
A bug in Linux ACL implementation
Jaroslav Janáček

Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Computer Science, Mlynská dolina, 842 48,
Bratislava, Slovakia

Abstract
We demonstrate and analyse a long-standing bug in the Linux kernel ACL permission checking code that, under specific
circumstances, allows users and/or groups to access filesystem objects they should not be allowed to access and propose a fix.

Keywords
Linux, ACL

1. Introduction
Access control, controlling access to filesystem objects, is
an important part of operating systems. In Linux based
operating systems, the filesystem access control is done
in the Linux kernel. The Linux kernel’s basic access
control model is based on UNIX access control model,
where the permissions to read, write, and execute a file
can be assigned to the owner of the file, a single group,
and others. While this basic model is sufficient in many
simple cases, there are cases when we need to assign
different permissions to different users and/or groups.
For example, if a file is to be readable and writeable by
one group of users, and readable only by another group of
users, this cannot be achieved using this simple model in
a simple way (in general). To enhance the capabilities of
access control, the Linux kernel extends the basic model
with Access Control Lists (ACL). An ACL associated with a
file can be used to assign permissions to additional users
and/or groups.

When experimenting with ACLs in Linux we have ob-
served a strange behaviour in some corner cases. Because
it can compromise security, we consider it to be a bug.
We present our analysis of the problem and propose a fix
in this paper.

2. Linux ACLs
The Linux kernel allows an ACL to be associated with any
filesystem object residing in a filesystem that supports
ACL storage (e.g. ext4 and many other commonly used
filesystems for Linux). A directory can also have a default
ACL associated with it. The default ACL is used as a
template for initialization of the ACL of a new object
when it is created in the directory.

ITAT’24: Workshop on Applied Security 2024, September 20–24, 2024,
Drienica, Slovakia
$ jaroslav.janacek@uniba.sk (J. Janáček)

© 2024 Copyright for this paper by its author. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Each ACL consists of ACL entries. There are six types
of ACL entries:

• ACL_USER_OBJ – specifies the permissions for
the object’s owner,

• ACL_USER – specifies the permissions for a spe-
cific user,

• ACL_GROUP_OBJ – specifies the permissions for
the object’s group,

• ACL_GROUP – specifies the permissions for a
specific group,

• ACL_MASK – specifies the upper limit of per-
missions granted by the entries of the type
ACL_USER, ACL_GROUP, or ACL_GROUP_OBJ,

• ACL_OTHER – specifies the permissions for oth-
ers.

Each ACL must contain exactly one entry of each
of the types ACL_USER_OBJ, ACL_GROUP_OBJ, and
ACL_OTHER. It may contain zero or more entries of each
of the types ACL_USER and ACL_GROUP, and it may
contain zero or one entry of the type ACL_MASK. If it
contains an entry of the type ACL_USER or ACL_GROUP,
it must contain an entry of the type ACL_MASK. Each
ACL entry of the type ACL_USER or ACL_GROUP con-
tains a user/group ID.

A process runs on behalf of a user who is a member of
a primary group, and who can be a member of a number
of supplementary groups. The user is identified by the
effective user ID and the primary group is identified by
the effective group ID. To be correct, we must say that in
the Linux kernel the filesystem user ID and the filesystem
group ID are actually used instead, but these are usually
equal to the effective user ID and the effective group ID,
so we will not distinguish among them.

Each filesystem object is assigned an owner, identified
by an user ID, and a group, identified by a group ID. It
is also assigned a 12-bit vector of UNIX permissions – 3
bits (read, write, execute) for the owner, the group, and
others, and 3 special bits (set-user-ID, set-group-ID, and
sticky bit).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:jaroslav.janacek@uniba.sk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

When a process tries to open a filesystem object which
has an ACL associated with it, the Linux kernel performs
a permission check algorithm, which should work as
follows[1]:

1. If the effective user ID of the process matches the
user ID of the object’s owner, the ACL_USER_OBJ
entry is used – if it contains the requested permis-
sions, the access is granted, otherwise the access
is denied.

2. Otherwise, if the effective user ID matches the
user ID of an entry of the type ACL_USER, this
entry is used – if the entry and the ACL_MASK
entry both contain the requested permissions, the
access is granted, otherwise the access is denied.

3. Otherwise, if the effective group ID or any sup-
plementary group ID match the group ID of the
object or the group ID of an ACL entry of the
type ACL_GROUP, then these matching ACL
entries (of the types ACL_GROUP_OBJ and/or
ACL_GROUP) are used – if the ACL entry of the
type ACL_MASK and any of the matching ACL
entries both contain the requested permissions,
the access if granted, otherwise it is denied. If
there is no entry of the type ACL_MASK, the only
matching ACL entry can be the one of the type
ACL_GROUP_OBJ, and that is used alone.

