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Abstract
The Monte Carlo method, proposed by Dell’Amico and Filippone, estimates a password’s rank within a probabilistic model
for password generation, i.e., it determines the password’s strength according to this model. We propose several ideas to
improve the precision or speed of the estimation. Through experimental tests, we demonstrate that improved sampling can
yield slightly better precision. Moreover, additional precomputation results in faster estimations with a modest increase in
memory usage.
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1. Introduction
Passwords remain a frequently used authentication
method, despite numerous initiatives, technologies, and
implementations aiming for passwordless authentication.
Although the popularity of methods such as Windows
Hello, Passkey, and WebAuthn has increased, the security
of passwords continues to be a significant topic in many
application areas.

Evaluating the strength of a password is useful for pro-
viding users with feedback on their chosen passwords.
This feedback can assist users in selecting stronger pass-
words. Often, the strength is calculated as a password’s
rank, i.e., how many passwords will be generated by
some chosen algorithm until our password is produced.
There are various tools that calculate the strength of the
password, for example zxcvbn [1], or password scorer
tool in PCFG cracker [2].

Dell’Amico and Filippone proposed a Monte Carlo al-
gorithm that estimates a password’s rank within a proba-
bilistic model [3]. The algorithm work for any probabilis-
tic password generation model, and the authors proved
that estimated results converge to the actual ranks.

The Monte Carlo estimator is also used to evaluate
and compare different probabilistic models for password
generation. The original paper compares 𝑛-grams mod-
els [4], the PCFG model using probabilistic context-free
grammar [5], and the Backoff model [6]. Recent example
of using the Monte Carlo estimator is the evaluation of a
password guessing method that employs a random forest
[7].

Our contribution. We propose three ideas for improv-
ing the precision or speed of the Monte Carlo estimator.
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The first idea is to interpolate password’s rank within
the sampled interval it belongs, according its probabil-
ity. The second idea aims to reduce probability overlap
in sampled passwords. Both these ideas, presented in
Section 3.2, seek to improve the estimator’s precision.
The estimation speed for a password, originally based
on binary search, can be enhanced with some additional
data computed in advance (the third idea, see Section
3.3). All ideas have been tested experimentally to assess
their merit. The results are presented in Section 4. Our
experiments demonstrate that improved sampling can
yield slightly better precision. However, the effect of in-
terpolation on precision is inconclusive, and we cannot
rely on this technique to improve precision.

We utilize the reference implementation of the Monte
Carlo estimator, which was published by one of the au-
thors of the original paper on GitHub [8], and we employ
the RockYou dataset for our experiments. Given that our
focus lies on the estimator itself, the choice of dataset is
relatively unimportant.

2. How the Monte Carlo Estimator
works

We mostly follow [3] in this section. Let Γ be a set of all
allowed passwords. A probabilistic password model aims
to capture how humans select password, assigning higher
probabilities to more frequently chosen passwords and
lower probabilities to less common ones. Let 𝑝(𝛼) de-
notes a probability assigned to password 𝛼 by the model,
such that

∑︀
𝛼∈Γ 𝑝(𝛼) = 1. Different models yield differ-

ent probability distributions.
When the model is used for an attack, it enumerates

password in descending order of probability. Therefore,
the strength of a password 𝛼 is the number of passwords
with a higher probability:

𝑆𝑝(𝛼) = |{𝛽 ∈ Γ; 𝑝(𝛽) > 𝑝(𝛼)}|.
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Remark. In this context, the authors do not address the
possibility that the model may assign identical probabili-
ties to multiple passwords, resulting in a non-monotonic
𝑝. The definition of 𝑆𝑝(𝛼) assigns all passwords that
share the same probability the lowest rank in their group.
This approach can be considered prudent from a security
standpoint.

Computing the exact value of 𝑆𝑝(𝛼), for a random 𝛼,
has prohibitively large time complexity. The Monte Carlo
estimator uses sampling and approximation to provide
efficient and sufficiently accurate estimation. It relies on
two properties of the underlying model:

• The model allows for efficiently computing 𝑝(𝛼)
for any password 𝛼.

• There is an efficient sampling method that gener-
ates a password according to the model’s distri-
bution.

