
Graph models of memory access traces
Dušan Bernát1,*, Matúš Hluch1

1FMFI UK, Bratislava, Slovakia

Abstract
This paper describes proposal of a method to analyse memory access traces of a process. It is based on record of all addresses
which a process generates by memory access during its run time. The process address trace is subsequently represented by a
graph structure suitable for further analysis by a variety of available graph and network tools. Preliminary results proved
such approach to be useful when detecting whether dynamical linking was used by a process.

Keywords
memory address trace, graph representation, graph invariant, strongly connected component

1. Introduction
While executing a program, processor makes at least one
memory access to fetch each instruction and additional
access to load or store a data is possible. It is a well known
that a sequence of all addresses accessed by a process
does not have a uniform distribution. Rather it exhibits
various patterns, which were recognised and studied in
1970s by Denning [1].

1.1. Locality principles
The basic patterns are known as principles of locality
[2], namely sequential, spatial and time locality. On the
one hand, these principles are natural consequences of
how processors execute instructions, how processes use
a stack for passing arguments and storing local variables,
or how algorithms process a data in general. On the other
hand, locality in address sequences allows to construct
highly efficient memory systems, which is very efficient
while the fastest memory, registers, are expensive and
scarce and high volume memory storage is relatively
slow. This is because an average process, a typical useful
algorithm, does not need all its data at once. Exploita-
tion of patterns in memory access led to development of
demand paging [3], [4], utilisation of data prefetching or
LRU (Least recently used) data replacement algorithm on
various hierarchy levels, e.g. cache lines, memory pages,
disk blocks.

2. Address trace recording
Emulation and virtualisation provide several possibili-
ties of recording partial or complete address trace of a

WAS’24: Workshop on Applied Security, ITAT 2024
*Corresponding author.
$ dusan.bernat@fmph.uniba.sk (D. Bernát); hluch5@uniba.sk
(M. Hluch)

© 2024 Author:Pleasefillinthe\copyrightclause macro
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

process. In our work we use Intel’s binary PIN tool [5],
which by means of code instrumentation and various
plug-in modules allows to record information about each
memory access that a process makes. Particularly, mod-
ules pinatrace and itrace executes call-back function
which might record the address of instruction, load or
store access type, and the address of memory operand
if any. Further modification of the modules allows to
store to a separate output files also the binary code of the
instruction or the mappings of memory regions used by
the process.

2.1. Graph representation
The main output file contains sequence of all addresses
accessed by a process in the text hexadecimal form, one
per line. Thus in a raw form the file might get too large
and hard to manipulate. We conjecture, that essential
information is contained in the graph structure, which
can be constructed by assigning a vertex to each unique
address and connecting two vertices by a directed edge,
whenever the two addresses lies on consecutive lines.
Vertices of such graph can be labelled by the address,
edges can be labeled by the number of occurrences of
a corresponding address pair. As a typical program is
also comprised of loops, the labeled graph representation
can be (at least in principle) smaller than the complete
address trace. Although the original addresses might be
useful when analysing execution of particular process,
the graph structure itself can represent some more gen-
eral properties of the program. Moreover, the addresses
can change in each run of the same program due to secu-
rity measures imposed by operating systems, for example
ASLR (Address space layout randomisation).

2.2. Graph properties
Without lost of information, further reduction of the
graph can be achieved by squeezing a sequence of equidis-
tant addresses to a block designated by only the first and

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:dusan.bernat@fmph.uniba.sk
mailto:hluch5@uniba.sk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


the last address of the sequence. These blocks are called
basic blocks Sequence is, of course, the very basic pro-
gramming construct present in any program. However,
a sequence of instructions need not to generate accesses
to consecutive memory addresses. Moreover, this prop-
erty depends on the processor architecture. Processors
of CISC types may have variable instruction size, so they
can yield subsequent instruction addresses distances from
one to fifteen bytes (e.g. for Pentium based platforms).
RISC processors usually have fixed instruction code size,
which creates a regular pattern of instruction sequences,
as program counter register increments with each instruc-
tion except of branches. With RISCs, there are usually
only two instructions for data memory transfers (load-
/store). All ALU operations are performed on registers
so data memory access might occur rarely. On the other
hand, a CISC type processor allows many instructions to
operate on memory, thus addresses of instructions can
be overlapped by data addresses more frequently.

Processors from CISC family, notably there is only one
major representative, the Intel compatible ones, allow for
repeated execution of one single instruction, particularly
the string instructions, by means of so called instruc-
tion prefix (rep repeating until CX register reaches zero,
or alternatively, conditional variants REPZ/REPNZ check
also for other flags). This generates a special pattern
of repeated single instruction address several times, so
corresponding graph will comprise a loop edge on the
vertex with given instruction address.

