝐵2 in adjacency matrix in such a way that we can
arbitrarily choose the order in which the other three
distance-regular graphs are assigned to Γ2, Γ3, and Γ4

without loss of generality. This flexibility allows us to
solve all five cases containing 𝑃1 without further case
work. The only remaining case consists of two 𝑃2s and
two𝐺1s. There, the stabilizer of 𝑃2 as Γ1 in𝐴𝑢𝑡(𝑆) per-
mutes the first permutation block of adjacency matrices
in such a way that we can choose which distance-regular
graph will be Γ2, and hence we can choose both Γ1 and
Γ2 to be isomorphic to 𝑃2, and so both Γ3 and Γ4 must
be isomorphic to 𝐺1.

Further differences lie in Steps 2 and 3, affecting the
set𝐴 and its subsequent subdivision. In Step 2, the repre-
sentatives of the cosets of 𝐻 in 𝐴𝑢𝑡(𝑆) are not applied
to Γ1, but rather to those of 𝐺1, 𝑃1, and 𝑃2 that were
previously assigned to Γ2, Γ3, or Γ4, yielding one set 𝐴
for each of the considered 𝐺1, 𝑃1, and 𝑃2. These sets
are then further divided or filtered in Step 3 in an evi-
dent manner. In Step 4, 𝜓𝑖 is only selected for those 𝑖 for
which Γ𝑖 is isomorphic to Γ1.

Our strategy was implemented using Python [11], GAP
[12], and GAP packages GRAPE and DESIGN [13, 14].

6. Results
Let us begin with some preliminary results which may
be of independent interest. In the Step 3, for Γ1 isomor-
phic to 𝑃2 there were no two graphs Γ2 and Γ3 with no
common edges.

Lemma 15. No Siamese color graphs contains 𝑃2 as a
distance-regular factors.

Moreover, in the Step 3 for Γ1,Γ2 and Γ3 being either
all isomorphic to 𝐺1 or all isomorphic to 𝑃1, all possible
Γ4 were isomorphic to Γ1 as well. Hence, if there is
a Siamese color graph with three isomorphic distance
regular graphs then the fourth is isomorphic to the others
as well.



Theorem 16. Siamese color graphs of order 3 exist in
three forms:

• geometric; all distance-regular factors are isomor-
phic to 𝐺1,

• pseudo-geometric; all distance-regular factors are
isomorphic to 𝑃1

• mixed; two distance-regular factors are isomorphic
to 𝐺1 the rest is isomorphic to 𝑃1.

For the sake of completenesses we state the improved
Theorem 8.

Theorem 8*. There are exactly 399 non-isomorphic
Siamese color graphs on 40 vertices, 357 of them consist of
two preferred twins. Their corresponding Steiner systems
𝑆(2, 4, 40) are all non-isomorphic.

Theorem 17. There are 20 354 pseudo-geometric Siamese
color graphs, 20 030 of them consist of two preferred twins
— in one instance any two of its distance-regular factors are
preferred twins. Remaining 324 pseudo-geometric Siamese
color graphs contain no preferred twins.

Theorem 18. There is 4 492 mixed Siamese color graphs,
4 480 of them consist of two preferred twins: one set of
twins is geometric and the other is pseudo-geometric. The
remaining 12 Siamese color graphs contain no preferred
twins.

