
A Dynamic Session-Based Recommendation System with Graph
Neural Networks⋆

Vrushali Mahajan1,∗,†, Ermiyas Birihanu1,† and Tsegaye Misikir Tashu2,†

1ELTE Eötvös Loránd University, Department of Data Science and Engineering, Budapest, Hungary
2Department of Artificial Intelligence, Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen,
The Netherlands

Abstract
Session-based recommendation systems provide personalized recommendations to users based on their session activities. Traditional
recommendation algorithms often overlook temporal dependencies within user sessions, leading to suboptimal recommendations.
To address this limitation, we proposed a Temporal Graph Neural Network (TemporalGNN) approach that leverages the temporal
relationships between items in sessions to enhance recommendations. The proposed session-based recommendation system can
effectively capture temporal dependencies within user sessions. The method consists of two temporal GNN layers designed to capture
temporal dependencies within user sessions. A directed graph is constructed from session data, where each unique item in the
dataset is a node, and directed edges are created between consecutive items within a session, with edge weights representing the
time differences between interactions. This graph structure allows the model to capture the sequential nature of user interactions.
The model generates recommendations by computing similarity scores from the learned embeddings and selecting the top 𝑁 items
with the highest scores. The experimental results on two real-world datasets showed the effectiveness of the proposed method in
improving recommendation performance compared to the baseline approaches. The source code implementation is available on the
GitHub repository at https://github.com/VrushaliM/SB-Recommendation-GNN.

Keywords
Session, User, Graph Neural Networks, Recommendation Systems

1. Introduction
In today’s online world, personalized suggestions appear fre-
quently while shopping, watching videos, or browsing the
Internet. These suggestions are made by recommendation
systems, which predict our preferences based on past be-
haviour. However, session-based recommendation systems
have emerged since our tastes can change quickly during
short online sessions. These systems focus on our current
online activities to provide accurate suggestions for what
we might like in real-time [1] [2]. Various types of recom-
mendation systems exist in the research landscape, such as
collaborative filtering, content-based filtering, and hybrid
approaches [3] [4] [5]. Collaborative filtering generates rec-
ommendations based on similarities in user behaviour, while
content-based filtering uses item characteristics. Hybrid ap-
proaches combine both methods for better accuracy. These
studies consider collaborative filtering within sessions, cap-
turing user-item interactions to handle sparse data and the
cold-start problem effectively.

Researchers have been advancing these recommendation
systems by exploring various techniques. These efforts in-
clude analyzing the sequential order of user interactions
online and employing sophisticated models, such as neural
networks [1] [6]. These studies investigated online sessions’
duration, temporal dynamics, and underlying user intents.
However, this approach may need to include other relevant
information, potentially limiting recommendation diversity.
Session-based recommendation focuses on predicting the
next click of an anonymous user based on their current ses-
sion activity [7]. Two popular models for session-based rec-
ommendations are Markov Chains (MC) and Recurrent Neu-
ral Networks (RNN) [8]. Graph Neural Networks (GNNs)

ITAT’24: Information Technologies – Applications and Theory, September
20–24, 2024, Drienica, Slovakia
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open y2hse8@inf.elte.hu (V. Mahajan); ermiyasbirihanu@inf.elte.hu
(E. Birihanu); t.m.tashu@rug.nl (T.M. Tashu)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

have emerged as a promising approach. GNNs improve
node representations by incorporating adjacent information
through weighted or unweighted edges, making identifying
item transitions easier [8]. To effectively explore long-range
vertex relationships in a graph, a GNN typically requires
three layers to propagate information. However, more than
three layers can result in over-smoothing, where the dis-
tinctions between items are lost [9].