Precomputation. The estimator generates a sample Θ
of 𝑛 passwords (sampling with replacement). The sample
Θ = {𝛽1, . . . , 𝛽𝑛} is sorted by descending probability,
i.e., 𝑝(𝛽1) ≥ . . . ≥ 𝑝(𝛽𝑛). The cumulative ranks of
sampled passwords are calculated as follows:

𝑐𝑖 =
1

𝑛

𝑖∑︁
𝑗=1

1

𝑝(𝛽𝑗)
for 𝑖 = 1, . . . , 𝑛.

The estimator needs to store the probabilities. The
cumulative ranks can be easily recomputed. However,
both these arrays are usually significantly smaller than
representation of the model, see Section 3.

Remark. The implementation [8] uses negative log2 prob-
abilities, i.e., scaling 𝑝(𝛽𝑗) to − log2 𝑝(𝛽𝑗).

Estimation. In order to estimate 𝑆𝑝(𝛼) for some pass-
word 𝛼, the probability 𝑝(𝛼) is computed first. Then the
binary search is used to compute the largest index 𝑗 such
that 𝑝(𝛽𝑗) > 𝑝(𝛼). The result, estimated rank of 𝛼 is
𝑆𝑝(𝛼) ≈ 𝑐𝑗 . Hence, the time complexity of the estimator
is 𝑂(log𝑛).

3. Areas for improvement

3.1. Memory requirement
The RockYou dataset contains more than 14 million
unique passwords. The more passwords are used to train
a model, the better and more precise results we can ex-
pect, such as in our case for password strength estima-
tion. However, there is a point beyond which additional
training data provide only negligible improvement, while
further increasing the model’s size. Notably, even the set
of 10,000 most frequent passwords generates models of

substantial size: 3.17MB for 4-gram, 7.45MB for 5-gram,
43.5MB for Backoff, and 0.99MB for PCFG. An attempt
to use up to 10% of the RockYou dataset for training leads
to unacceptable model sizes, where Backoff model being
the largest, as shown in Figure 1.

The model defines how passwords are represented,
generated, and how their probabilities are calculated.
Since these methods are specific for each model, we do
not aim to improve the model size. However, the Monte
Carlo estimator utilizes an additional arrays, where prob-
abilities and ranks of sampled passwords are precom-
puted. The original paper [3] experiments with various
sample sizes up to 100,000 (having “relative error 1%”), but
mostly uses the default sample size of 10,000. The default
sample size requires 160 kB of memory1 and its domi-
nated by the memory required for any model trained on
a dataset of reasonable length.

3.2. Precision
The estimator assigns the same rank 𝑐𝑗 to any pass-
word 𝛼 for which the probability falls within the range
𝑝(𝛽𝑗) > 𝑝(𝛼) ≥ 𝑝(𝛽𝑗+1). Intuitively, passwords with
distinct probabilities should not get the same numeric es-
timate. Certainly, this is not an issue when the password
strength is presented on a reduced scale using descriptive
characteristics like weak – medium –strong – very strong,
or using a traffic lights metaphor red – amber – green.

Idea 1. Interpolate rank values within intervals using an
appropriate function. The most basic approach, without
additional parameters, is linear interpolation. This has no
impact on memory complexity and a negligible impact
on time complexity. Figure 2 shows a graph of password
ranks, on a logarithmic scale, for various models and the
sample size of 10,000. It appears that linear interpolation
on the logarithmic scale should perform well for these
models.

The precision of the estimator depends on the sam-
ple size. More specifically, it depends on the number of
unique probabilities in the set 𝑃 = {𝑝(𝛽1), . . . , 𝑝(𝛽𝑛)}.
We define the overlap of Θ as the fraction of probability
values that are already in the set, and therefore do not
contribute to the estimator’s precision: 1− |𝑃 |/𝑛. Table
1 shows the average overlap for different models and
sample sizes. Surprising differences in overlap are ob-
served among different models. An expected increase in
overlap is observed with an increasing sample size, since
the overlap depends substantially on password proba-
bility distribution, given by the model from which the
passwords are generated. On the other hand, a larger
training dataset results in greater diversity of passwords,
leading to slightly lower overlap.

1Real numbers are represented as the numpy.float64 datatype.
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Figure 1: Size of the model reflecting the number of passwords in a training dataset. The graph on the right excludes the
Backoff model to show other three models more clearly.
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Figure 2: Password ranks corresponding to the position in
the sample

Idea 2. The estimator will sample random passwords
for Θ until it gets 𝑛 unique probabilities. It compresses
sample by discarding duplicate probabilities in such a
way that preserves the cumulative sum of the entry with
the largest index. Hence, the rank calculation remains
intact, and the overlap of the resulting Θ is be 0. Since
the sampling is done in precomputation phase, it does
not impact the estimation time or memory complexity
in any way.

