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Abstract
Cryptographic algorithms and protocols often need fresh random numbers as parameters (e.g. nonces). Failure to satisfy this
requirement lead to vulnerable implementation and can result in security breach. We show how affine type systems and static
type checking can be used to enforce the correct generation of a new fresh random number for each function invocation.
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1. Introduction
The security of various cryptographic constructions re-
lies on unique or even unpredictable values. Examples
include nonces in cryptographic protocols, initializa-
tion vectors in modes of symmetric encryption, salts
in password-based key derivation functions and others.
These values are often generated as a random numbers
of prescribed length.

Programmers who are not experts in cryptography
might assume that it is not strictly necessary to generate
a new random number every time. Some of them may be
lazy and provide fixed numeric constant instead of a new
random number for each use. After all, the cryptographic
construction will “correctly”1 work even with this fixed
numeric constant. However, if the no-reuse principle is
not followed, it can lead to a serious security vulnerability
in the resulting application (which is not visible at first
glance). A well-known example of this issue is “forbidden
attack” for AES-GCM [1], but e.g. see also [2].

In this paper, we propose a method which demonstrate
how to implement a cryptographic library that would
allow the compiler to detect incorrect (i.e. repeated) use
of such one-time random numbers at compile time. We
will divide this task into two main parts:

1. Ensuring Proper Random Number Generation:
In the first part, we ensure that the function ex-
pecting a random number gets as an argument
a random number generated by an “approved”
method. E.g. a true random number generated
by a specialized hardware device and not just
some pseudorandom number generated by weak
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1Depending on the cryptographic construction, it might (for exam-
ple) still correctly encrypt and decrypt messages.

algorithm. Alternatively, we can enforce the use
of a specific, vetted software implementation.
For this first part, we will employ abstract data
types with hidden data constructors, to ensure
that only approved random number generators
can produce nonce values.

2. Preventing Reuse of Random Numbers:
In the second part, we will ensure that once the
generated random number is used, it cannot be
reused for the second time.
Substructural type systems which enforce single
(or at most single) use semantics on values, can
be utilized for this purpose. This approach can be
applied not only to languages that support linear
(single use) types but also to any language with
similar features, such as ownership and borrow-
ing in Rust, affine types in Haskell, or uniqueness
types in Clean. We will illustrate this concept
using the Rust programming language.

In Section 2, we describe the key features of abstract
data types necessary to enforce proper random number
generation. Next, in Section 3, we introduce the funda-
mental concepts of substructural type systems, focusing
on linear and affine type systems that provide strict con-
trol over resource usage, which we utilize to prevent the
reuse of random numbers. In Section 4, we then explore
the unique features of the Rust programming language,
including traits, ownership, move semantics, and bor-
rowing rules, which we leverage to implement the nonce
module. Finally, in Section 5, we demonstrate how to use
the nonce module in a cryptographic library to enforce
correct nonce usage.

2. Abstract data types
Abstract data types (in short ADTs) serve as a fundamen-
tal abstractionmechanism in computer science, providing
a formal specification for data types that decouples their
behavior from their concrete implementation. ADTs are
defined by their external behavior, such as operations like
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insertion and deletion, while concealing the underlying
implementation details from the user. This encapsulation
grants implementers the flexibility to employ any inter-
nal data structures or modify their approach in the future.
As long as the external behavior (interface) remains con-
sistent, existing code utilizing the ADT will continue to
function without requiring modifications to accommo-
date changes in the internal implementation. In this way
ADTs also promote software reuse and modularity.

ADTs are widely used and supported in many standard
programming languages, including C++, Java, or Pascal.
They are typically realised as modules or objects that
hide internal implementation details and expose only the
public interface to the client. For instance, if we want to
implement a stack (a LIFO data structure) as an ADT, we
would provide public functions such as push, pop, and
others and a type Stack for variables holding values of
this ADT. But the important aspect is, that we do not
disclose to the client any information on how the stack
is internally implemented. It could be a linked list, an
array, or something totally different. For example, if a
more efficient data structure becomes available, the inter-
nal implementation of the ADT can be updated without
affecting the client code, as long as the public interface
remains unchanged. Additionally, we also do not pro-
vide any external means for creating a new stack (since
external users lack knowledge of the internal details of
the Stack type). The only way to create a new stack is
to call a function from the module, which returns a new
Stack value (or to create a new instance if objects are
used instead of modules).

ADT are particularly useful for constraining access
and preventing invalid states. By defining the stack as
ADT, the module implementer can maintain strict con-
trol over its representation. Clients cannot accidentally
or intentionally alter any of the stack’s representation
invariants. This ensures that the stack remains in a valid
state, and its operations behave as expected. Therefore
ADTs enhance code maintainability and readability.