Despite progress, challenges remain, such as quickly iden-
tifying preferences with limited information and adapting to
rapidly changing user behaviours. One of the most critical
issues in session-based recommendation is how to accu-
rately and efficiently capture and learn complex transitions
of items from limited information. To address these chal-
lenges, we propose a novel approach for session-based rec-
ommendation systems that can quickly understand user
preferences, adapt to online behaviour, and efficiently han-
dle large data volumes. This study focuses on time-driven
session-based recommendation systems, integrating tempo-
ral order and time interval information to enhance accuracy
and relevance. Our proposed method aims to improve time-
driven session-based recommendations by considering the
order of interactions and the specific duration between them.
This approach is designed to uncover significant correla-
tions between interacted items. Our goal is to enhance the
accuracy and relevance of online recommendations, making
them more helpful and enjoyable for users by exploring the
impact of time intervals between interactions alongside the
chronological order.

2. Related work
Session-based recommendation systems have garnered sig-
nificant attention in recent years due to their ability to de-
liver personalized recommendations in real-time, reflecting
users’ immediate interests and preferences. This section
provides an overview of the latest developments, method-
ologies, and findings in the field of session-based recom-
mendation systems, highlighting key trends and areas of

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:y2hse8@inf.elte.hu
mailto:ermiyasbirihanu@inf.elte.hu
mailto:t.m.tashu@rug.nl
https://creativecommons.org/licenses/by/4.0/deed.en

research focus [10] extends primary Recurrent Neural Net-
work (RNN) models for session-based recommendation by
incorporating data augmentation techniques and address-
ing shifts in input data distribution, leading to significant
performance improvements over traditional approaches. In
[11] introduced Session-based Recommendation with Graph
Neural Networks (SR-GNN), utilizing graph-structured data
to represent session sequences and capture item transi-
tions, enhancing user representations. Zhang et al. [12] pro-
posed A-PGNN (Attention-enhanced PGNN), which utilizes
a graph neural network to capture complex item relation-
ships in user behaviour graphs, integrating the DotAtten-
tion mechanism to model the impact of historical sessions
on current sessions, facilitating long-term user preference
capture.
The study in [13] developed a graph hierarchical dwell-

time attention network to better capture user preferences
and improve recommendation accuracy by incorporat-
ing a modified graph neural network and a hierarchical
dwell-time attention module. The study in [14] proposed
Attention-enhanced Graph Neural Networks with Global
Context, modeling session-aware attention mechanisms and
graph convolutional networks to learn and merge item tran-
sitions from all sessions. Yupu, G et al. [13] proposed a
Time-Aware Graph Neural Network (TA-GNN), considering
both long-term historical behaviours and collaborative fil-
tering information from neighbouring users by constructing
user behaviour and neighbourhood graphs and incorporat-
ing time interval information. Guojia An et al. [14] proposed
a method that uses graph structures for hierarchical feature
learning in item embeddings and automatically selects fo-
cus area lengths for session embeddings. Wang et al. [15]
proposed a method that divides sessions into time slices and
constructs temporal graphs and hypergraphs to capture item
transitions over time in the session-based recommendation.
However, there is a computational overhead associated with
modeling item transitions across multiple time slices, which
may affect scalability as the number of sessions and time
slices increases

Zhu et al. [16] proposed the DGS-MGNN method, which
dynamically constructs local, global, and consensus graphs
to capture item representations from multiple perspectives,
enhancing session-based recommendation accuracy. Sheng
et al. [17] modeled interaction sequences using a Weighted
Global Item Graph and current sessions with a Local Ses-
sion Graph, integrating multiple interaction patterns. While
significant advancements have been made in session-based
recommendation systems, challenges remain, such as com-
putational complexity, scalability, and the need for more
comprehensive user preference modeling. This study pro-
poses methods that address these challenges using dynamic
session-based graphs, aiming to improve the accuracy and
efficiency of recommendations in diverse and large-scale
datasets.
Session-based recommendation systems aim to deliver

personalized recommendations in real time based on users’
immediate interests and preferences. Despite significant
progress, challenges persist, including high computational
complexity, scalability issues, and the need for more com-
prehensive modeling of user preferences. Hence, this study
aims to improve time-driven session-based recommenda-
tions by considering the order of interactions and their
specific duration, targeting to enhance the model’s perfor-
mance.

