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Abstract
The number of cyber-attacks is constantly growing, and their sophistication is increasing due to new techniques and strategies
of attackers. Organisations must continuously improve their methods of detecting and responding to these attacks to protect
their networks and information systems. The time between the occurrence of a security incident and its identification takes
an average of 100 - 200 days, with organisations having a response time of between 50 - 70 days. Our work aims to reduce
this time so that organisations can respond to security incidents more quickly. In this work, we use graph theory for forensic
analysis in the Windows operating system. The main objective of the work is to identify digital evidence and the relationships
between them. For this purpose, we work with datasets from various Capture the Flag (CTF) competitions. We describe the
processing stages of the digital evidence and their transformation into graphs and then identify anomalies and cycles in the
graphs in order to provide readers with a deeper insight.

Keywords
graph theory, graph algorithms, forensic analysis, artifact, cybersecurity

1. Introduction
In the digital world, data and network security is a key
concern for organisations of all sizes and industries. With
the rise of cyber-attacks and their ever-changing nature,
organisations must constantly adapt to protect their as-
sets and ensure the security of their information. Cyber
attackers are constantly moving forward and developing
new ways to penetrate systems and gain unauthorised
access to sensitive data. As these attacks become more so-
phisticated, the challenge for organisations is to identify
attacks as quickly as possible and respond appropriately
and ideally.

One of the main issues in the response to security at-
tacks is the time between the occurrence of a security
incident, its identification, and the subsequent response.
This time can be non-trivial, often measured in hundreds
of days, giving attackers ample time to cause damage
without being detected. In addition, even after a secu-
rity incident is identified, an organisation needs time to
resolve it and restore normal operations.

Our research focuses on the security incident response
process, including digital forensics. The main aim is to
reduce the time interval required to resolve a security
incident and provide organisations with a way to respond
more quickly and effectively to security incidents. In
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that article, we focus on how graph theory applied to
individual forensic artefacts available in the Windows
operating system and the NTFS file system can help us.
Graph analysis allows us to identify the relationships
between different digital evidence and their attributes,
thereby better understanding the nature of the attack.

To achieve this objective, we specify the following
partial research objectives:

• What attributes of forensic artefacts are best
suited for graph representation?

• How can specific properties of graphs help iden-
tify key forensic artefacts and relationships in
digital forensics?

This paper is divided into six sections. Section 2 dis-
cusses papers relevant to this research. Section 3 specifies
the methods employed in this paper, including the col-
lection and processing of the digital evidence. Section 4
outlines the graph theory applied to digital evidence and
graph generation options. Section 5 discusses the lessons
learned from applied graph properties to digital evidence.
Section 6 provides a summary, including our suggestions
for future research.

2. Related works
We often think of data analysis and machine learning
as elements of artificial intelligence. It may be about
analysing data differently. We must also visualise the
data, preprocess it, get basic statistics, etc. It is in the vi-
sualisation that graphs can help us. Several works have al-
ready been done in forensic artefact analysis using graphs.
Many of these have focused on network communication,
which is different from the form of data we use in this
work. Nevertheless, we can take inspiration from them
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as they offer insight into the representation of forensic
artefacts using graphs and their connections. We have
selected a few of these papers to get a basic overview of
the current state of the art in the given field.

2.1. Security Data Analysis
Cybercrime risks have escalated with the digitization of
data (books, videos, images, medical and genetic infor-
mation) via laptops, tablets, smartphones, and wearables.
Digital forensics recovers lost or deleted files but requires
more efficient investigation resources. Current processes
rely heavily on human input, slowing responses to rapid
cybercrimes. Machine learning can automate digital in-
vestigations, aiding digital investigators [1].

Constantini, Gasperis, and Olivieri explored artificial
intelligence and computational logic, particularly answer
set programming, to automate evidence analysis in dig-
ital forensics. They demonstrated how complex inves-
tigations could be optimized and automated to assist
in generating hypotheses for court cases using graph
theory-based algorithms [2].

Ch. Easttom highlighted the use of graph theory in
criminal investigations, describing how mathematical
modelling helps understand relationships among sus-
pects, victims, and systems [3]. Palmer, Campbell, and
Gelfand further discussed graph theory’s role in forensic
analysis, noting the visualization benefits for investiga-
tors and its potential to support the investigation process
[4].

