
Low-Latency Streaming Evaluation of JSONPath Queries
Jana Kostičová1

1Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, Bratislava, Slovakia

Abstract
The recent standardization of the JSONPath language underscores the need for efficient JSONPath query evaluation over
JSON (JavaScript Object Notation) data. In this work, we focus on real-time scenarios where available methods may have
a too high latency. We identify a subset of JSONPath queries that enable efficient evaluation with a constant number of
steps per event in the input JSON stream. This constant time evaluation guarantees low and predictable latency, making the
approach highly suitable for real-time applications. The algorithm uses a streaming tree transducer (SST) as the underlying
formal model. The JSONPath query is compiled into a finite state automaton (FSA) and the transducer keeps track of the
evaluation status by storing FSA states in its stack. We present formal background, complexity analysis and implementation
details of the algorithm.

Keywords
JSON, JSON querying, JSONPath, real-time data processing, low latency

1. Introduction
Fast and low-latency solutions are becoming a crucial
part of today’s data pipelines to satisfy the increasing
demand for real-time (RT) or near-real-time processing
(NRT). Such solutions are required to handle data contin-
uously, with minimal delay, and overcome the inherent
challenge of limited data availability at any given mo-
ment [1]. Querying data streams emerges as a versatile
tool in this context - beyond direct output generation of
filtered data, it serves as a necessary first step for var-
ious intricate processing tasks, such as data cleaning,
entity resolution, data validation, data transformation,
and feature engineering [2, 3].

This paper focuses on querying JSON data. JSON
(JavaScript Object Notation) [4, 5] is an extremely pop-
ular tree-based format for data storage and data trans-
mission thanks to its lightweight nature, easy readability,
and straightforward mapping to object-oriented models.
In case of tree data, the streaming processing involves
traversing the data in a specific order (preorder) and us-
ing queries to address locations within the tree. The
common query language for JSON is the recently stan-
dardized JSONPath language [6]. It is based on the XPath
language used for querying another tree format XML
(Extensible Markup Language) [7].

Most of the JSONPath processors are tree-based, i.e.,
they load all of the input data into memory and then
perform the evaluation. This approach is apparently not
suitable for RT / NRT scenarios, especially for large input
data streams. Delays are introduced by the initial loading
step, by evaluating the JSONPath queries against the in-
memory representation, or by writing the data from the

ITAT 2024 Information Technologies – Applications and Theory 2024
$ kosticova@dcs.fmph.uniba.sk (J. Kostičová)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

memory to the output stream. The memory footprint is
typically proportional to the size of the input data.

During the streaming processing of JSON data the
input is read sequentially and similarly the output is
generated sequentially. A stack is typically used to store
information related to the current tree level of the input
data. If a part of the input data needs to be processed
in memory, it must be temporarily stored in dedicated
memory buffer(s). Basically, these parts are processed in
a tree-based manner that inherently results in processing
delays, as described above. Therefore, real-time scenarios
demand minimal input buffering.

The presented algorithm is intended to be used in real-
time data pipelines including rapid data transformation,
such as restructuring data for aggregation purposes (e.g.,
combining social media posts into a unified format) and
entity resolution tasks (e.g., matching customer records
across disparate datasets). However, it is useful at each
data processing task that requires low-latency querying
JSON data streams.

The main contribution of this paper is two-fold. First,
we present formal foundations that enable us to analyze
the complexity of the streaming processing of JSONPath
queries. Second, on the top of this formalism, we identify
the JSONPath subset that can be evaluated consistently
with low latency and design the algorithm that realizes
such an evaluation. The algorithm consists of two steps:
(1) the compilation step when the query is compiled into
a finite automaton, and (2) the evaluation step based
on a tree transducer, when the query is evaluated over
an input JSON stream and an output JSON stream is
generated. The evaluator performs a constant number of
steps per single event in input JSON stream that ensures
predictable consistent latency for RT / NRT processing.
The proposed solution is compared with other streaming
JSONPath evaluators.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:kosticova@dcs.fmph.uniba.sk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

1.1. Related Work
To our best knowledge, ours is the first approach to an-
alyzing the JSONPath language for its suitability in sce-
narios with low-latency requirements. There are two
streaming solutions that focus particularly on JSONPath
queries. Both of them were presented before JSONPath
standardization, and thus the languages being evaluated
differ from the resulting standard in a few aspects. Json-
Surfer [8] processes incoming events on the fly, but still
builds a partial internal representation of input data. It
cannot process queries with descendat axis and star se-
lector. JPStream [9] compiles queries into a finite state
automaton and combines it with parsing automaton to
obtain the resulting streaming automaton. The authors
also present a parallelization mechanism to speed up the
evaluation. Both of these solutions lack latency analysis,
and it generally varies for different queries.