3. Proposed method
The proposed method, TemporalGNN, uses user session
data to construct a graph where each session represents a
sequence of interactions with items over time. Nodes in the
graph are items, and edges reflect the order of interactions
with time differences as edge features. The TemporalGraph
Neural Network (TemporalGNN) consists of stacked Tem-
poralGNNLayers that capture temporal dependencies and
learn item representations. During training, the model up-
dates item embeddings based on the temporal context of
interactions, learning patterns and relationships between
items. After training, recommendations are generated by
calculating similarity scores from the learned embeddings
and selecting the top-N items with the highest scores.
A temporal graph neural network models relationships

and interactions between nodes while considering the tim-
ing of these interactions. The input is a graph with nodes
representing items and edges representing sequential in-
teractions with time differences. The output is a set of
learned item embeddings that capture structural and tempo-
ral relationships, enabling personalized and context-aware
recommendations. First, a directed temporal graph is con-
structed from the training data, with nodes representing
unique items and edges encoding the temporal order of
session interactions. The TemporalGNN model, with two
TemporalGNNLayers, analyzes the temporal structure of
the graph data. During training, the model updates node
features by considering the temporal context and optimizing
model parameters to minimize differences between positive
items within the same session and different session inter-
actions. The trained model makes recommendations by
computing representations for items within a session and
using their similarity to session items. The learned node
features enhance the model’s ability to make personalized
recommendations by capturing temporal variations in item
interactions. Algorithm 1 and Figure 1 show how the pro-
posed method works.

3.1. Graph construction
The interaction records 𝐷 contain information about user
sessions, items, and timestamps. Each session records a
sequence of items interacted with by a user, along with
the corresponding timestamps. A mapping 𝑀 is created to
associate each unique item 𝑖 with a unique node ID 𝑛𝑖. This
mapping translates item interactions into node interactions
in the graph.

𝑀 ∶ 𝑖 → 𝑛𝑖
The graph 𝐺 = (𝑉 , 𝐸) is constructed where:

• 𝑉 is the set of nodes, each corresponding to a unique
item.

• 𝐸 is the set of directed edges representing temporal
relationships between items within a session.

We identify the unique items and their corresponding
node indices for each session using themapping𝑀. Directed
edges are added between consecutive items in each session.
The edges carry weights representing the time difference
between consecutive interactions. If a session involves items
{item1, item2, item3} with corresponding timestamps {t1,
t2, t3}, the directed edges and their weights, that is, time
differences are as follows:

Figure 1: An architecture of proposed TemporalGNN model showing flow of data from Graph construction from session to
item recommendation.

Algorithm 1 Top-N Recommendation System
1: Input: 𝐷 - Input data, 𝐺 - Graph structure, 𝑑𝑖𝑛 - Input di-

mension, 𝑑ℎ𝑖𝑑𝑑𝑒𝑛 - Hidden layer dimension, 𝑑𝑜𝑢𝑡 - Output
dimension

2: Output: Top-N recommended items
3: Construct Graph
4: Create a directed graph 𝐺 = (𝑉 , 𝐸) from the input data

𝐷.
5: Define TemporalGNN Model
6: Initialize the TemporalGNN model with:
7: Input layer of dimension 𝑑𝑖𝑛
8: Hidden layer of dimension 𝑑ℎ𝑖𝑑𝑑𝑒𝑛
9: Output layer of dimension 𝑑𝑜𝑢𝑡
10: Message Passing Through Layers
11: for each layer in the GNN model do
12: Refine node embeddings using attention mechanism
13: Capture fine-grained dependencies between items
14: end for
15: Train Model
16: Train the TemporalGNN model by minimizing the loss

function using training data.
17: Compute Similarity Scores
18: Compute similarity scores between items using embed-

dings obtained from the trained model.
19: Recommend Items
20: Recommend the top-N items based on the computed

similarity scores.