A study on distributed graph analysis of large-scale
email datasets showcased improved efficiency and accu-
racy in digital evidence analysis using centrality algo-
rithms [5]. Binwal, Devi, and Singh developed algorithms
for fingerprint graph representation and isomorphism
testing, applicable to broader forensic analysis despite
differing input data [6].

Additionally, attack graphs, used to identify potential
attack paths and vulnerabilities, are proposed for prac-
tical forensic analysis, including antiforensic scenarios.
These graphs help understand complex attack paths and
missing evidence, demonstrated through a database at-
tack case study [7].

Our contribution is to integrate these methods to en-
hance digital forensics. We focus on automating digital
evidence analysis with graph theory to elucidate relation-
ships among digital evidence and entities.

2.2. Forensic Analysis in Network
Communication Using Graph Theory

While our primary focus is on NTFS file system data from
Windows, we also review digital forensics in network
communication, linking file system data with network
communication data.

Due to the proliferation of smart devices, detecting
and mitigating faults in computer networks is crucial.
Anomalies, whether from security breaches, component
failures, or environmental factors, must be promptly ad-
dressed. Recent studies on anomaly detection in com-
puter networks categorize solutions and highlight trends
and shortcomings, especially regarding malware in smart-
phone networks.

Paper [8] introduces a graph-based approach to net-
work forensics, using a graph model of digital evidence
for evidence presentation and automated reasoning. The
proposed hierarchical reasoning framework infers net-
work entity states and identifies critical entities. An in-
teractive hypothesis testing framework aids in detecting
attack activities. Experimental results show the proto-
type’s effectiveness in extracting attack scenarios with
minimal expert knowledge.

As Internet traffic grows, so do cyber crimes, neces-
sitating advanced network forensics. One method com-
bines network vulnerability and graph network evidence
to reconstruct attack scenarios and identify multi-stage
attacks, confirmed by experimental results [9].

Spectral graph theory helps understand network mal-
ware propagation, essential as device connectivity in-
creases. Using various Laplacian matrices to track net-
work pattern changes, one study [10] offers insights into
malware spread, aiding in faster infection detection.

3. Methodology
In this chapter, we have covered how to acquire, prepro-
cess, and explain data so that we can combine it into
graphs, filter it, and analyse it later. We have also de-
scribed the creation of the super timeline and the subse-
quent transformation of the other two datasets.

3.1. Data acquisition and description
We selected seven fictitious cases from CTF competitions
focused on forensics, incident response, and threat detec-
tion, and we used disk images from these cases.

The first example is the case of the stolen Szechuan
sauce from the DFIR Madness portal called Case001 -
The case of the Stolen Szechuan sauce [11], where in
this case the main goal was to find out how CITADEL’s
recipe got on the dark web. The company requested
forensic analysis, identification of unwanted applications
installed on the system, and detection of the location and
time of installation. The case also offers information as
to whether any content was changed, modified, deleted,
or data was leaked. We worked with artefacts from the
company’s DC domain control server (hereafter called
the ”DC server”) and from the Desktop - therefore we
count this case as two datasets.



The other three cases Magnet CTF 2019 [12], Magnet
CTF 2020 [13] andMagnetCTF 2022 [14] were from the
CTF (Capture the Flag) Magnet Forensics competition. It
was not a classical forensic analysis, but rather answering
questions like ”when did we get the disk image” or ”when
was the software installed”.

The last two cases, NIST Data Leakage Case [15]
and NIST Hacking Case [16], are used to learn about
different forms of data leakage and to improve techniques
for investigating them. We focused on investigating a
data leak case where the key is to uncover evidence of
illegal activities and obtain any information generated
by the suspect.

3.2. Data preprocessing
For data preprocessing, we followed the same steps in
all seven cases, specifically specifying the preprocessing
process for only one case. We worked with the data
according to the procedure described in the paper [17].

We created the timeline using the Log2timeline [18]
tool and its plugins. We modified the resulting timeline
with the psort.py tool and the Python language with the
pandas library. Our dataset contained records from 11
different data sources, with FILE, EVT, and REG records
being the most prominently represented, accounting for
87% of all records. We divided the extracted attributes
into seven categories.