4. Otherwise, if the entry of the type ACL_OTHER
contains the requested permissions, the access is
granted.

5. Otherwise, the access is denied.

There is an exception, if the process has a special ef-
fective capability to override the access control (typically
when it runs on behalf of the root user – effective user
ID zero), the permission check algorithm is skipped.

As we can see, in all cases the effective permis-
sions are determined either by a single ACL entry
(ACL_USER_OBJ, ACL_OTHER, or ACL_GROUP_OBJ
if there is no ACL_MASK entry), or by the logical
AND of a single ACL entry (ACL_USER, ACL_GROUP,
ACL_GROUP_OBJ) and the ACL_MASK entry. Also, if
the effective user ID of the process matches either the
owner’s user ID, or the user ID in any of the ACL_USER
entries, the group ACL entries and the ACL_OTHER en-
try are not used. And if the effective group ID or any
supplementary group ID match the object’s group ID or
the group ID of any ACL_GROUP entry, the ACL_OTHER
entry is not used. In other words, the ACL_OTHER entry
can only be used for processes running on behalf of a
user who has no matching ACL entries – neither directly,
nor via a group membership.

2.1. Correspondence between ACL entries
and standard UNIX permissions

As we have mentioned above, the Linux kernel does
not replace the standard UNIX permissions assigned to
filesystem objects with ACLs, but ACLs are an extension.
If there is no ACL associated with a file, the standard
UNIX permissions are used; if there is an ACL associated
with the file, the ACL is used. There are, however, many
programs that do not know about ACLs (e.g. because they
had been written before ACLs were widely supported).
When dealing with security, it is very important not to
break things people rely on. This is why the interaction
of standard UNIX system calls and utilities dealing with
permissions and ACLs is important.

A minimal ACL consists of the three mandatory entries
– ACL_USER_OBJ, ACL_GROUP_OBJ, and ACL_OTHER.
The meaning of these entries, in this simple case, matches
exactly the meaning of the standard permission bits for
the owner, for the object’s group, and for others. Indeed,
if we change an ACL entry, the corresponding permission
bits are changed as well, and vice versa. This ensures
compatibility with legacy tools in this simple case.

When an entry of another type is added to the ACL,
things get a little bit more complicated. The permission
bits for the owner and for others still correspond to the
ACL_USER_OBJ and ACL_OTHER entries, but the stan-
dard permission bits for the object’s group now corre-
spond to the permissions of the ACL_MASK entry. While
this may sound a bit strange at first, there is a good reason
behind it. Imagine a legacy program that wants to make
sure that only the owner of a file can access it. Such pro-
gram would change the standard permission bits for the
object’s group and for others to zero, leaving only some
nonzero bits for the owner. If the object’s group permis-
sion bits corresponded to the ACL_GROUP_OBJ entry
while there was an ACL_USER or ACL_GROUP type ACL
entry present in the ACL, the legacy program would not
remove the permissions granted by these ACL entries.
But, because the standard object’s group permission bits
correspond to the ACL_MASK entry, if it is present, ze-
roing the standard object’s group permission bits zeroes
the ACL_MASK entry, thereby effectively removing all
permissions granted by ACL_USER, ACL_GROUP, and
ACL_GROUP_OBJ entries. This way, a sort of compatibil-
ity with legacy tools is ensured even in the more complex
cases.

3. Problem demonstration
We will now show that there are cases when the system
does not behave according to the permission check algo-
rithm as described above. We will use the kernel version
6.1, however, the same behaviour can be found in many

previous versions as well (5.x, 4.x, 3.x at least).

3.1. Problem with ACL_USER entries
First, we create a file f and set it’s ACL so that only the
file’s owner (jerry) has the read and write permissions,
and others have the read permission:

j e r r y : echo ’ Works ! ’ > f
j e r r y : s e t f a c l −m ’ u : : rw , g : : − , o : : r ’ f
j e r r y : g e t f a c l f
f i l e : f
owner : j e r r y
group : j e r r y
u s e r : : rw−
group : : − − −
o t h e r : : r −−

The setfacl command is used to modify (with the -m
flag) the ACL, the getfacl command is used to show
the current ACL associated with the file.