𝑒01 = (𝑛item1, 𝑛item2), weight = 𝑡2 − 𝑡1
𝑒12 = (𝑛item2, 𝑛item3), weight = 𝑡3 − 𝑡2

For a session 𝑆 = [(𝑖1, 𝑡1), (𝑖2, 𝑡2), … , (𝑖𝑘, 𝑡𝑘)]:

𝑉 = {𝑀(𝑖1), 𝑀(𝑖2), … ,𝑀(𝑖𝑘)}
𝐸 = {(𝑀(𝑖𝑗), 𝑀(𝑖𝑗+1)) ∣ ∀𝑗 ∈ [1, 𝑘 − 1]}

Weight of edge(𝑀(𝑖𝑗), 𝑀(𝑖𝑗+1)) = 𝑡𝑗+1 − 𝑡𝑗
The graph is then transformed into matrix representations:

• Adjacency Matrix 𝐴: An adjacency matrix repre-
sents the connections between nodes. If there is a di-
rected edge from node 𝑖 to node 𝑗with a weight (time
difference), 𝐴𝑖𝑗 is the weight; otherwise, 𝐴𝑖𝑗 = 0.

𝐴𝑖𝑗 = {
𝑡𝑗 − 𝑡𝑖 if there is an edge from node 𝑖 to node 𝑗
0 otherwise

• Feature Matrix 𝑋: Each node 𝑣𝑖 have associated
features. We used an identity matrix where each
node’s feature vector is a one-hot encoded vector
corresponding to the item.

𝑋 = 𝐼𝑛𝑢𝑚_𝑖𝑡𝑒𝑚𝑠

After constructing the graph 𝐺 and obtaining the adja-
cency matrix 𝐴 and feature matrix 𝑋, the data is fed into the
Graph Neural Network. The adjacency matrix 𝐴 captures
the structure of the graph and the temporal relationships
between items, while the feature matrix 𝑋 provides the ini-
tial feature representation for each node. GNNs outperform
RNNs when dealing with graph-structured data, as they are
adept at capturing intricate relationships and processing
non-Euclidean data. GNNs are capable of handling inputs
of varying sizes and structures, making them particularly
advantageous for tasks involving complex relationships and
graph-structured data [18]. In contrast, while RNNs excel
with sequential data, GNNs provide significant benefits for
these more complex scenarios.

3.2. Temporal Graph Neural Network
The TemporalGNN model processes graph data and item-
to-node mapping to extract meaningful representations of
items within the graph. It consists of TemporalGNNLayers
that update node features based on their temporal context
within the graph. The TemporalGNN model is initialized
with parameters where 𝑁 is the number of nodes, 𝐻 is the
number of hidden units, and 𝑂 is the number of output
features.
The forward pass of the TemporalGNN model is per-

formed through TemporalGNNLayers, which update node
features iteratively. 𝐹 (0) represent the initial node features.
The forward pass of the TemporalGNN model can be ex-
pressed as:

𝐹 (𝑙+1) = TemporalGNNLayer(𝐺, 𝐹 (𝑙))

where 𝑙 represents the layer index, 𝐹 (𝑙) is the node features at
layer 𝑙, and 𝐹 (𝑙+1) is the updated node features after passing
through layer 𝑙.

3.2.1. TemporalGNNLayer

The TemporalGNNLayer updates node features based on
their temporal context within the graph. Let 𝑁𝑖 denote the
set of neighbouring nodes of node 𝑖.
The graph 𝐺 and initial node features 𝐹 (𝑙) at layer 𝑙, the

forward pass of the TemporalGNNLayer is:

𝐹 (𝑙+1)𝑖 = Update(𝐹 (𝑙)𝑖 , {𝐹 (𝑙)𝑗 ∣ 𝑗 ∈ 𝑁𝑖})

where 𝐹 (𝑙)𝑖 represents the feature vector of node 𝑖 at layer
𝑙, and {𝐹 (𝑙)𝑗 ∣ 𝑗 ∈ 𝑁𝑖} denotes the set of feature vectors of
neighboring nodes of 𝑖.
The TemporalGNN model consists of two Temporal-

GNNLayers. During the forward pass, each Temporal-
GNNLayer updates node features based on their temporal
context within the graph. The first layer uses an attention
mechanism to consider the importance of neighbouring
nodes, while the second layer aggregates information from
neighbouring nodes using mean pooling. The final node fea-
tures generated by the TemporalGNN model encode mean-
ingful representations of items within the temporal graph.
These representations capture the temporal context of item
interactions within sessions and can be seen as embeddings
of items.
The TemporalGNN model is trained using a training

dataset 𝐷train, consisting of session data and correspond-
ing item interactions. During training, the model learns to
predict item sequences within sessions and refine its node
representations.