Much prior research has focused on analyzing the
streaming processing of XPath language. In [10] authors
present a streaming algorithm that evaluates a subset of
XPath called Univariate XPath in 𝑂(|𝐷||𝑄|) time, where
|𝐷| is the size of the input document and |𝑄| is the size
of the query. The SPEX evaluator [11] compiles XPath
query into a network of deterministic pushdown trans-
ducers and processes it in polynomial combined complex-
ity. The algorithm proposed in [12] is based on determin-
istic nested word automata and runs in polynomial time.
Although several of the approaches to XPath streaming
evaluation possess strong formal foundations, their al-
gorithms are not directly applicable to JSONPath due to
inherent differences between the two languages. Further-
more, these solutions focus primarily on overall time or
space complexity rather than latency and often support
query constructs like backward axes and predicates that
can lead to unpredictable latency behavior and hinder
their applicability in RT/NRT processing.

2. Formal Foundations
This section presents a formal basis for analyzing the
complexity of the streaming JSONPath evaluation. We
establish a set of customized formal models represeting
JSON data, JSONPath queries and JSON transformations.

2.1. JSON Abstraction
At the root level, JSON data contain a root value. This
value can be one of the following:

• An object that consists of zero or more unordered
name/value pairs (also called members).

• An array that consists of zero or more ordered
values (also called array elements).

• A literal value without internal structure that is
either a number value, string value, or one of the
literal names (true, false, null).

JSON data can be represented as a tree that is obtained
by a natural one-to-one mapping between values and
internal nodes of the tree. Reading the JSON data stream
then exactly corresponds to the preorder traversal of the
constructed tree.

We base our JSON abstraction on the model introduced
in our previous work [13]. We label the nodes corre-
sponding to the array elements by their index - similar
technique is used in [14] . We omit literal values since
they are not used in our evaluation algorithm. Section 5
describes how they are handled in implementation. We
formally define two JSON structure types: subtrees with
arbitrary root identifier labeled by any object name, and
trees with the root identified by "0" and labeled by the
designated root symbol "$".

Let Σ be an alphabet of object names. The set of JSON
subtrees over Σ is denoted by 𝑆Σ. We use dynamic level
numbers [15] to identify nodes within the JSON subtree.
The node identifier (id) is a sequence of numeric val-
ues, separated by point. The root node has some root
id and the id of any other node consists of the parent’s
id, point, and the position of the node among its sib-
lings. This approach allows us to trivially determine
the relations between any two given nodes such as the
ancestor-descendant relation, the parent-child relation,
the sibling relation. We include zero in node ids to get
consistency with the indices of JSON array elements. The
JSON subtree always contains at least the root node, as
the JSON data must consist of exactly one root value. One
ambiguity exists in this model - the JSON subtree consist-
ing of the root node only can represent a root value equal
to either an empty object or to an empty array. However,
this does not affect the design of our algorithm, as shown
later.

The JSON subtree 𝑠 ∈ 𝑆Σ is then defined as a pair
𝑠 = (𝑉𝑠, 𝜆𝑠) where

• 𝑉𝑠 ⊆ 2(N0∪{.})* is a set of node ids (shortly
nodes), and

• 𝜆𝑠 : 𝑉𝑠 → (Σ ∪ N0), Σ ∩ N0, is the labeling
function.

Note that the set of nonnegative integers N0 is used both
for creating node ids and for labeling nodes by array
indices. It is required that (1) node ids in 𝑉𝑠 form a tree,
and (2) in case of array node, the labels of its children
form an ordered sequence of indices starting from zero.

A JSON tree over Σ is a JSON subtree 𝑡 = (𝑉𝑡, 𝜆𝑡) over
Σ where

0 ∈ 𝑉𝑡, $ ∈ Σ and 𝜆𝑡(0) = $.

Figure 1: An example of JSON tree

We denote the set of JSON trees over Σ by 𝑇Σ. An exam-
ple of a JSON tree is depicted in Fig. 1.