We can use this technique to create a nonce module
in the Rust programming language with Nonce abstract
data type (see Listing 1).

We have defined a public struct type Nonce in Rust, en-
capsulating a private random value of type u128. Direct
instantiation of structs with private field is prohibited.
In this case for instance it is invalid to write let nonce
= Nonce { val: 42 }. The only way for the client to
create a nonce is to invoke a public constructor method
like let mut nonce = nonce::Nonce::new().

Since the client needs to call the new method, we can
ensure that on line 12, we, as implementers, select the
appropriate system function to generate a new random
number. This could potentially involve using a hardware
RNG for added security. However, to keep this example
simple, this step is not included.

1 mod nonce {
2 // A public struct with a private
3 // random value of type u128
4 pub struct Nonce {
5 val: u128,
6 }
7

8 impl Nonce {
9 // A public constructor method

10 pub fn new() -> Nonce {
11 use rand::prelude::*;
12 Nonce { val: random() }
13 }
14

15 // A public getter method
16 pub fn get(self: &Self) -> &u128 {
17 &self.val
18 }
19 }
20

21 // The Copy and Clone traits are
22 // intentionally not implemented
23

24 // DerefMut is needed to modify through
25 // a dereference, so since only Deref
26 // is defined, nonce cannot be modified
27 use std::ops::Deref;
28 impl Deref for Nonce {
29 type Target = u128;
30 fn deref(self: &Self) -> &u128 {
31 &self.val
32 }
33 }
34 }

Listing 1: Implementation of nonce module in Rust

While abstract types are a powerful means of con-
trolling the structure and creation of data, they are not
sufficient to limit the ordering and number of uses of
values and functions. As another example, we can men-
tion e.g. files. There is no (static) way to prevent a file
from being read after it has been closed [3] utilising only
ADTs. Additionally, it is challenging to enforce rules pre-
venting clients from erroneously closing files multiple
times or forgetting to close them altogether. Similarly,
with our Nonce example, there is no static way to stop
the client from using one nonce value multiple times just
by using ADTs alone. However, this can be enforced
in programming languages that support the appropriate
substructural type system.



3. Substructural type systems
Before presenting our proposed solution using substruc-
tural type system, it’s essential to provide a brief overview
of what substructural type systems are [3] and how they
are implemented within the well-known Rust program-
ming language [4].

Linear and affine type systems are a special case of sub-
structural type systems. They are particularly beneficial
in scenarios where strict control over resource usage is
crucial and we need a way for constraining usage of the
interface of this resource (imagine resources like files or
memory). By utilizing linear (or affine) types, we can en-
sure that certain values or operations are used exactly (or
at most) once and in some way in the correct sequence,
thereby preventing common programming errors and en-
hancing the security and reliability of software systems.

In the context of our forthcoming solution, we will
demonstrate how substructural type system in Rust en-
able us to enforce the one-time use of random numbers,
thereby mitigating potential security vulnerabilities as-
sociated with nonce reuse in cryptographic applications.
This approach not only leverages Rust’s robust type sys-
tem but also showcases the practical application of ad-
vanced type theories in real-world software development.

3.1. Structural Properties
In accordance with Pierce’s work [3] based on simply-
typed lambda calculus, we will treat the type-checking
context, denoted as Γ, as a straightforward list of variable-
type pairs, 𝑥 ∶ 𝜏𝑥, where 𝑥 represents a variable and 𝜏𝑥
denotes its type.

The comma operator (,) serves to append a pair to the
end of the type-checking context (e.g. Γ1, 𝑥 ∶ 𝜏𝑥), or to
concatenate two type-checking contexts (e.g. Γ1, Γ2). Let
us denote by Γ ⊢ 𝑒∶𝜏 that, within the context Γ, we can
type-check that the term 𝑒 has the type 𝜏.

We denote the substitution of the term 𝑦 for the free
variable 𝑥 in the term 𝑒 by [𝑥 ↦ 𝑦]𝑒. We assume that 𝑥 and
𝑦 have the same type, ensuring that the resulting term
[𝑥 ↦ 𝑦]𝑒 is also correctly typed (in simply-typed lambda
calculus). Instead of writing [𝑥3 ↦ 𝑥4]([𝑥1 ↦ 𝑥2]𝑒), we
use the more concise form [𝑥1 ↦ 𝑥2, 𝑥3 ↦ 𝑥4]𝑒.

premise
conclusion

(Typing rule)

Finally, by typing rule we mean that if its premise is
true, then we can conclude that its conclusion also holds.