The training process involves optimizing model parame-
ters to minimize a loss functionℒ defined over the training
data:

min
Θ

∑
(𝑆𝑖,𝑆neg)

ℒ(𝑆𝑖, 𝑆neg)

Where Θ represents the model parameters, 𝑆𝑖 denotes pos-
itive samples, i.e. items within the same session, and 𝑆neg
denotes negative samples, i.e. items from different sessions.
The model is trained using pairwise hinge loss to optimize
the parameters so that the embeddings of items interacted
with in the same session are closer to each other than to the
embeddings of items not interacted with.

3.3. Recommendation process
The recommendation process involves the selection of top-N
items for users based on their activities in the current ses-
sion. The value of N is decoded as five (5) based on average
lenghts of sessions in our dataset. The recommendation pro-
cess uses a trained TemporalGNN model to generate item
recommendations for sessions. The final node features ob-
tained from the TemporalGNNmodel serve as input features
for the recommendation task. When recommending items
for a specific session, the method first identifies the items in
the current session and retrieves their embeddings. It then
computes the similarity scores between these session item
embeddings and all other item embeddings. The method
ranks all items based on these similarity scores and selects
the top 5 items with the highest scores as recommendations.
These items are considered the most similar or relevant to
the current session’s context.

3.3.1. Recommendation

Given a session 𝑆𝑞, the model computes representations for
items within the session using its learned parameters. It

then recommends items based on their similarity to items
in the session, aiming to maximize the relevance of recom-
mendations. This process can be expressed as:

Recommend(𝑆𝑞) = argmax
𝑖∉𝑆𝑞

Sim(𝐹𝑖, 𝐹𝑞)

where 𝐹𝑖 represents the node features of item 𝑖, 𝐹𝑞 represents
the aggregated features of items in session 𝑆𝑞, and Sim(⋅)
denotes a similarity measure between node features.

Similarity Score: The similarity between node features
𝐹𝑖 and 𝐹𝑞 are computed using Cosine similarity, and it is
calculated as:

Cosine Similarity(𝐹𝑖, 𝐹𝑞) =
𝐹𝑖 ⋅ 𝐹𝑞

‖𝐹𝑖‖ ⋅ ‖𝐹𝑞‖

where 𝐹𝑖 ⋅ 𝐹𝑞 represents the dot product of the node feature
vectors, and ‖𝐹𝑖‖ and ‖𝐹𝑞‖ represent their respective Euclidean
norms. The embeddings of items within a session are ob-
tained from the output of the temporalGNN model, which
provides updated node features representing each item’s
embedding. Similarity scores between items are computed
based on cosine similarity, which measures the cosine of
the angle between two vectors, representing the similarity
between their directions in the embedding space. This calcu-
lation is carried out by taking the dot product of the embed-
dings of items within a session and then dividing it by the
product of their magnitudes, resulting in cosine similarity
scores. Finally, items are ranked based on similarity scores,
determining the order in which they are recommended to
the user. This process enables the model to recommend
items that are most similar to those already interacted with
by the users. The method recommends the top 5 items by
computing and ranking similarity scores for items within
a specific session. The recommendation process is applied
to each session individually to provide personalized recom-
mendations to users.