The following notions and notations are used through-
out this paper: Let 𝑠 be a JSON subtree. We denote the
(finite) set of all labels that occur in 𝑠 by Λ(𝑠). We refer to
the root node of 𝑠 by 𝑟𝑜𝑜𝑡(𝑠) and to the preorder relation
between nodes 𝑢, 𝑣 ∈ 𝑉𝑠 by 𝑢 ≺ 𝑣. We define the set of
events over some label alphabet Λ as

𝐸(Λ) = {𝑏𝑒𝑔𝑖𝑛(𝜎) |𝜎 ∈ Λ} ∪ {𝑒𝑛𝑑}.

An event stream at 𝑣 ∈ 𝑉𝑠 is then defined recursively as
follows:

𝑠𝑡𝑟𝑒𝑎𝑚(𝑣) =

𝑏𝑒𝑔𝑖𝑛(𝜆𝑠(𝑣)) 𝑠𝑡𝑟𝑒𝑎𝑚(𝑣.0) . . . 𝑠𝑡𝑟𝑒𝑎𝑚(𝑣.𝑛) 𝑒𝑛𝑑,

where 𝑣.0, . . . , 𝑣.𝑛 are children of 𝑣. The event stream
of the JSON tree 𝑡 equals to the event stream at its root:
𝑠𝑡𝑟𝑒𝑎𝑚(𝑡) = 𝑠𝑡𝑟𝑒𝑎𝑚(0).

The structure of the JSON data can optionally be con-
strained by a schema. Based on this aspect, we distin-
guish schema-agnostic and schema-aware approaches
to JSON processing. Since it is pretty common for real-
world JSON data streams to be schemaless, in this paper
we focus on schema-agnostic JSONPath evaluation. This
approach introduces some additional issues and restric-
tions; most prominently, it is necessary to deal with an
unknown input alphabet and the query set that can be
processed with guaranteed low latency is more restricted.
In Section 6 we outline future research that would benefit
from schema availability.

2.2. JSONPath
Based on recently published IETF RFC 9535 [6] (here-
after referred to as the JSONPath standard), we use the
following grammar to describe the JSONPath queries:

𝑞𝑢𝑒𝑟𝑦 ::= $ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 *
𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ::= 𝑎𝑥𝑖𝑠 [𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟(, 𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟)*]
𝑎𝑥𝑖𝑠 ::= . (child) | .. (descendant)
𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟 ::= 𝑛𝑎𝑚𝑒 (name selector)

| 𝑖𝑛𝑑𝑒𝑥 (index selector)
| * (”any” selector)
| 𝑠𝑡𝑎𝑟𝑡:𝑒𝑛𝑑:𝑠𝑡𝑒𝑝 (array slice selector)
| ?(𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒) (filter selector)

Filter selectors contain predicate - a boolean expression
over other nodes and literal values. They are evaluated
with respect to the current node. We do not provide de-
tails since their specification is rather complex and, as
mentioned later, they are excluded from the queries un-
der consideration. We shall use the common term label
selector for the name and index selectors. We use dot
notation for JSONPath queries throughout this paper.

A query starts with a special root selector $. It selects
the root of the input JSON tree where the evaluation
starts. Then a sequence of segments follows. Each seg-
ment consists of (1) an axis (child, descendant) that selects
the node set to be processed (either children or descen-
dants of the current node) and (2) a sequence of selectors
that apply further node filtering on a given node set.

Example 1. Consider the JSONPath query
$.[0].addresses..street with three segments. When
evaluated over JSON tree at Fig. 1, first segment selects
the child of the root node being an array element indexed
by 0, the second segment selects child object named
𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠, and the last segment selects all descendants
named 𝑠𝑡𝑟𝑒𝑒𝑡. Formally, the query returns literal values
at nodes 0.0.2.0.0 and 0.0.2.1.0.

Let 𝜃 be a query and 𝑡 a JSON tree. We denote the list of
JSON subtrees returned by evaluating 𝜃 over 𝑡 according
to the semantics described in the JSONPath standard by
𝑒𝑣𝑎𝑙(𝜃, 𝑡).

2.3. Simple Streaming Transducer
Tree transducers are well-established formal models for
performing tree or forest transformations. We adapt the
streaming model from our previous work [13] due to
its simplicity and ability to cover aspects of streaming
transformations of tree data without any input buffering.
We customize it to work directly on event streams rather
than trees. We consider a basic model with a single output
stream. The simple streaming transducer (SST) is a 7-
tuple 𝑇 = (𝑄,Λ𝑖𝑛,Λ𝑜𝑢𝑡,Γ, 𝑞0, 𝑍0, 𝑅), where

• 𝑄 is a finite set of states,
• Λ𝑖𝑛 is the alphabet of input labels,
• Λ𝑜𝑢𝑡 is the alphabet of output labels,
• Γ is an alphabet of stack symbols,
• 𝑞0 is the initial state, and

• 𝑅 is a finite set of rules of the form:

𝑄× 𝐸(Λ𝑖𝑛)× Γ → (𝐸(Λ𝑜𝑢𝑡))
* × (𝑄× Γ*).