Table 2 shows how many passwords must be sampled
using a trained model to achieve the target size of the
sample with distinct probabilities.

3.3. Estimation speed
The binary search employed in the original estimator is
fast enough for assessing individual passwords. However,
when the estimator is used to evaluate or compare differ-
ent models and their variants, the ranks of a large number

of passwords need to be estimated. An optimization can
be relevant in these scenarios.

Idea 3. Divide the interval of possible probability values
𝑝(𝛽𝑖), in our case expressed as negative log2 values, into
𝑡 intervals (bins): [0, 𝜏1), [𝜏2, 𝜏3), . . . , [𝜏𝑡−1,∞), where
0 < 𝜏1 < . . . < 𝜏𝑡−1. For each interval, for 1 ≤ 𝑖 ≤ 𝑡,
we calculate minimal and maximal look-up indices that
narrow interval for binary search (we use 𝜏0 = 0 in the
following equations):

LUmin(𝑖) = max{1 ≤ 𝑗 ≤ 𝑛 | − log2 𝑝(𝛽𝑗) ≥ 𝜏𝑖−1},
LUmax(𝑖) = min{1 ≤ 𝑗 ≤ 𝑛 | − log2 𝑝(𝛽𝑗) < 𝜏𝑖−1}.

The estimator is adapted accordingly. Given a
password 𝛼, we calculate an appropriate interval
such that − log2 𝑝(𝛼) ∈ [𝜏𝑖−1, 𝜏𝑖). Then, the bi-
nary search is performed within the set of indices
{LUmin(𝑖), . . . , LUmax(𝑖)}, instead of full set {1, . . . , 𝑛}.
We expect to narrow the interval for the binary search
substantially, so the benefit of fewer comparisons will
be measurable. Trivially, the precision of the estimator
remains unchanged.

The price paid is the cost of computing LUmin and
LUmax arrays, which is simple one-time precomputation,
and small memory needed to store these arrays in the
estimator2.

4. Experiments
We implement the ideas presented in the previous section
and present the results of our experiments.

2For example, 100 intervals “cost” approximately 7.8 kB, even with
a wasteful representation using Python’s int objects for stored
indices and lists for the arrays



training set sample size 4-gram 5-gram Backoff PCFG

500,000 10,000 13.6% 16.5% 20.4% 44.6%
30,000 20.6% 25.8% 31.6% 60.8%
50,000 24.8% 30.5% 37.3% 67.1%

1,000,000 10,000 12.4% 14.7% 17.2% 43.1%
30,000 19.1% 22.4% 27.6% 58.5%
50,000 22.4% 26.7% 33.2% 64.8%

Table 1
Overlap percentage for different models and sample sizes. Models are trained on 500,000 and 1,000,000 passwords using the
most frequent passwords from the RockYou dataset. Every number is an average of 3 experiments.

target Sampled passwords
sample size 4-gram 5-gram Backoff PCFG

10,000 11,689 12,239 12,894 23,483
30,000 38,795 42,032 47,178 122,865
50,000 68,358 75,953 90,123 258,489

Table 2
Average number of sampled passwords required to achieve
the desired sample size with distinct probabilities. Models
are trained on 500,000 passwords using the most frequent
passwords from the RockYou dataset. Every number is an
average of 10 experiments, rounded to the nearest integer.

4.1. Precision
The ideas aimed at improving precision apply to the
Monte Carlo Estimator, regardless of the underlying
model. We do not attempt to modify the models. For
example, if password -1-1-1-1 is assigned inf3 as neg-
ative log2 probability in the PCFG model, because the
pattern is outside of the trained grammar, we do not try to
“fix this”. Moreover, we do not compare the performance
of the models to each other.

We assess the impact of our ideas on the real ranks
of password generated by the models. Similarly to the
original paper [3], we generate all passwords up to some
probability threshold. The rank of a password is its posi-
tion in the list sorted by the probabilities assigned by the
model to the passwords.