We narrowed the dataset to the time of the security
incident and manually identified relevant digital
evidence, including the inode files: 84630, 84880, 84987,
86966, 86967, 86968, 86970, 86971, 86975, 87059, 87060,
87064, 87111, 87112, 87137, and files with the names:
’coreupdater. exe’, ’FILESH 1’, ’Secret’, ’BETH_S 1.TXT’,
’Beth-_Secret.lnk’, ’SECRET 1.TXT’, ’SECRET_beth.lnk’,
’Szechuan’, ’SZECHU1.TXT’, ’Secret.lnk’, ’NoJerry.
lnk’, ’No-Jerry.txt’, ’f01b4d95cf55d32a.automatic-
Destinationsms’, ’SECRET_beth.txt’, ’Beth_Secret.txt’,
’Secret.zip’, ’coreupdater.exe.2424 urv. partial’.

Next, we analysed the inodes and filenames, excluding
some inodes and filenames. Finally, we used aggregation
functions and created attribute combinations to analyse
the data.

We only manually identified inodes and file names in
the stolen Szechuan sauce recipe; the identified inodes
and file names still need to be identified for the other
datasets.

Each of the seven datasets is a super timeline con-
taining 17 attributes, and the following rows are records
(events). There are 17 attributes and their description
by [19]:

• Date : the date when the event occurred
• Time : time the event occurred
• Timezone : time zone

• MACB : timestamps (Modification, Access,
Changed, Birth)

• Source : source name abbreviation (e.g. REG -
registry records)

• Sourcetype : description of the source
• Type : timestamp type (e.g. last entry)
• User : the user name (if any) that is associated

with the event
• Host : host name (if any) that is associated with

the event
• Short : contains a short description field in

which the text is stored
• Desc : an array that contains most of the parsed

information
• Version : version number of the timestamp
• Filename : the name of the file that is associated

with the event
• Inode : inode number of the file being analysed
• Notes : a place to store additional information
• Format : the input module that was used to parse
• Extra : field with parsed information that is

linked and stored here

In addition to the basic seven datasets, we created 6
additional CSV files containing records from FILE and
7 CSV files containing records from EVT. The datasets
from FILE have 44 attributes, and EVT have 40 attributes.
These files were created by extracting data from the orig-
inal supertimeline. For example, if there was a MACB
column in the original dataset, four new columns were
created in the new (EVT or FILE) dataset, and the original
one was deleted. The new columns are ’M’, ’A’, ’C’, ’B’. If
there was a ’.ACB’ record in the original data, we wrote
1 in the relevant ’A’, ’C’, ’B’ columns and 0 in the ’M’
column. In this way, we partially created binary data or
columns. Not all attributes could be converted this way,
so columns like ’date’ or ’time’ were left unchanged. The
exact procedure for creating datasets is explained in [19].

For later analysis and graphing needs, we had to cre-
ate additional columns in the FILE datasets - MACB, file,
dir, and NTFS, which were created by concatenating
some of the columns. MACB - we merged the ’broken’
columns ’M’, ’A’, ’C’, ’B’ into one again. In the case of the
file column, these were ’file_executable’, ’file_graphic’,
’file_documents’, ’file_ps’ and ’file_other’. For dir -
’dir_appdata’, ’dir_win’, ’dir_user’ and ’dir_other’. NTFS
- ’file_stat’, ’NTFS_file_stat’, ’file_entry_shell_item’ and
’NTFS_USN_change’.

The analysis of the selection of the attributes men-
tioned above, as well as the analysis of various combina-
tions of attributes for anomaly detection, is presented in
the paper [17].



4. Graph Theory
We use standard notation for graph theory [20]. In com-
puter/network security, graph theory models have often
been used in the last decades. Some graph problems have
also risen from security, e.g. k-Path Vertex Cover[21].
We will focus on modelling graphs from Artifacts’ data.

4.1. Background
A Graph 𝐺 = (𝑉,𝐸) is a pair of a finite set of 𝑛
vertices 𝑉 = {𝑣0, 𝑣1, . . . , 𝑣𝑛−1} and 𝑚 edges 𝐸 =
{{𝑣𝑖, 𝑣𝑗}|0 ≤ 𝑖, 𝑗, < 𝑛, 𝑖 ̸= 𝑗}. A directed graph has
oriented edges(directed arcs), i.e. the order of vertices
is important (𝑣𝑖, 𝑣𝑗). (Edge-)Weighted graph assigns
the weight to each edge, so the edges are in the form
(𝑣𝑖, 𝑣𝑗 , 𝑤𝑖𝑗).