For each of the 20 354 pseudo-geometric and 4 492
mixed Siamese color graphs of order 3, some algebraic
properties were computed. These properties pertain to
the given Siamese color graphs and a block design derived
from them in a manner similar to Theorem 6. In the tables
below, each row represents a group of non-isomorphic
Siamese color graphs that otherwise share all computed
properties. The computed properties for Siamese color
graphs include the automorphism group (column marked
as A(SCG)), its orbit on vertices (O(SCG)), and the weak
automorphism group (WA(SCG)). For the block design
derived from cliques of the Siamese color graph, the au-
tomorphism group (A(BD)) and its orbits on the blocks
(O(BD)) were computed. To simplify the table, only the
sizes of the identified groups and orbits are stated. The
last column indicates how many of these non-isomorphic
Siamese color graphs contain at least one preferred twin.
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Table 1: Pseudo-geometric Siamese color graphs for 𝑞 = 3.
|A(SCG)| O(SCG) |A(BD)| O(BD) WA(SCG) # preferred / #
72 4, 36 1728 1, 9, 48 1728 1/1
72 4, 36 1728 1, 9, 48 864 0/1
72 4, 36 1728 1, 9, 48 576 1/1
72 4, 36 1728 1, 9, 48 288 1/1
72 4, 36 1728 1, 9, 48 144 0/1
36 22, 182 576 1, 9, 48 288 2/2
36 22, 182 576 1, 9, 48 144 0/1
36 22, 182 576 1, 9, 48 144 0/1
36 22, 182 576 1, 9, 48 144 0/1
36 22, 182 576 1, 9, 48 72 0/1
24 4, 12, 24 72 1, 3, 4, 6, 8, 36 72 0/2
24 4, 12, 24 48 1, 3, 4, 6, 8, 12, 24 48 4/4
12 22, 62, 122 48 1, 3, 4, 6, 8, 12, 24 24 2/2
12 22, 62, 122 24 1, 22, 3, 42, 63, 122 24 8/8
12 4, 123 24 1, 3, 43, 6, 12, 24 24 4/4
8 42, 84 1728 1, 9, 48 192 0/1
8 42, 84 1728 1, 9, 48 96 0/1
8 42, 84 1728 1, 9, 48 64 0/1
8 42, 84 96 12, 8, 16, 32 96 0/4
8 42, 84 64 12, 8, 16, 32 64 2/4
8 42, 84 64 12, 8, 16, 32 32 1/1
8 42, 84 64 2, 8, 16, 32 64 4/8
8 42, 84 64 2, 8, 16, 32 32 2/2
8 42, 84 32 12, 42, 82, 162 32 8/12
8 42, 84 32 2, 8, 16, 32 32 0/2
8 42, 84 32 12, 8, 16, 32 32 0/2
8 42, 84 32 2, 8, 16, 32 32 0/12
8 42, 84 24 12, 2, 4, 6, 8, 12, 24 24 0/4
8 42, 84 16 12, 22, 43, 83, 16 16 12/20
8 42, 84 16 2, 42, 82, 162 16 2/24
8 42, 84 16 2, 42, 82, 162 8 1/1
8 42, 84 16 12, 42, 82, 162 16 2/25
8 42, 84 16 12, 42, 82, 162 8 1/1
8 42, 84 8 12, 24, 44, 84 8 0/44
6 22, 66 24 1, 3, 43, 6, 12, 24 12 2/2
4 24, 48 576 1, 9, 48 32 0/1
4 24, 48 576 1, 9, 48 16 0/1
4 24, 48 64 12, 8, 16, 32 32 2/3
4 24, 48 64 2, 8, 16, 32 16 2/2
4 24, 48 32 12, 83, 162 32 8/10
4 24, 48 32 12, 83, 162 16 4/5
4 24, 48 32 12, 83, 162 16 0/2
4 24, 48 32 12, 42, 82, 162 16 4/5
4 24, 48 16 12, 83, 162 16 2/4
4 24, 48 16 12, 83, 162 8 1/1
4 24, 48 16 12, 22, 43, 83, 16 8 6/8
4 24, 48 16 12, 44, 83, 16 8 8/8
4 24, 48 16 12, 46, 84 16 40/46
4 24, 48 16 12, 83, 162 8 0/1
4 24, 48 16 2, 42, 82, 162 4 1/1
4 24, 48 16 2, 83, 162 16 2/2
4 24, 48 16 2, 83, 162 8 1/1
4 24, 48 16 2, 83, 162 4 1/1
4 24, 48 16 12, 83, 162 16 0/1
4 24, 48 16 12, 42, 82, 162 8 2/3
4 24, 48 16 12, 83, 162 16 0/1
4 24, 48 16 12, 83, 162 8 2/2
4 24, 48 16 12, 44, 83, 16 16 16/16
4 24, 48 16 12, 83, 162 8 0/1
4 24, 48 8 12, 26, 47, 82 8 152/162
4 24, 48 8 12, 22, 45, 84 4 4/4

The table continues on the next page.