In addition, if (𝑞, 𝑒𝑖𝑛, 𝑧) → 𝑒𝑜𝑢𝑡(𝑞
′, 𝑧′) ∈ 𝑅 then 𝑒𝑜𝑢𝑡

must be a substring of an event stream of some JSON
tree.

The transducer rules can modify the state of the trans-
ducer, manipulate the top element of the stack, and op-
tionally generate a sequence of output events. The data
storage mechanism is limited to the state and the stack.
We restrict a single rule to generate a JSON substream.
This, however, does not guarantee that the overall output
is correct JSON stream, as that must be ensured by the
transducer rules.

3. Low-Latency Processing
Constraints

In our previous work [13] we have discussed properties
of XML transformations that allow for streaming pro-
cessing without input buffering. We adapt them to the
context of low-latency JSONPath query evaluation. We
add the property of local evaluability to classify the query
constructs according to the context necessary for their
evaluation. We analyze the constructs of the JSONPath
language and identify which of them violate these condi-
tions for some input JSON trees.

The following facts should be pointed out: First, this
work is focused on a schema-agnostic approach, where
no information about the structure of the input data is
available. When analyzing specific JSONPath construct,
the worst-case input data is searched within the group of
all valid JSON data. This can result in the identification
of worst-case scenarios that are potentially more severe
than those encountered in schema-bound environments.
Second, members of an object are unordered in JSON
format. This means that we must consider any member
order when looking for the worst-case scenarios.

3.1. Order-Preserving Queries
The query 𝜃 is order-preserving if and only if the roots of
the subtrees returned by 𝜃 are in preorder with respect
to an arbitrary input JSON tree 𝑡. That is, if 𝑠1, 𝑠2 ∈
𝑒𝑣𝑎𝑙(𝜃, 𝑡) are two subtrees returned by evaluating 𝜃 over
𝑡 such that 𝑠1 is returned before 𝑠2, then it must hold
𝑟𝑜𝑜𝑡(𝑠1) ≺ 𝑟𝑜𝑜𝑡(𝑠2).

See Fig. 2 a) for an example of a query that results in
reordering input subtrees 𝑠1 and 𝑠2 and thus is not order-
preserving. Consider that an evaluator with additional
memory is employed for processing such query. Upon
encountering 𝑠1 the evaluator copies its contents into
memory to store it for later usage (𝑠1 needs to be out-
putted later) while continuing query evaluation. When

Figure 2: a) Non-order-preserving query b) Non-branch-
disjoint query

𝑠2 is encountered, it is outputted directly. After process-
ing 𝑠2, the stored copy of 𝑠1 is outputted, introducing a
delay proportional to its size. Since we consider schema-
agnostic approach, the size of 𝑠1 and consequently the
length of the delay is not upper-bounded.

The following JSONPath constructs violate the order-
preserving property for some input JSON tree:

• Negative step in the array slice selector results in
the selection of the array elements in reverse or-
der. This in general leads to reordering of some
input subtrees.

• Sequence of reordering selectors within a segment
again results in reordering some input subtrees.
For example, a sequence of index selectors in re-
verse order is clearly reordering.

Note that the order-preserving property is violated only
when dealing with array-based selectors due to the in-
herent order of array elements.

3.2. Branch-Disjoint Queries
The query 𝜃 is branch-disjoint if and only if the subtrees
returned by 𝜃 do not overlap for any input JSON tree
𝑡. That is, if 𝑠1, 𝑠2 ∈ 𝑒𝑣𝑎𝑙(𝜃, 𝑡) are two subtrees re-
turned by evaluating 𝜃 over 𝑡, it must hold 𝑟𝑜𝑜𝑡(𝑠1) ̸=
𝑟𝑜𝑜𝑡(𝑠2).𝑣

′. See Fig. 2 b) for an example of a non-branch-
disjoint query that results in copying the subtree 𝑠2. Here
upon encountering the subtree 𝑠2, it needs to be stored
in the memory and outputted later that results in a delay
of the length proportional to the size of 𝑠2. In schema-
agnostic approach, both the size of 𝑠2 and the delay are
not upper-bounded.