The first experiment uses the PCFG model trained on
10 million passwords from the RockYou dataset. The
threshold for password generation was set at 20, i.e., all
passwords with probability at least 2−20 were generated
– there were 91,693 passwords in this dataset (let’s denote
it 𝑇 ). We consider various combinations of proposed
ideas:

• original – a reference implementation of the esti-
mator [8];

3Python’s float(’inf’) value

• interpolation – interpolate rank calculation
within the interval between two adjacent proba-
bilities (Idea 1);

• sampling – improved sampling with 𝑛 unique
probabilities (Idea 2);

• all – a combination of interpolation and sampling.

Let rr(𝛼) denote the real rank of password 𝛼 ∈ 𝑇 , and
let er(𝛼) denote the rank estimated by a particular variant
of the estimator. The weighted error of the estimator on
the password set 𝑇 is calculated as follows:∑︁

𝛼∈𝑇

𝑝(𝛼) |er(𝛼)− rr(𝛼)|.

The weighted error assumes that the estimators are used
to asses passwords chosen by humans, following the
original distribution. We also consider a simple error for
completeness:

1

|𝑇 |
∑︁
𝛼∈𝑇

|er(𝛼)− rr(𝛼)|.

variant weighted error simple error

original 16.54 101.11
interpolation 15.33 90.63
sampling 11.79 70.63
all 10.86 63.10

Table 3
Weighted and simple errors of various estimator variants. Ev-
ery number is an average of 100 experiments.

Table 3 shows the results of our experiment. We per-
formed 100 experiments. We have to warn the reader –
the reported errors are sensitive to the particular pass-
word distribution sampled into Θ. Unsurprisingly, the
sampling (Idea 2) helps to reduce estimation errors in gen-
eral. The situation with interpolation (Idea 1) is mixed,
with a substantial fraction of experiments showing worse
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Figure 3: The simple difference error (on the left) and the relative error (on the right) of the original and the "all" strategy.
Both graphs display results for 50,000 of the most probable passwords from the PCFG model. The numbers are the average
values from 100 experiments.

statistics. The reason is that the interpolation makes the
error worse when passwords in Θ already “overshoot”
their true ranks. Taking the same rank without inter-
polation compensates for this. Therefore, interpolation
cannot be recommended for improving the precision of
the estimator. On the other hand, it helps with the “same
rank” problem, when different passwords are assigned
the same rank by the estimator.

Figure 3 compares visually the original variant with
the “all” variant. It illustrates the simple difference of
calculated rank and estimated rank. It also shows the
relative error of the estimators. As expected, based on
the convergence proof in [3], the relative error is rather
small in both cases.

4.2. Estimation speed
We tested two configurations: the first one with 100 inter-
vals (bins), and the second with 1,000 intervals. Negative
log probabilities are divided into fixed intervals [0, 1),
[1, 2), . . . , [99,∞) for the first case, and into [0, 0.1),
[0.1, 0.2), . . . , [99.9,∞) for the second case, respectively.
Both configurations were tested with four different sizes
of Θ. Table 4 shows the relative speed of different vari-
ants with respect to the baseline, which is the original
algorithm with |Θ| = 10000. The results confirm a
moderate speed-up for 100 intervals and a substantial
speed-up for 1,000 intervals.

5. Additional observation and
conclusion

Since passwords in Θ are generated according to their
probability, with sufficiently large sample size, we expect
that for some 𝑘, the top-𝑘 most probable passwords will
be in the correct order at the beginning of Θ. Therefore,

Estimation performance
sample size original 100 bins 1000 bins

10,000 1.00 0.92 0.37
30,000 1.08 1.00 0.39
50,000 1.13 1.04 0.40

100,000 1.20 1.10 0.40

Table 4
Average relative estimation performance, where the baseline
1.00 is the estimation performance of the original binary
search for the sample size 10,000. Experiment uses 106 ran-
domly generated passwords by the PCFG model. Every num-
ber is an average of 10 experiments, and rounded to the two
decimal places.

simply reporting the order of these top-𝑘 passwords by
the estimator can be beneficial to the precision. Figure
4 illustrates this phenomenon for the PCFG model and
the sample size of 10,000, where approximately the top
180 passwords have the exact rank as their position in
Θ. However, further down the precision quickly deterio-
rates.

An interesting question is if we can improve the esti-
mator’s precision by compensating for unusually large or
small jumps (differences) between adjacent probabilities
in the sampled passwords.

An area outside this paper that deserves further focus
is the precision of the estimator for low-probability pass-
words. The estimator’s precision worsens for passwords
with high ranks. A potential approach might use a dif-
ferent or additional sampling methods that focus on less
probable passwords, so that we can cover this part of the
probability space better.
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