Clearly, at this stage, another user (tom), who is not a
member of the group jerry, should be able to read the file,
because there are no ACL entries matching tom or any of
his groups, and the ACL_OTHER entry grants the read
permission to others. We test it by trying to show the
contents of the file as tom, and also by trying to modify
the file:

tom : c a t f
Works !
tom : echo aaa >> f
bash : f : P e r m i s s i o n de n i e d

Now, the owner of the file (jerry) modifies the ACL so
that the user tom is granted no permissions:

j e r r y : s e t f a c l −m ’ u : tom : − ’ f
j e r r y : g e t f a c l f
f i l e : f
owner : j e r r y
group : j e r r y
u s e r : : rw−
u s e r : tom:−−−
group : : − − −
mask : : − − −
o t h e r : : r −−

As we can see, two new ACL entries have been cre-
ated - the ACL_USER entry for the user tom, and the
ACL_MASK entry (which must be in the ACL when
there is any ACL_USER or ACL_GROUP entry). The per-
missions of the (explicitly unspecified) ACL_MASK en-
try have been automatically calculated by the setfacl
utility as the union (logical OR) of the permissions
of all affected ACL entries (ACL_USER, ACL_GROUP,
ACL_GROUP_OBJ types).

According to the permission check algorithm described
in the previous section, the user tom should have no
access to the file. However, when we try it:

tom : c a t f
Works !
tom : echo aaa >> f
bash : f : P e r m i s s i o n de n i e d

we can see, the user can read the file, and cannot write to
the file. This behaviour is obviously incorrect and may
be considered a security problem.

It seems that the permissions for others are used for
the user tom in this case, although, according to the per-
mission check algorithm, they should not be used. We
can try to support this hypothesis by changing the per-
missions for others and retesting the tom’s access:

j e r r y : s e t f a c l −m ’ o : : w’ f
j e r r y : g e t f a c l f
f i l e : f
owner : j e r r y
group : j e r r y
u s e r : : rw−
u s e r : tom:−−−
group : : − − −
mask : : − − −
o t h e r : : −w−

tom : c a t f
c a t : f : P e r m i s s i o n d e n i e d
tom : echo aaa >> f

j e r r y : c a t f
Works !
aaa

As we can see, after changing the permissions for oth-
ers to write only, the user tom cannot read the file, but
can successfully write to the file.

We can now change the permissions of the ACL_MASK
entry in the ACL to a nonzero value, e.g. to read and write,
and retest the tom’s access:

j e r r y : s e t f a c l −m ’m : : rw ’ f
j e r r y : g e t f a c l f
f i l e : f
owner : j e r r y
group : j e r r y
u s e r : : rw−
u s e r : tom:−−−
group : : − − −
mask : : rw−
o t h e r : : −w−

tom : c a t f
c a t : f : P e r m i s s i o n d e n i e d

tom : echo aaa >> f
bash : f : P e r m i s s i o n de n i e d

The system now behaves as expected – the user tom
is denied both read and write access to the file.

3.2. Problem with ACL_GROUP entries
We can now repeat the tests with group permissions
instead of user permissions. First we restore the ACL to
the initial state:

j e r r y : s e t f a c l −b f
j e r r y : s e t f a c l −m ’ o : : r ’ f
j e r r y : g e t f a c l f
f i l e : f
owner : j e r r y
group : j e r r y
u s e r : : rw−
group : : − − −
o t h e r : : r −−

The setfacl -b command removes all ACL entries, and
then we restore the read permissions for others.

The user tom should have the read access now again
because there are no matching ACL entries for tom or
his groups:

tom : c a t f
Works !
aaa
tom : echo bbb >> f
bash : f : P e r m i s s i o n de n i e d

We add an entry for the group users with no permis-
sions:

j e r r y : s e t f a c l −m ’ g : u s e r s : − ’ f
j e r r y : g e t f a c l f
f i l e : f
owner : j e r r y
group : j e r r y
u s e r : : rw−
group : : − − −
group : u s e r s :−−−
mask : : − − −
o t h e r : : r −−

Again, two new entries have been created – the
ACL_GROUP entry for the group users and the
ACL_MASK entry. We can test the tom’s access:

tom : c a t f
Works !
aaa
tom : echo bbb >> f
bash : f : P e r m i s s i o n de n i e d

We can see that the system behaves incorrectly again –
the user tom as a member of the group users should have
no access to the file, but the permissions for others seem
to be applied instead.