This property is violated (for some input JSON tree) by
using a descendant axis in some of the query segments
because it allows one to return two or more overlapping
subtrees by the evaluation of that query.

3.3. Locally Evaluable Queries
The query 𝜃 is locally evaluable if and only if no for-
ward context is needed to evaluate 𝜃 for arbitrary in-
put JSON tree 𝑡. Formally: let 𝜃 = 𝜃′ 𝑠𝑒𝑔 𝑠𝑒𝑔𝐿𝑖𝑠𝑡
where 𝑠𝑒𝑔 is a segment and 𝑠𝑒𝑔𝐿𝑖𝑠𝑡 is a list of seg-
ments (possibly empty), let 𝑠1 ∈ 𝑒𝑣𝑎𝑙(𝜃′, 𝑡), 𝑠2 ∈
𝑒𝑣𝑎𝑙($ 𝑠𝑒𝑔 𝑠𝑒𝑔𝐿𝑖𝑠𝑡, 𝑠1), then 𝑠𝑒𝑔 does not refer to any
node 𝑢 such that 𝑟𝑜𝑜𝑡(𝑠2) ≺ 𝑢.

In case of query that cannot be evaluated locally, when
the evaluator encounters the subtree 𝑠1, it needs to visit
some forward context node 𝑢 to be able to decide whether
𝑠2 needs to be outputted. Thus, it is necessary to store 𝑠2
in the memory to be able to evaluate such query in our
processing model (enhanced with additional memory).
In case of schema-agnostic approach, the size of 𝑠2 is not
limited and introduces delay proportional to that size.

The following JSONPath constructs violate this prop-
erty for some input JSON tree:

• Negative indices in array-based selectors allow the
access to array elements relative to the end of the
array. To process a node at index −𝑖, the evalua-
tor must locate the (𝑛− 𝑖)-th child of the current
node, where 𝑛 is the total number of children.

• Filter selectors can contain relative or absolute
subqueries that may need some forward context
to be evaluated.

3.4. Identified Low-Latency JSONPath
Subset

Based on the analysis above, we define the subset of
JSONPath language suitable for low-latency streaming
processing by the following rules for queries:

• A segment contains either a single selector or a
sequence of label and array slice selectors that
preserve the ascending order of selected array
indices.

• Only nonnegative values for array indices in in-
dex/array slice selectors are allowed.

• Only a positive value for the 𝑠𝑡𝑒𝑝 operator in the
array slice selector is allowed.

• Filter selectors (predicates) are excluded.

Within the JSONPath query segment, the order of in-
dex selectors must be preserved, while name selectors
can appear in any order due to the unordered nature of
JSON object members. The descendant axis is allowed in
queries, as it typically satisfies the branch-disjoint con-
dition in most practical scenarios. In cases where the
branch-disjoint condition is violated, a runtime error is
explicitly reported, since the query cannot be processed
within our model’s constraints. This deviation from

Figure 3: Low-latency evaluator

standard JSONPath semantics is necessary to guaran-
tee low-latency evaluation. Filter selectors are excluded -
although some array-based filter selectors not necessarily
violate local evaluability, it would require a separate com-
plex analysis to define this subset clearly and distinguish
it from non-locally evaluable ones.

We refer to the identified JSONPath subset as the low-
latency subset later in this paper, and we mention several
approaches to address some of its limitations in Section
6.

4. Low-Latency Evaluator
The proposed SST-based evaluator consists of the query
compilation step and the query processing step (see Fig.
3.). This section presents both tasks in detail and dis-
cusses their complexity.

4.1. Query Compilation
The low-latency subset of JSONPath queries defined in
Section 3 can be rewritten to regular expressions, but
first we need to establish a finite alphabet that constrains
the language described: Let 𝜃 be a query; then the query
label alphabet Λ(𝜃) consists of all labels that appear ex-
plicitly within the query 𝜃 (both the object names and
the indices) and a finite set of indices that fall within the
ranges defined by the array slice operators present in 𝜃.