4. Experiments and evaluation

4.1. Dataset and performance metrics
We evaluated our model on the Yoochoose 1 and Diginet-
ica datasets 2 [15] [19]. The yoochoose dataset is obtained
from the RecSys’15 Challenge. The dataset captures user-
item interactions collected from an online retailer over a
period of several months. It contains anonymized informa-
tion about user sessions, including the items users viewed
and purchased during each session, as well as timestamps
indicating when these interactions occurred. Diginetica is
a competition dataset used in CIKM Cup 2016. It contains
user sessions extracted from an e-commerce search engine
logs. The dataset includes columns such as session-id, user-
id,item-id, eventdate and timeframe.
We consider MRR@k and recall@k metrics to evaluate

the performance of our model, and We set k to 5, which is
suitable for session-based recommendations. Mean Recipro-
cal Rank measures how well a list of ranked items matches
a set of true items. It is the average of the reciprocal ranks
of the true items in the ranked list.

MRR@k = 1
𝑁

𝑁
∑
𝑖=1

1
rank𝑖

1https://darel13712.github.io/rs_datasets/Datasets/yoochoose/
2https://darel13712.github.io/rs_datasets/Datasets/diginetica/

Table 1
Statistics of the Yoochoose and Diginetica datasets

Statistics Yoochoose Diginetica
clicks 557,248 982,961
train 369,859 719,470
test 55,898 60,858
items 16,766 43,097
avg length 6.16 5.12

Where 𝑁 is the number of sessions, and rank𝑖 is the rank po-
sition of the true item in the i-th session’s recommendation
list.

Recall measures the proportion of true items successfully
recommended in the top-k items. It is the ratio of the number
of true items found in the top-k recommendations to the
total number of true items. It is mathematically defined as:

Recall@k = 1
𝑁

𝑁
∑
𝑖=1

1{true_item𝑖 ∈ top_k_recommended𝑖}

Where 1{⋅} is an indicator function that is one if the condition
inside is true and 0 otherwise.

4.2. Baselines
To demonstrate the performance of the proposed method,
we compared it with the contextual K-Nearest Neighbours
approach (CKNN) [20] and graph-based Node2Vec approach
[21] [22]. CKNN algorithm is a straightforward yet effec-
tive method for recommendation [20]. In the context of
session-based recommendation, KNN recommends items
most similar to the items in the current session based on
historical co-occurrence data.

Node2Vec approach integrates network-based represen-
tation learning, clustering, and personalized recommenda-
tion techniques to provide practical and personalized rec-
ommendations for users in session-based scenarios.

4.3. Experimental settings
We used hyperparameter tuning and cross-validation to op-
timize the performance of the TemporalGNN model. The
hyperparameters tuned include the number of hidden units
in the first GNN layer, the number of output features in
the second GNN layer, the learning rate for the Adam op-
timizer, and the number of training epochs. The search
space for these parameters includes 32, 64 and 128 values
for hidden units 16, 32 and 64 for output feature 0.001, 0.005
and 0.01 for learning rate and 10, 20 and 30 for a number
of epochs. We used a random search strategy to explore
this search space by sampling ten different sets of hyper-
parameter combinations. For each sampled combination,
5-fold cross-validation is conducted to evaluate the model’s
performance, which involves splitting the training data into
five folds and iterating five times, each time using a different
fold as the validation set. In comparison, the remaining four
folds are used for training. During each fold, the model is
trained with the specified hyperparameters, and its perfor-
mance is evaluated using the Mean Reciprocal Rank metric,
which measures the quality of the ranking of recommended
items. The MRR scores from all five folds are averaged to
obtain a single performance score for the hyperparameter
set. The combination of hyperparameters that gives the
highest average MRR across the five folds is considered the

best. This optimal set of hyperparameters is then used to
train the final model on the entire training dataset.

4.4. Experimental results
Figure 2 shows the performance of the TemporalGNNmodel
on both datasets in terms of MRR@5 and Recall@5.

Figure 2: Performance of proposed model

On the Yoochoose dataset, TemporalGNN significantly
outperforms the other models with an MRR@5 of 0.52 and
a Recall@5 of 0.54. This indicates that TemporalGNN is
highly effective in ranking the correct items near the top
and retrieving relevant items within the top 5 recommen-
dations. In contrast, KNN shows very poor performance
with an MRR@5 of 0.069 and Recall@5 of 0.07, suggest-
ing that it struggles to provide useful recommendations.
Node2vec performs better than KNN with an MRR@5 of
0.13 and Recall@5 of 0.3, indicating moderate effectiveness.
However, it still falls short of the performance achieved by
TemporalGNN, highlighting the superiority of Temporal-
GNN’s ability to utilize temporal and graph-based features
for recommendation tasks.