When we change the permissions of the ACL_MASK
entry to a nonzero value, it works correctly again:

j e r r y : s e t f a c l −m ’m : : rw ’ f
j e r r y : g e t f a c l f
f i l e : f
owner : j e r r y
group : j e r r y
u s e r : : rw−
group : : − − −
group : u s e r s :−−−
mask : : rw−
o t h e r : : r −−

tom : c a t f
c a t : f : P e r m i s s i o n d e n i e d
tom : echo bbb >> f
bash : f : P e r m i s s i o n de n i e d

4. Problem analysis
We have demonstrated the incorrect behaviour in the
previous section and we have stated a hypothesis that
under some conditions the ACL_OTHER entry (or per-
haps the standard permission bits for others) are used
instead of the correct ACL_USER or ACL_GROUP entry.
As far as the conditions are concerned, it appears that this
incorrect behaviour is manifested when the ACL_MASK
entry contains empty permissions. In this section we will
identify the root cause of this behaviour and refine and
confirm our hypothesis.

To start, we look for the code responsible for the ACL
permission check algorithm. After looking at the struc-
ture of the Linux kernel source code [2] we can easily
discover an interesting file fs/posix_acl.c, and more specif-
icaly the posix_acl_permission function. Quick analysis of
this function leads to the conclusion that it does indeed
implement the permission check algorithm in accordance
with the specification in the section 2.

Looking for function calls of posix_acl_permissions
leads to the namei.c file where we discover a chain of
functions dealing with permission checking. A short
description of the functions and their relationship is in
the table 1.

The function acl_permission_check, shown in the list-
ing 1, is of a particular interest. In the lines 7–13 the
code checks if the effective user ID (or more precisely the
filesystem user ID) matches the owner’s user ID, and if it
does, it uses the standard UNIX permission bits for the
owner to determine whether to grant or deny the access.

Table 1
The functions dealing with permission checking

Function Called from Short description

posix_acl_permission check_acl Parse the ACL and perform the ACL permission
check algorithm.

check_acl acl_permission_check Retrieve the ACL and call posix_acl_permission.

acl_permission_check generic_permission Handle the standard UNIX permission bits and
call check_acl in case an ACL is present.

generic_permission do_inode_permission Call acl_permission_check, if it denies access, han-
dle overrides (exceptions) based on capabilities.

do_inode_permission inode_permission Call generic_permission or a special function to
check permissions provided by the filesystem.

inode_permission may_open (and others) Handle denying write access to immutable files,
call do_inode_permission, call advanced security
modules’ hooks for additional restrictions.

may_open do_open, vfs_tmpfile Handle additional restrictions, call in-
ode_permission.

do_open Handles the last step of opening a file, including
calling may_open to check if it is permitted.

In this case it entirely bypasses the ACL permission check
algorithm, but it should not be a problem unless the ACL
and the standard UNIX permission bits are desynchro-
nized (which should not happen under normal operating
conditions).

The lines 15–20 handle the case when an ACL is
present – we will look into it in more detail in a short
while.

The lines 22–34 handle the standard UNIX permissions
for the object’s group. We can see an optimization here
– if the relevant permission bits for the object’s group
are equal to the relevant permission bits for others, the
code skips checking if the object’s group ID matches
the process’s group IDs and continues with checking
the permission bits for others. It can do so, because the
access would be granted or denied identically for both
the object’s group and others in this case.

Finally, the lines 36–37 check the permissions for oth-
ers.

Let’s now analyse the lines 15–20 in more detail. The
line 16 is crucial here. It checks if the file has an ACL
associated with it and if the standard permission bits
contain at least one nonzero bit for the object’s group
permissions. If both conditions are true, the function
check_acl is called to process the ACL, and the result is
returned. If there is no ACL associated with the file, it
makes no sense to call check_acl. But what is the purpose
of the second condition? It clearly causes the observed
incorrect behaviour – if the ACL_MASK entry contains
no permissions, the standard UNIX permissions bits for
the object’s group are zero, the ACL processing is skipped,

and the code continues with checking only the standard
UNIX permission bits. And because in our test cases the
process’s group ID did not match the object’s group ID,
the standard UNIX permission bits for others were used
to determine the access.

If the line 16 was changed to

i f (IS_POSIXACL (inode)) {

everything would work just fine. The most probable rea-
son for the second condition is an optimization. If the
ACL_MASK (and therefore the standard object’s group
permission bits) contains no permissions, no permis-
sions can be effectively granted using the ACL_USER
or ACL_GROUP entries, and therefore the code’s author
has probably incorrectly concluded that is not necessary
to process the ACL. But this is wrong – if the ACL con-
tains an entry of the type ACL_USER or ACL_GROUP, it
can still match and deny access.

