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Abstract
The increasing use of artificial neural networks for knowledge processing often lacks precise knowledge representation. To
address this issue, we propose using a word-type-weighted Word2Vec model to achieve more accurate representations of
individual words within sentences. Our approach incorporates weighting vector embeddings of words based on parts-of-
speech predictions generated by the spaCy library. Experimental results demonstrate that, compared to simple Word2Vec, our
model enhances the accuracy of recognizing the semantics of a sentence, while maintaining significantly lower computational
requirements than large language models and various variants of Transformer.
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1. Introduction
Recently, artificial intelligence (AI) and machine learning
(ML) have proved to be extremely useful in most scientific
fields [1, 2, 3]. Neural networks have been shown to be a
very powerful tool in text analysis, predictive analytics,
image recognition, and many other areas, but they lack
in one respect – the processing accessibility, with most
neural networks for text analysis needing supercomput-
ers for their training [4]. This creates a problem, if we
want to use a low processing cost program to determine
the semantic similarity of sentences. For such situations,
we tried to come up with a solution explained in this
paper.

The main objective of this research is to develop a
lightweight algorithm for correctly predicting sentence
similarity that utilizes text representation only on the
word level, i.e., word embeddings solely at the word
level and parts-of-speech (POS) information. By integrat-
ing a word-type-weighted Word2Vec (W2V) [5] model
with POS tagging, our approach aims to provide a low-
cost alternative to large text embedding models based
on transformers which often require high-performance
accelerators. In our test case with processor i7-12650H
and memory 2 × 16 GB DDR5 at 4800 MHz, we have
achieved approximately 170 sentences/s with sentence
transformer and 15 500 sentences/s with W2V.

The following section explains the concept of sentence
embeddings and its applicability. Section 3 describes the
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methodology used to find the optimal weights and intro-
duces the tools used in this task, the text pre-processing,
and the weighting approach. Finally, Section 4 presents
experimental results in comparison with other existing
approaches.

2. Applicability of Sentence
Embeddings

Textual embedding is a useful tool in NLP (natural lan-
guage processing). It is a vector representation of text
that helps to capture the meaning of sentences[6]. This
makes it valuable for many tasks. For example, in text
classification, such as sentiment analysis, sentence em-
beddings help determine if a sentence is positive, neg-
ative, or neutral. It is also useful in topic classification,
where it helps to sort text into categories like sports,
politics, or technology.

Sentence embeddings are naturally suitable for finding
semantic similarities between sentences. They help in
tasks such as paraphrase detection, where the goal is
to find sentences with basically the same meaning. An-
other important application is in information retrieval,
sentence embeddings improve search results by finding
documents that match a query more accurately [7]. They
are also used in text summarization by picking out the
most important sentences. Overall, sentence embeddings
make working with text easier and more effective in
many applications.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:theodor.lagin@gmail.com
mailto:lukas.korel@fit.cvut.cz
mailto:martin@cs.cas.cz
https://creativecommons.org/licenses/by/4.0


3. Methodology

3.1. Overview
This section outlines the methodology used to develop
the word-type weighted Word2Vec model, used to predict
semantic similarity of sentences. Our approach integrates
word embeddings with parts-of-speech information to
improve accuracy without large processing costs.

3.2. Employed Tools
The corpus we used was the Microsoft Research para-
phrase corpus[8]. It contains around 5800 pairs of sen-
tences. We trained the algorithm on the train set of this
corpus and tested it on its test set.

We used the public GoogleNews-vectors-
negative300[9] Word2Vec implementation, for more
objective and clear results, because of how widespread
this corpus is. The model utilizes 300-dimensional
vectors and has been trained with around 3 million
different English words. The size of this model is around
1,6 GB.

We used the spaCy library [10] for POS (Parts-of-
Speech) tagging, because of its efficiency and precision,
which is crucial to fine-tuning the weights correctly.

3.3. Text Preprocessing
3.3.1. Standard Preprocessing

As the first step of preprocessing, we use the spaCy li-
brary to tag each word in a sentence, which as a result
also tokenizes the given sentence. SpaCy assigns tags
automatically, using a neural network. Then we delete
all the symbols. After deleting the symbols, we apply a
standard spell-checking algorithm to correct the mistakes
created by deleting the symbols. After that we employ
our embedding algorithm.

This embedding algorithm starts by verifying that the
word is not a stop word. If it passes this check, we clar-
ify whether the word is present in our model. If the
word is absent, we proceed to lemmatization and check
again, followed by stemming and another check. If all of
these steps are unsuccessful, we assign to each token the
embedding based on its assigned tag. For instance, the
embedding of John is assigned to every first name tagged
as a proper noun because there are missing embeddings
for them.

3.4. Weights
In this study, we consider weights for each word type,
denoted as 𝑤wt, where wt is the index of the word type.
For each 𝑤wt, we assume that 𝑤wt ∈ Q.