All of these observations can be used to characterise
the architecture based on the graph properties only.

3. Trace analysis as security
measure

Using memory traces for detection of program failures,
like buffer overflows or other corruptions, or detection
of malicious activity like directing control flow to area
filled with user provided data, is well established field of
research, e.g. see [6]. In his bachelor thesis, M. Hluch [7]
revealed that some property of the graph created from
memory trace, particularly strongly connected compo-
nents, always coincided with the way of linking which
the program uses.

3.1. Strongly connected components
As we mentioned above, the control flow of process in-
duces an orientation on edges of the memory trace graph.
The graph 𝐺 is called strongly connected if there exists a
path between each pair of vertices, regarding the direc-
tion of edges. A strongly connected component of graph
is a maximal subgraph of 𝐺 which is strongly connected.

All programs tested in [7] contained several single-
ton strongly connected components and one component
containing rest of the vertices in the trace graphs for
data memory access. For the instruction addresses, the
structure was similar, but apart from one big compo-
nent there were always components composed of 37,
31, and 10 vertices. Using the additional stored infor-
mation about memory region mappings (it is found in
/proc/self/maps during run-time), as mentioned in
section 2, it was possible to identify the addresses with
the code of dynamical linker. Particularly, on an x86_64
Linux system, the addresses belong to range mapped to
file ld-linux-x86-64.so.2. The experiment was re-
peated on an arm based Raspberry Pi system. The graph
structure looked very similar, it showed three strongly
connected components with orders 35, 28, 7. Addresses
forming these components belong to the range mapped
to the file ld-2.28.so. All tested statically linked pro-
grams lack such structure. Thus it is possible to conclude
that presence of the three strongly connected compo-
nents of this precise size determined by the platform,
means that the running process uses the dynamic linker.

Usually, using a dynamic linker for system utilities is a
standard. Conversely, fake malicious programs pretend-
ing to be a legitimate utilities are often statically linked to
all necessary libraries in order to minimise dependency
on target system. Thus missing the proper three con-
nected components from the memory access graph can
imply an attempt to exchange original program file with
a malware. Anyway, this can be considered a suspicious
condition and can serve as one of the inputs to a more
complex security system (e.g. an IDS).

4. Conclusion
We described the procedure of creating directed graphs
from complete memory address trace of a process. We
conjecture that properties of this abstract structure – the
graph, can indicate possible security risk. The main result
is that presence of three strongly connected components
of prescribed size is related to usage of a dynamic linker
by the examined program. Absence of these strongly
connected components thus may have implications for
the security of the system.

Acknowledgments
This publication is the result of support under the
Operational Program Integrated Infrastructure for the
project: Advancing University Capacity and Compe-
tence in Research, Development a Innovation (ACCORD,
ITMS2014+:313021X329), co-financed by the European
Regional Development Fund.



References
[1] Peter J. Denning. The locality principle. Commun.

ACM, 48(7):19-24, July 2005.
[2] Jeffrey R. Spirn and Peter J. Denning. Experiments

with program locality. In Proceedings of the Decem-
ber 5-7, 1972, Fall Joint Computer Conference, Part I,
AFIPS ’72 (Fall, part I), page 611-621, New York, NY,
USA, 1972. Association for Computing Machinery.

[3] Peter J. Denning. The working set model for program
behavior. Communications of the ACM, 11(5):323-
333, 1968.

[4] Andrew S. Tanenbaum. Operating Systems: Design
and Implementation (Second Edition). New Jersey:
Prentice-Hall 1997.

[5] Intel’s web pages. Pin - A Dynamic Binary
Instrumentation Tool, URL: https://www.intel.
com/content/www/us/en/developer/articles/tool/
pin-a-dynamic-binary-instrumentation-tool.html,
accessed on 2024-07-11.

[6] Zhixing Xu, Aarti Gupta, and Sharad Malik. Trace-
based analysis of memory corruption malware attacks.
In Ofer Strichman and Rachel Tzoref-Brill, editors,
Hardware and Software: Verification and Testing,
pages 67-82, Cham, 2017. Sprin- ger International
Publishing.

[7] Matúš Hluch. Detekcia vzorov správania procesu v
postupnosti adries. (Bachelor thesis supervised by D.
Bernát.) Department of Computer Science. Faculty
of Mathematics, Physics and Informatics. Comenius
University, Bratislava, Slovakia. 2022.

https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

	1 Introduction
	1.1 Locality principles

	2 Address trace recording
	2.1 Graph representation
	2.2 Graph properties

	3 Trace analysis as security measure
	3.1 Strongly connected components

	4 Conclusion