A bipartite graph is a special type of graph where
a set of vertices can be divided into two disjoint sets
(partitions), where each edge has exactly one vertex from
every partition.

There are several definitions and parameters: path
(sequence of incident vertices and edges, starting and
ending vertex (leaf), all vertices are mutually different),
excentricity, etc.

The degree of the vertex 𝑣 in a graph 𝐺, denoted by
deg𝐺(𝑣) or 𝑑𝐺(𝑣), is the number of edges incident to 𝑣
in 𝐺. The maximum degree of a graph 𝐺, denoted by
∆(𝐺), is the maximum value among the degrees of all
vertices of the graph 𝐺. By analogy, we also denote the
minimum degree of a graph 𝐺.

Walk in the graph 𝐺 denotes the alternating sequence
of incident vertices and edges (starting and ending with
vertex). A sequence with mutually different edges is
called a trail. A walk where all vertices differ is called
a path. In other words, a path in a graph is a sequence
of vertices for which there indeed exists an edge in the
graph between every two following vertices. No two
vertices (and hence no edges) are repeated. A trail in
which all vertices except the first and last are distinct is
called a cycle.

A graph is connected if every pair of vertices in the
graph is connected. It means that there is a path between
every pair of vertices. A component of a graph is a con-
nected subgraph that is not part of any larger connected
subgraph.

An edge of a graph is called a bridge if the number of
components increases when it is removed. A vertex of
a graph is called a cut vertex/articulation point if the
number of components of the graph increases when it is
removed.

Eccentricity the 𝑒𝑐𝑐(𝑣) of a point 𝑣 is the distance of
the point 𝑣 from the farthest point in the 𝐺 graph. The
radius of the graph 𝑟𝑎𝑑(𝐺) is the minimum eccentricity
of a point in the graph 𝐺, and 𝑑𝑖𝑎𝑚(𝐺) is the maximum

eccentricity of a point in the graph 𝐺. A vertex 𝑐 in G
is called central if 𝑒𝑐𝑐(𝑣) = 𝑟𝑎𝑑(𝐺). The center of a
graph 𝐶(𝐺) is the set of all vertices in the graph 𝐺 with
minimum eccentricity:

𝐶(𝐺) = {𝑣 ∈ 𝑉 | 𝑒(𝑣) = min
𝑢∈𝑉

𝑒(𝑢)}

The center of 𝐶(𝐺) is the set of all central vertices in
the graph 𝐺. The eccentric vertex of a vertex 𝑣 is the
vertex that is the furthest from it. A vertex v is called
peripheral if 𝑒𝑐𝑐(𝑣) = 𝑑𝑖𝑎𝑚(𝐺). Periphery 𝑃𝑒𝑟(𝐺)
of a graph 𝐺 is the set of all peripheral vertices in the
graph 𝐺.

4.2. Graph Generation from Forensic
Artifacts

Typical graph generation in the security area is creating
just nodes of one type and connecting them depending on
communication [22] in graph or finding an attack vector
in a directed graph [23]. Standard computer network-
based cybersecurity applications cover traffic, security
policies and vulnerabilities/threats [24].

For the artefacts, one can create nodes from any at-
tribute (column) or any combination of attributes. More-
over, we found the most interesting results for bipartite
graphs, e.g., using two node types. Depending on the
dataset, we focused on different pairs of node types.

4.3. Graph from supertimeline
For the super timeline, we have chosen attributes such
as user, source, MACB, sourcetype and inode and
always two of them as vertex types for the generated
bipartite graph. We can consider other attributes that
will be represented by vertices in the graph, e.g. host,
type, filename. Some of these attributes are categori-
cal so that we can think of them in this sense. The edge
represents the row’s existence in data containing these
two vertices (artefact). An example of the NIST Data
Leakage case is shown in Fig. 2.

4.4. Graph from EVT artifacts
In the EVT dataset, we created binary combina-
tions of three attributes: event_id, user_sid, and
execution_process because we could not tell any
vital information about the relationships between the
attributes by selecting other attributes. We could also
consider attributes like inode, computer_name, and
source_name, since we assume they are finite in num-
ber and not binary values, but that probably wouldn’t
add any value for us. An example of a generated graph
from the EVT dataset is shown in Fig. 1.