3.4.1. Text Preparation

We first divided the training text into two parts. First
being 60 percent of the text and second being 40 percent
of the text. We then used our text preprocessor to vector
these parts of text. Both parts were made up of pairs of
sentences, where half of them had the same semantic
similarity and half did not.

3.4.2. Initial Weight Optimization

Initially, we needed to make a sufficiently accurate guess
close to the global minimum. To achieve this, we used
the Broyden-Fletcher-Goldfarb-Shanno algorithm, also
known as the BFGS method, to minimize the mean
squared error [11]. We opted for this method because,
when tested, it was shown to be the most accurate for
this specific type of problem.

The BFGS algorithm is an iterative method for solving
unconstrained nonlinear optimization problems. It be-
longs to the family of quasi-Newton methods, which are
used to find local maxima or minima of functions. The
key idea behind BFGS is to update an approximation to
the Hessian matrix (or its inverse) at each iteration to
improve the convergence rate.

The BFGS update formula for the inverse Hessian ma-
trix 𝐻𝑘+1 is given by:
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where:

• 𝐻𝑘 is the approximation of the inverse Hessian
matrix at iteration 𝑘.

• 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘 is the change in the vector of
variables.

• 𝑦𝑘 = ∇𝑓(𝑥𝑘+1)−∇𝑓(𝑥𝑘) is the change in the
gradient of the objective function.

• 𝐼 is the identity matrix.

The BFGS algorithm uses this updating formula it-
eratively to improve the approximation of the inverse
Hessian matrix, ultimately aiding in the efficient opti-
mization of the objective function.

This function by preconditioning the gradient deter-
mines the descent direction, towards the local minimum
for each weight. The error or the loss function was com-
puted as the difference between the target similarity,
which could be either -1 or 1, and the cosine similarity
between embeddings. This process polarized the weights,
making them highly effective as an initial guess. We also
tried iterative weight adaptation without an initial weight
guess, but it would take too many iterations to produce
any meaningful guess, and fewer iterations did not yield
any results.



Table 1
Example output from iterations for each word type

Word type Abbreviation Weight - 1st iteration Weight - 2nd iteration Example word
Adjective ADJ 1.000 1.000 last
Adposition ADP 0.210 0.238 across
Adverb ADV 0.903 1.066 separately
Auxiliary AUX 0.415 0.396 would
Coordinating Conjunction CCONJ 0.020 0.007 either
Determiner DET 0.071 0.080 every
Interjection INTJ 0.020 -0.006 oh
Noun NOUN -6.150 -6.651 brother
Numeral NUM 3.470 4.467 five
Particle PART 0.095 0.037 nt
Pronoun PRON 0.085 0.100 somebody
Proper Noun PROPN -0.011 -0.585 Amrozi
Subordinating Conjunction SCONJ 0.119 0.112 since
Verb VERB 3.514 4.204 reported
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Figure 1: Fitted Gaussian distribution of samples

3.4.3. Gaussian Distribution

The BFGS method was quite dependent on the initial
conditions, and hence we did a number of iterations of
this function while changing the text that was supposed
to be similar or not. Afterward, we fitted a Gaussian
distribution on the given ratio between weights because
we considered the ratio more important than the finalized
weights. Figure 1 depicts the weight ratios obtained in
Table 1. We normalized the overall distribution around
zero.

3.4.4. Final Weights Optimization

Subsequently, we generated random samples from the
obtained Gaussian distribution. These samples were gen-
erally similar (Figure 1), although there were a few excep-
tions, such as with nouns, created from the larger ratio
differences.

Although some estimates were worse than others, all
the differences could be rectified, with the method we
employed at last. We refined the weights, that were dif-
ferent, through an iterative process, comparing them
with weights derived from the Gaussian distribution
with small enough differences. The refinement was



achieved by minimizing logistic loss using the Nelder-
Mead method. The logistic loss was calculated based on
the prediction accuracy.

The logistic loss for a binary classification problem,
also known as log-loss or binary cross-entropy loss, is
given by:

𝐿(w) = − 1

𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log 𝜎(x𝑖 ·w)

+(1− 𝑦𝑖) log(1− 𝜎(x𝑖 ·w))] (2)

where:

• 𝑁 is the number of samples,
• 𝑦𝑖 is the true label (0 or 1) for the 𝑖-th sample,
• x𝑖 is the feature vector for the 𝑖-th sample,
• w is the weight vector,
• 𝜎(𝑧) is the sigmoid function defined as 𝜎(𝑧) =

1
1+𝑒−𝑧 .

The Nelder-Mead algorithm minimizes the logistic loss
function by iteratively refining a simplex with 𝑛 + 1
vertices in an 𝑛-dimensional space [12]. The Nelder-
Mead method is particularly effective for optimizing the
logistic loss function in logistic regression, especially in
cases where the gradient is unavailable or the function
is non-smooth. Through successive adjustments of the
simplex vertices via reflection, expansion, contraction,
and shrinkage, the algorithm steadily progresses toward
the minimum of the logistic loss function.