Table 2
Performance of proposed model and baseline models

Model Yoochoose Diginetica
MRR Recall MRR Recall

TemporalGNN 0.52 0.54 0.29 0.30
CKNN 0.06 0.07 0.02 0.02
Node2vec 0.13 0.30 0.14 0.50

On the Diginetica dataset, TemporalGNN’s performance
stands out, surpassing the other models with an MRR of
0.29 and Recall of 0.30. In comparison, KNN’s performance
is notably lower, with an MRR of 0.022 and Recall of 0.02,
and Node2vec, while better than KNN, still falls behind with
an MRR of 0.14 and Recall of 0.5. These results underscore
the superior performance of TemporalGNN in capturing the
temporal dynamics of user interactions, leading to more ac-
curate and relevant recommendations. Similarly, on the Dig-
inetica dataset, TemporalGNN showed better performance
with an MRR@5 of 0.29 and Recall@5 of 0.30. Although
these scores are lower than their performance on Yoochoose,
TemporalGNN remains the best model, indicating its robust
capability across different datasets. KNN, on the other hand,
performs very poorly with anMRR@5 of 0.013 and Recall@5
of 0.01, showing that it is not well-suited for this dataset.
Node2vec shows a notable improvement in Recall@5 with
a score of 0.5 but has an MRR@5 of 0.14, indicating that

while it can retrieve relevant items better, it does not rank
them as highly as TemporalGNN. This comparison further
highlights the effectiveness of TemporalGNN in leveraging
complex temporal and graph-based interactions for better
recommendation performance.

5. Conclusion and future work
We introduced and evaluated a Temporal Graph Neural Net-
work method for session-based recommendation tasks by
showing its effectiveness on the Yoochoose and Diginetica
datasets. We implemented the TempralGNN model to en-
code temporal dynamics within the graph, which extracted
meaningful representations of items based on their temporal
context to recommend top-N items to users. TempooralGNN
outperformed traditional methods like CKNN and graph-
based Node2Vec and achieved higher performance in terms
of Mean Reciprocal Rank and Recall scores.
Future work could incorporate contextual information,

such as the device used, location, or time of day, to pro-
vide more contextually relevant recommendations. There
are exciting possibilities for future research in the field of
session-based recommendation tasks. Enhancements to
the TemporalGNN architecture, such as incorporating atten-
tion mechanisms and exploring alternative graph structures,
could further improve its performance and scalability. We
will include a comparative analysis of various approaches
alongside Temporal GNN. This should pique the audience’s
interest in the potential for further research and develop-
ment in the field.

References
[1] B. Hidasi, M. Quadrana, A. Karatzoglou, D. Tikk, Paral-

lel recurrent neural network architectures for feature-
rich session-based recommendations, in: Proceedings
of the 10th ACM conference on recommender systems,
2016, pp. 241–248.

[2] C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang,
J. Fang, X. Zhou, Graph contextualized self-attention
network for session-based recommendation., in: IJCAI,
volume 19, 2019, pp. 3940–3946.

[3] F. Yu, Y. Zhu, Q. Liu, S. Wu, L. Wang, T. Tan, Tagnn:
Target attentive graph neural networks for session-
based recommendation, in: Proceedings of the 43rd
international ACM SIGIR conference on research
and development in information retrieval, 2020, pp.
1921–1924.

[4] M. Zhang, S. Wu, M. Gao, X. Jiang, K. Xu, L. Wang,
Personalized graph neural networks with attention
mechanism for session-aware recommendation, IEEE
Transactions on Knowledge and Data Engineering 34
(2020) 3946–3957.

[5] Y. K. Tan, X. Xu, Y. Liu, Improved recurrent neural
networks for session-based recommendations, in: Pro-
ceedings of the 1st workshop on deep learning for
recommender systems, 2016, pp. 17–22.