Lets discuss three basic structural properties. The first
property, exchange, indicates that the order in which
we write down variables in the context is irrelevant. A
corollary of exchange is that if we can type check a term
with the context Γ, then we can type check that term
with any permutation of the variables in Γ.

context

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞Γ1, 𝑥∶𝜏𝑥, 𝑦∶𝜏𝑦, Γ2 ⊢ 𝑒∶𝜏
Γ1, 𝑦∶𝜏𝑦, 𝑥∶𝜏𝑥, Γ2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
permutated context

⊢ 𝑒∶𝜏
(Exchange)

The second property, weakening, indicates that adding
extra, unneeded assumptions to the context, does not
prevent a term from type checking.

Γ ⊢ 𝑒∶𝜏
Γ, 𝑥∶𝜏𝑥⏟

unneeded assumption

⊢ 𝑒∶𝜏
(Weakening)

Finally, the third property, contraction, states that if we
can type check a term using two identical assumptions
(𝑥2 ∶ 𝜏𝑥 and 𝑥3 ∶ 𝜏𝑥) then we can check the same term
using a single assumption.

Γ, 𝑥2∶𝜏𝑥, 𝑥3∶𝜏𝑥 ⊢ 𝑒∶𝜏
Γ, 𝑥1∶𝜏𝑥 ⊢ [𝑥2 ↦ 𝑥1, 𝑥3 ↦ 𝑥1]𝑒∶𝜏

(Contraction)

In his book [3], Pierce employs simply-typed lambda
calculus as a foundation to introduce the concepts of
linear and ordered lambda calculus. While the intricate
details of these theoretical underpinnings are beyond the
scope of our paper, we encourage interested readers to
consult Pierce’s work for a comprehensive exploration.
His book provides an in-depth discussion on the princi-
ples of substructural type systems and their applications,
making it an valuable resource for those looking to delve
deeper into this topic.

3.2. Substructural Type Systems
A substructural type system is any type system that is
designed so that one or more of the structural properties
do not hold [3]. Different substructural type systems
arise when different properties are withheld.

Linear type systems ensure that every variable is used
exactly once by allowing exchange but not weak-
ening or contraction.

Affine type systems ensure that every variable is used
at most once by allowing exchange and weaken-
ing, but not contraction.

Relevant type systems ensure that every variable is
used at least once by allowing exchange and con-
traction, but not weakening.

Ordered type systems ensure that every variable is
used exactly once and in the order in which it is
introduced. Ordered type systems do not allow
any of the structural properties.



The Fig. 1 below2 can serve as a mnemonic for the
relationship between these systems. The system at the
bottom of the diagram (the ordered type system) admits
no structural properties. As we proceed upwards in the
diagram, we add structural properties: E stands for ex-
change; W stands for weakening; and C stands for con-
traction.

unrestricted (E,W,C⇒ structural)

affine (E,W) relevant (E,C)

linear (E)

ordered (none)

+E

+W +C

+C +W

Figure 1: Relationship between linear and other substructural
type systems.

All type systems below unrestricted (aka. structural)
are called substructural type systems. It might be pos-
sible to define type systems containing other combina-
tions of structural properties, such as contraction only
or weakening only, but so far researchers have not found
applications for such combinations [3]. Consequently,
they are excluded from the diagram.

4. Rust
Ownership is Rust’s most unique feature which is closely
related to the concept of substructural type systems in
that both systems enforce strict rules about how data is
accessed and modified to ensure safety and correctness.
It enables Rust to make memory safety guarantees with-
out needing a garbage collector. In Rust, the memory is
managed through a system of ownership with a set of
rules, that the compiler checks at compile time. None of
the ownership features slow down the program while it
is running (unlike garbage collection).

4.1. Rust traits
Traits in Rust serve as a way to define shared behavior.
They are similar to interfaces in other programming lan-
guages. They allow to specify methods that types must
implement, enabling polymorphism and code reuse. For
more see e.g. [5].

2Fig. 1 is based on similiar image in [3].

In Rust, there are several important standard traits
that provide foundational functionality and are widely
used. For the purposes of this paper, it is important to
understand, that the Copy and Clone traits allow for du-
plication of value. Therefore, we do not implement them
for the Nonce. The Deref trait only allows for reading a
stored value. To enable writing, the DerefMut trait is nec-
essary, which we also do not implement. Programmers
can access the stored u128 value using the nonce.get()
method or by dereferencing with *nonce. Both return
an immutable reference (as in immutable borrowing).

4.2. Ownership rules
In Rust, when a value is assigned to a variable, the vari-
able becomes the “owner” of that value. When the owner
variable goes out of scope, the value is automatically deal-
located. Rust enforces that there can only be one owner
for a value at a time. This is the essence of substructural
type system in Rust [6]:

• Each value has a variable that is called its owner.
• There can be only one owner at a time.
• When the owner goes out of scope, the value will

be dropped (memory will be deallocated).