3.4.5. Embedding Correction

Embeddings were too dependent on the length of their
sentences. We have created a gradient-based weight cre-
ator, which modifies the embedding. It adds a corrector
multiplied by the count of tokens in the sentence. We
chose to use the additive weighted count of tokens in
a sentence because, after many tests with different cor-
rections, such as modification by the count of particular
word types and multiplication with a weighted count of
tokens, it was shown to be the most differentiating factor
between different sentences.

3.5. Full experimental setup
In table 2, you can see the full experimental setup of the
methodology.

4. Results

4.1. Final Weights
The resulting final weights were in some cases negative,
with nouns being overly positive. Adjectives, nouns,

Table 2
Summary of Experimental Setup

Category Our choice
Dataset Microsoft Research Paper
Minimization Algorithms BFGS, Nelder-Mead
Error Functions Logistic Loss,

Mean Squared Error
Assumed Distribution Gaussian Distribution
Evaluation Metrics Accuracy, F1-Score, AUC
Number of Executions 10
Training-Testing Set Ratio 60 % : 40 %

numerals, and verbs had the largest weights, while other
parts of speech, for instance determiners or adpositions
had weights close to zero. This most likely happened due
to these POS having such large impact on sentences. The
final weights are shown in table 3.

Table 3
Example of final word type weights, other types were equal
to 0.060, but this value almost does not affect results, because
the occurrence of the other types is very rare. The final token-
based embedding corrector 𝑤𝑒𝑐 = −0.028.

Word type abbreviation Weight
ADJ -1.330
ADP 0.341
ADV -0.616
AUX -0.334
CCONJ 0.126
DET 0.308
INTJ -0.143
NOUN 4.970
NUM -2.829
PART -0.396
PRON -0.060
PROPN 0.068
SCONJ -0.011
VERB -2.656

4.2. Classification
We have compared our approach to the BERT (Bidi-
rectional Encoder Representations from Transformers)
[13] fine-tuned for sentence embeddings, namely all-
MiniLM-L12-v2 which has good benchmark results1

and simple averaging Word2Vec without weighting. All
results in this test have been obtained from the indepen-
dent testing dataset. The testing dataset is balanced to
contain the same number of records for each class (the
same and different descriptions). We used the Accuracy,
F1 score, and AUC[14] for measuring all the statistics.

1benchmark results of available sentence transformers: https://www.
sbert.net/docs/sentence_transformer/pretrained_models.html

https://www.sbert.net/docs/sentence_transformer/pretrained_models.html
https://www.sbert.net/docs/sentence_transformer/pretrained_models.html


Table 4
Results obtained on the balanced testing dataset. The best
results have been achieved by the BERT, which is based on
a neural network that has been trained on large amounts of
data and requires high-power computing units to perform
embedding fast. When we compare the simple Word2vec ap-
proach, the word type weighting aggregation brings much
better results for sentence embedding in all considered met-
rics.

Quality measure Accuracy F1 score AUC
BERT 0.975767 0.975165 0.975767
W2Vmean 0.806442 0.837831 0.806442
W2Vweighted 0.933742 0.929273 0.933742
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Figure 2: The distribution of results from BERT, mean aggre-
gated Word2Vec and our solution grouped by ground truth
similarity.

The results are represented in Table 4 and the box plot
Figure 2. The weighted solution by word type brings
much better results than simple averaging. The weighted
solution has a higher margin between similar and dis-
similar sentences, but not as high as the BERT. The high
performance is probably caused by its architecture, train-
ing data, and contextual processing of the whole input.

The differences between the considered embedders
were tested for significance by the Friedman test. The
basic null hypothesis that the results for all 3 embedders
coincide was strongly rejected, with the achieved signifi-
cance 𝑝 = 1.39× 10−297. For the post-hoc analysis, we
employed the Wilcoxon signed rank test with the two-
sided alternative for all pairs of the compared embedders,
because of the inconsistency of the more common mean
ranks post-hoc test with the missing closed-world as-
sumption in machine learning, as pointed out in [15].
For correction to multiple hypotheses testing, we used
the Holm method, which yielded the following corrected
results:

• BERT vs. W2Vmean: 𝑝 = 4.01× 10−156

• BERT vs. W2Vweighted: 𝑝 = 2.12× 10−16

• W2Vmean vs. W2Vweighted: 𝑝 = 1.46×10−183

5. Conclusion
This paper introduces word-type-weighted Word2Vec
for sentence embeddings. It is based on Word2Vec and
aggregates words from a given sentence by the pre-
trained weights into one numeric vector. Our weighted
Word2Vec embedder was compared on testing data with
average aggregation and with the BERT. The tested task
was about recognizing whether the given pair of sen-
tences is paraphrased with the same meaning or sen-
tences with different meanings. The complex neural net-
work architecture of the BERT outperformed our solu-
tion, but the simple averaging without weighting had a
much narrower gap between target classes in our testing
case. The advantage of our solution is using the simple
Word2Vec model.

In future research, we would like to extend our solution
to embed whole paragraphs. We also want to consider
other word-based embedders.
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