Table 1 – continuing from the previous page.
|A(SCG)| O(SCG) |A(BD)| O(BD) WA(SCG) # preferred / #
4 24, 48 8 12, 22, 45, 84 8 8/8
4 24, 48 8 2, 46, 84 8 0/8
4 24, 48 8 12, 46, 84 8 16/36
4 24, 48 8 12, 46, 84 4 8/8
4 24, 48 4 12, 212, 48 4 112/125
4 410 24 12, 2, 32, 43, 12, 24, 24 0/1
4 410 12 14, 32, 43, 123 12 0/6
4 410 12 1, 33, 124 12 0/2
4 410 8 14, 23, 44, 84 8 56/71
4 410 8 12, 22, 45, 84 8 92/92
4 410 8 25, 86 8 12/14
4 410 8 25, 86 4 6/6
4 410 4 12, 24, 412 4 72/80
4 410 4 110, 412 4 24/45
2 220 8 14, 23, 44, 84 4 28/28
2 220 8 12, 22, 45, 84 4 46/46
2 220 8 25, 86 2 6/6
2 220 4 14, 211, 48 4 2328/2352
2 220 4 14, 23, 412 2 118/118
2 220 4 14, 23, 412 4 236/236
2 220 4 12, 24, 412 2 36/36
2 220 4 110, 412 2 12/12
2 220 2 110, 224 2 16496/16524

Table 2: Mixed Siamese color graphs for 𝑞 = 3.
|A(SCG)| O(SCG) |A(BD)| O(BD) WA(SCG) # preferred / #
36 22, 182 288 1, 9, 242, 36 144 2/2
36 22, 182 144 1, 9, 242, 36 72 0/2
36 22, 182 144 1, 9, 124, 36 144 2/2
36 22, 182 72 1, 9, 124, 36 36 0/1
18 14, 94 72 1, 9, 124, 36 36 0/3
12 22, 62, 122 48 1, 3, 4, 6, 8, 122, 242 24 4/4
12 22, 62, 122 24 1, 22, 3, 42, 63, 123, 24 24 10/10
12 22, 62, 122 24 1, 22, 3, 42, 65, 124 24 10/10
6 22, 66 24 1, 3, 43, 6, 124, 24 12 2/2
6 22, 66 24 1, 3, 43, 6, 122, 242 12 2/2
6 22, 66 12 1, 26, 33, 68, 122 12 2/2
6 22, 66 12 1, 26, 33, 62, 125 12 2/2
4 24, 48 32 12, 43, 82, 164 16 6/6
4 24, 48 16 12, 22, 44, 87, 16 8 4/4
4 24, 48 16 12, 22, 44, 85, 162 8 4/4
4 24, 48 16 12, 47, 86, 16 16 54/54
4 24, 48 16 12, 45, 83, 163 8 4/4
4 24, 48 8 12, 28, 411, 84 8 78/78
4 24, 48 8 12, 26, 48, 86 8 78/78
4 24, 48 8 12, 24, 49, 86 4 2/2
4 24, 48 8 12, 22, 46, 88 4 2/2
4 24, 48 8 12, 24, 45, 88 4 2/2
4 24, 48 8 12, 22, 46, 88 4 2/2
4 24, 48 8 12, 47, 88 8 0/2
4 24, 48 4 12, 214, 416 4 136/137
2 18, 216 4 12, 28, 419 4 0/3
2 220 8 14, 23, 47, 87 4 8/8
2 220 8 12, 22, 48, 87 4 44/44
2 220 4 14, 217, 414 4 530/530
2 220 4 14, 211, 417 4 530/530
2 220 4 14, 29, 418 2 22/22
2 220 4 14, 23, 421 2 22/22
2 220 4 12, 24, 421 2 36/36
2 220 2 110, 242 2 2880/2880
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