[6] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk,
Session-based recommendations with recurrent neural
networks, arXiv preprint arXiv:1511.06939 (2015).

[7] C. Ding, Z. Zhao, C. Li, Y. Yu, Q. Zeng, Session-based
recommendation with hypergraph convolutional net-
works and sequential information embeddings, Expert
Systems with Applications 223 (2023) 119875.

[8] J. Wang, H. Xie, F. L. Wang, L.-K. Lee, M. Wei, Jointly
modeling intra-and inter-session dependencies with
graph neural networks for session-based recommen-
dations, Information Processing & Management 60
(2023) 103209.

[9] R. Qiu, J. Li, Z. Huang, H. Yin, Rethinking the item
order in session-based recommendation with graph
neural networks, in: Proceedings of the 28th ACM in-
ternational conference on information and knowledge
management, 2019, pp. 579–588.

[10] S.Wu, Y. Tang, Y. Zhu, L.Wang, X. Xie, T. Tan, Session-
based recommendation with graph neural networks,
in: Proceedings of the AAAI conference on artificial
intelligence, volume 33, 2019, pp. 346–353.

[11] H. Rong, W. Zhu, C. Zhu, Graph hierarchical dwell-
time attention network for session-based recommen-
dation, in: ITM Web of Conferences, volume 47, EDP
Sciences, 2022, p. 02032.

[12] Y. Chen, Y. Tang, Y. Yuan, Attention-enhanced graph
neural networks with global context for session-based
recommendation, IEEE Access 11 (2023) 26237–26246.

[13] Y. Guo, Y. Ling, H. Chen, A time-aware graph neural
network for session-based recommendation, IEEE
Access 8 (2020) 167371–167382.

[14] G. An, J. Sun, Y. Yang, F. Sun, Enhancing collabora-
tive information with contrastive learning for session-
based recommendation, Information Processing &
Management 61 (2024) 103738.

[15] H. Wang, S. Yan, C. Wu, L. Han, L. Zhou, Cross-
view temporal graph contrastive learning for session-
based recommendation, Knowledge-Based Systems
264 (2023) 110304.

[16] Z. Sheng, T. Zhang, Y. Zhang, S. Gao, Enhanced graph
neural network for session-based recommendation,
Expert Systems with Applications 213 (2023) 118887.

[17] F. Wang, X. Gao, Z. Chen, L. Lyu, Contrastive multi-
level graph neural networks for session-based recom-
mendation, IEEE Transactions onMultimedia 25 (2023)
9278–9289.

[18] I. R. Ward, J. Joyner, C. Lickfold, Y. Guo, M. Ben-
namoun, A practical tutorial on graph neural net-
works, ACM Computing Surveys (CSUR) 54 (2022)
1–35.

[19] X. Zhu, G. Tang, P. Wang, C. Li, J. Guo, S. Dietze, Dy-
namic global structure enhanced multi-channel graph
neural network for session-based recommendation,
Information Sciences 624 (2023) 324–343.

[20] H. Guo, R. Tang, Y. Ye, F. Liu, Y. Zhang, A novel
knn approach for session-based recommendation, in:
Advances in Knowledge Discovery and Data Mining:
23rd Pacific-Asia Conference, PAKDD 2019, Macau,
China, April 14-17, 2019, Proceedings, Part II 23,
Springer, 2019, pp. 381–393.

[21] A. Grover, J. Leskovec, node2vec: Scalable feature
learning for networks, in: Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge
discovery and data mining, 2016, pp. 855–864.

[22] S. Okura, Y. Tagami, S. Ono, A. Tajima, Embedding-
based news recommendation for millions of users, in:
Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining,
2017, pp. 1933–1942.

	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Graph construction
	3.2 Temporal Graph Neural Network
	3.2.1 TemporalGNNLayer

	3.3 Recommendation process
	3.3.1 Recommendation

	4 Experiments and evaluation
	4.1 Dataset and performance metrics
	4.2 Baselines
	4.3 Experimental settings
	4.4 Experimental results

	5 Conclusion and future work