5. Proposed fix
Having found the cause of the problem, we can propose
two possible ways to fix it. One obvious fix is to change
the line 16 of the function acl_permission_check in fs/-
namei.c as shown in the previous section. This would
correct the problem but could slow down the evaluation
of the function.

Another way, preserving the optimization in non-
problematic cases, is to change the line 16 as follows:

Listing 1: fs/namei.c:acl_permission_check

1 s t a t i c int a c l _ p e r m i s s i o n _ c h e c k (s t ruc t user_namespace ∗ mnt_userns ,
2 s t ruc t i node ∗ inode , in t mask)
3 {
4 unsigned int mode = inode −>i_mode ;
5 k u i d _ t i _ u i d ;
6
7 / ∗ Are we t h e owner ? I f so , ACL ’ s don ’ t m a t t e r ∗ /
8 i _ u i d = i _ u i d _ i n t o _ m n t (mnt_userns , inode) ;
9 i f (l i k e l y (u id_eq (c u r r e n t _ f s u i d () , i _ u i d))) {

10 mask &= 7 ;
11 mode >>= 6 ;
12 return (mask & ~mode) ? −EACCES : 0 ;
13 }
14
15 / ∗ Do we have ACL ’ s ? ∗ /
16 i f (IS_POSIXACL (inode) && (mode & S_IRWXG)) {
17 in t e r r o r = c h e c k _ a c l (mnt_userns , inode , mask) ;
18 i f (e r r o r != −EAGAIN)
19 return e r r o r ;
20 }
21
22 / ∗ Only RWX m a t t e r s f o r g roup / o t h e r mode b i t s ∗ /
23 mask &= 7 ;
24
25 / ∗
26 ∗ Are t h e group p e r m i s s i o n s d i f f e r e n t from
27 ∗ t h e o t h e r p e r m i s s i o n s i n t h e b i t s we c a r e
28 ∗ a b o u t ? Need t o c h e c k group o w n e r s h i p i f s o .
29 ∗ /
30 i f (mask & (mode ^ (mode >> 3))) {
31 k g i d _ t kg id = i _ g i d _ i n t o _ m n t (mnt_userns , inode) ;
32 i f (in_group_p (kg id))
33 mode >>= 3 ;
34 }
35
36 / ∗ B i t s i n ’ mode ’ c l e a r t h a t we r e q u i r e ? ∗ /
37 return (mask & ~mode) ? −EACCES : 0 ;
38 }

i f (IS_POSIXACL (inode) && (mode & (
S_IRWXG | S_IRWXO)) {

This would skip the (expensive) ACL processing in
the case when there are no permissions in the standard
UNIX permission bits for the object’s group and in the
standard UNIX permission bits for others. Assuming the
standard UNIX permission bits are synchronized with
the corresponding ACL entries, both the ACL_MASK
and ACL_OTHER entries contain no permissions in this
case, and therefore only the object’s owner can have any
permissions (which is not relevant at this point of the
code).

The final question to ask is whether this optimization
is actually worth it. The cases when both the ACL_MASK
and ACL_OTHER entries of an ACL contain no permis-
sions may be not so rare. They include the cases when a
legacy tool removes all permissions except those for the
object’s owner.

6. Conclusions
We have identified a long-standing bug in the Linux ker-
nel permission checking code. We have demonstrated
the bug in several examples, identified the piece of kernel

code that causes it, and proposed two fixes with different
performance impact.

At the time of writing this paper, we have rechecked
the code in the newest available Linux kernel source code
(6.10-rc7) and the relevant code is still unchanged.

We have also discovered that there are other cases
when the ACL is not checked at all, but these should
not cause any problems unless the standard UNIX per-
mission bits and the corresponding ACL entries become
desynchronized.

Unless we receive some negative feedback, we plan
to submit one of the proposed fixes to the Linux kernel
maintainers.

Acknowledgments
This publication is the result of support under the
Operational Program Integrated Infrastructure for the
project: Advancing University Capacity and Compe-
tence in Research, Development a Innovation (ACCORD,
ITMS2014+:313021X329), co-financed by the European
Regional Development Fund.

References
[1] A. Gruenbacher, acl – Access Control Lists, man 5

acl, 2002.
[2] L. Torvalds, et al., The Linux kernel source code,

https://kernel.org/, 1991–2024. Accessed 2024-07-10.

https://kernel.org/

	1 Introduction
	2 Linux ACLs
	2.1 Correspondence between ACL entries and standard UNIX permissions

	3 Problem demonstration
	3.1 Problem with ACL_USER entries
	3.2 Problem with ACL_GROUP entries

	4 Problem analysis
	5 Proposed fix
	6 Conclusions