4.3. Move semantics
Move semantics in Rust is a fundamental concept that
allows the transfer of ownership of a value from one
variable to another. When a value is assigned from one
variable to another (e.g. let s2 = s1;) or passed to
a function, ownership of the value is transferred (aka
moved) from s1 to the new variable s2 unless the value
implements the Copy trait [7]. In other words, variable
bindings have “move semantics” if their type does not
implement the Copy trait; otherwise, they have “copy
semantics”.

After a move, the original variable is no longer valid
and cannot be used. Move semantics can improve per-
formance by avoiding deep copies of data. Instead of
copying the data, Rust only copies the pointer to the data
and invalidates the original pointer. Single owner allows
for values to be deallocated as soon as their owner goes
out of the scope.

4.4. Borrowing rules
If you need to access or modify a value without transfer-
ring ownership, you can borrow a reference to it. There
are two types of borrowing in Rust:

• Immutable borrowing:
You can have multiple immutable references to a
value, but you cannot modify the value through



these references. This prevents data races be-
cause multiple threads can read a value without
the risk of it being modified simultaneously.

• Mutable borrowing:
You can have only one mutable reference to a
value, and no other references (mutable or im-
mutable) can coexist with it. This enforces exclu-
sive access to the value, ensuring that only one
part of the code can modify it at a time.

1 fn borrowing() {
2 let s1 = String::from("Hello");
3 // ^^ move occurs because `String` does
4 // not implement the `Copy` trait
5

6 let s2 = s1; // value moved from s1 to s2
7

8 println!("{}, world!", s1);
9 //error: val. borrowed ^^ here after move

10 }

Listing 2: Classical example of ownership rules

We will demonstrate some of these rules on Listing 2.
On line 2 we create a string and assign its value into
variable s1. This variable is now the only owner of the
string. Then on line 6 we move value from variable s1
to new owner – variable s2 (because String does not
implement Copy trait). Now s2 is the only owner of
the string value. That is the reason, why we can not
use variable s1 on line 8 to borrow the string value to
println! function. But we could use s2 for this. When
s2 comes out of scope the string value can be deallocated
from memory. This is illustrated in Fig. 2 on the right3.
After assigning to s2 the value from s1, variable s2 points
to the same memory on the heap, but s1 can not be used
for dereferencing anymore. This is used primarily for
memory management without the need for a garbage
collector or explicit deallocation. For more see e.g. [6].

5. The solution
The solution in Rust is syntactically very simple because
it is well aligned with Rust syntax. Usually, when func-
tions in Rust take arguments, they are passed as refer-
ences (with & before variable name). This way value is
not moved to the parameter from the local variable (it is
just borrowed). However, we can prevent borrowing by
not taking reference as the argument and not implement-
ing Copy trait in Nonce type.

3Fig. 2 is based on similiar image in [6].

stack heap

s1
ptr

len 5

capacity 5

s2
ptr

len 5

capacity 5

index value
0 h

1 e

2 l

3 l

4 o

Figure 2: Memory representation of variables s1 and s2

On Listing 3 we implement function need_new_
random_u128_every_time to demonstrate function sig-
nature for functions that require fresh random value for
every call. The body of the function is not significant,
but we demonstrate, that the nonce value can be used
repeatedly inside library implementation, which is often
needed. We also implement Deref trait, so * can be used
on line 10 instead of longer nonce.get() from line 7.

1 fn need_new_random_u128_every_time(
2 nonce: nonce::Nonce
3 ) {
4 let _tmp = nonce.get();
5

6 println!("Nonce param value: {}",
7 nonce.get());
8

9 println!("Nonce param value: {}",
10 *nonce);
11 }

Listing 3: Example of function with nonce as argument

When function need_new_random_u128_every_time
is called, then value ownership is moved from the local
variable to the argument and thus local variable can not
be used anymore. As an example, if in Listing 4 we
comment out line 7, we will get compile time error “value
used here after move” on the next line.

6. Conclusion
We have demonstrated how to use abstract data types and
substructural type systems for enforcing the freshness of



1 fn main() {
2 // Structs with private fields can be
3 // created only using public constructors
4 let mut nonce = nonce::Nonce::new();
5 need_new_random_u128_every_time(nonce);
6

7 nonce = nonce::Nonce::new();
8 need_new_random_u128_every_time(nonce);
9

10 need_new_random_u128_every_time(
11 nonce::Nonce::new()
12 );
13 }

Listing 4: Example of nonce usage

nonces for cryptographic library function calls. In Rust,
the syntax is very straightforward. This solution can be
implemented also in other languages with affine or linear
type system, like Haskell, which experimentally supports
linear types from version 9.0.1. But syntax, in this case,
is not so clear as in Rust.
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