Figure 1: NIST Data Leakage Case - EVT - user_sid, execu-
tion_process_id

4.5. Graph from FILE artefacts
In a similar way to the super timeline, we also created
graphs in the FILE dataset, but with different attributes,
such as MACB, dir, file, and NTFS, the creation of which
we explained in Chapter 3.2. In the datasets file, it was
challenging to think of other attributes that would be
suitable for graphing because they were in binary form.
This is why we merged some attributes, but it was impos-
sible for all of them. We would still include the inode
attribute in the graph creation process, but it had many
unique values. Examples of these graphs are in Fig. 4 and
Fig. 5.

5. Lessons learned from graph
properties

From the generated graphs, we have focused on some
graph-based metrics [22] and found some anomalies. In
the current research, we have used only unweighted
graphs.

5.1. Eccentricity
In particular, we can exploit eccentricity in graphs in
the super timeline dataset created from user and source
or user and source type attributes. For example, in the
NIST Data Leakage Case in Fig. 2, we created a graph
from the user and source attributes and then found the
eccentricity of all vertices. The vertices belonging to
the user attribute had the lowest eccentricity of 3: ’-’,
’informant’, ’admin11’ and ’temporary’, and the vertices
belonging to the source attribute had ’REG’ and ’EVT’.
These vertices can also be called the centre of the graph.

We also created graphs from the user and source type
attributes and searched for the graph centre. We can illus-
trate this with all three Magnet CTF cases 2019, 2020 and

Figure 2: NIST Data Leakage Case - super timeline - user,
source

Figure 3: Magnet CTF 2022 - super timeline - user, sourcetype

2022. Fig. 3 shows the graph from the Magnet CTF 2022
case. The lowest eccentricities in this graph were in the
vertices ’WinEVTX’ (source type attribute) and ’Patrick’
(user attribute). We observed the same behaviour in the
other Magnet CTF cases - that is, the graph centre was
always identified as the ’WinEVTX’ vertex and one of
the users.

5.2. Degree of vertices
We exploited the degree of vertex in the datasets created
from the supertimeline from the FILE source. We cre-
ated three types of graphs - MACB and file, MACB and
dir, MACB and NTFS. Fig. 4 shows an example of such
a graph. The most interesting graphs arose when the
MACB and NTFS timestamps were combined, as shown
in Fig. 4. At first glance, it might seem that we should
focus on the NTFS_UNS_change attribute because it is
associated with timestamp C (Change), but neither the
file_stat and NTFS_file_stat vertices are, despite having
the highest degree of vertex - 14. The most significant
vertex in this graph is file_entry_shell_item with a ver-



Figure 4: Szechuan Sauce - FILE - MACB, NTFS

Figure 5: Szechuan Sauce - FILE - MACB, inode

tex degree of 6 because if we look further at the records
containing this NTFS attribute value, we find "only" 19
unique inode values in 163 records, and just 9 of these
inodes were identified as relevant to the case.

5.3. Cycles in graphs
After creating the graph from The Stolen Szechuan Sauce
- FILE dataset in Fig. 5, it was not visible what specifically
to focus on, so we had to apply the properties of the graph.
We looked for the base cycles in the graph. We found
43 of these, and seven cycles contained inodes that were
manually identified as relevant to the case by the analysis.
In the same way, we analysed the graph created from the
MACB and filename attributes, where we also found file
names in the base cycles marked as relevant to the case
by manual analysis. In this analysis, however, we must
consider that the attributes are not equivalent because
the MACB timestamps or combinations will always be
at most 16, and the inodes are a different number, often
much higher.

6. Results and future works
This paper focuses on the automation of response to secu-
rity incidents, including digital forensic analysis within
the Windows operating system and NTFS file system.
For this purpose, we used the graphs’ structure and prop-
erties to better understand the relationships between the
analysed digital evidence. The paper demonstrated the
possibilities of generating graphs, particularly from su-
per timeline formats, event records, and the Master File
Table. We showed that it is essential to carefully select
the attributes of artefacts that can be used as vertices and
to determine the corresponding edges of the graphs. At
the same time, we identified several properties of graphs,
whose analysis can help better understand the relation-
ships and identify interesting or relevant digital evidence.
In the future, we will enhance our models with weighted
graphs.
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