As mentioned earlier, in the context of schema-
agnostic streaming processing, neither the set of object
names nor the set of array indices is known in advance.
Since traditional finite automata operate on finite input
alphabets, we need to overcome this issue. It is easy to
observe that when evaluating 𝜃, handling of input sym-
bols not present in Λ(𝜃) is identical. Therefore, we can
parse these symbols into a single token represented by
a special placeholder label 𝜎𝑝ℎ. Compilation of a query
into a regular expression is then based on the following
principles:

• Label selector: maps to the label itself.
• Star selector: represents a choice of all labels.

• Array slice selector: represents a choice of indices
contained within the defined range (we allow only
fixed upper bound for the array slice selector).

• Selector sequence: represents a choice of regular
subexpressions for particular selectors.

• Child axis: maps to a concatenation operation.
• Descendant axis: represents a concatenation fol-

lowed by a Kleene star over the query alphabet
and the placeholder 𝜎𝑝ℎ, and another concatena-
tion (in this order).

Formally, we then rewrite queries to regular expressions
as follows:

Let 𝜃 = $ be a query without any segment, then

𝑟𝑒𝑔𝑒𝑥𝑝(𝜃) = $.

Let 𝜃 = 𝜃′ 𝑎𝑥𝑖𝑠 [𝑠𝑒𝑙1, . . . , 𝑠𝑒𝑙𝑛] be a query with at least
one segment, then

𝑟𝑒𝑔𝑒𝑥𝑝(𝜃) =

𝑟𝑒𝑔𝑒𝑥𝑝(𝜃′) 𝛾 (𝑟𝑒𝑔𝑒𝑥𝑝(𝑠𝑒𝑙1) | . . . | 𝑟𝑒𝑔𝑒𝑥𝑝(𝑠𝑒𝑙𝑛)),

where

• 𝛾 = 𝜀 for the child axis,
• 𝛾 ∈ (Λ(𝜃) ∪ {𝜎𝑝ℎ})* for the descendant axis,

and 𝑟𝑒𝑔𝑒𝑥𝑝(𝑠𝑒𝑙𝑖), 𝑖 ∈ {1, . . . , 𝑛} is the regular expres-
sion for the selector 𝑠𝑒𝑙𝑖 defined as follows:

Label selector: If 𝑠𝑒𝑙𝑖 = 𝑛𝑎𝑚𝑒 or 𝑠𝑒𝑙𝑖 = 𝑖𝑛𝑑𝑒𝑥 then

𝑟𝑒𝑔𝑒𝑥𝑝(𝑠𝑒𝑙𝑖) = 𝑠𝑒𝑙𝑖.

Star selector: If 𝑠𝑒𝑙𝑖 = * then

𝑟𝑒𝑔𝑒𝑥𝑝(𝑠𝑒𝑙𝑖) = (𝜎1 | . . . |𝜎𝑛),

𝜎𝑗 ∈ Λ(𝜃) ∪ {𝜎𝑝ℎ}, 𝑗 ∈ {1, . . . , 𝑛}.

Array slice selector: If 𝑠𝑒𝑙𝑖 = (𝑠𝑡𝑎𝑟𝑡:𝑒𝑛𝑑:𝑠𝑡𝑒𝑝),
𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑 ≥ 0, 𝑠𝑡𝑒𝑝 > 0 then

𝑟𝑒𝑔𝑒𝑥𝑝(𝑠𝑒𝑙𝑖) = (𝑖𝑛1 | . . . | 𝑖𝑛𝑛), where

𝑠𝑡𝑎𝑟𝑡 ≤ 𝑖𝑛𝑗 < 𝑒𝑛𝑑,
(𝑖𝑛𝑗 − 𝑠𝑡𝑎𝑟𝑡) ≡ 0 (mod 𝑠𝑡𝑒𝑝),
𝑗 ∈ {1, . . . , 𝑛}.

We denote the deterministic finite automaton (DFA) rec-
ognizing the language described by 𝑟𝑒𝑔𝑒𝑥𝑝(𝜃) by 𝐴(𝜃).
Note that this is the language of all label sequences that
can appear in a path starting from the root of the tree
to the root of the matched subtree. The automaton pro-
cesses words over the alphabet Λ(𝜃) ∪ {𝜎𝑝ℎ} and can
be constructed by standard algorithms [16]. We assume,
without loss of generality, that 𝐴(𝜃) is complete.

4.2. Query Processing
We present a query processing algorithm by means of
a construction of a streaming tree transducer. Let 𝜃 be
a query and 𝐴(𝜃) = (𝑄𝐴,Σ𝐴, 𝛿𝐴, 𝑝0, 𝐹𝐴). Then the
simple streaming transducer evaluating 𝜃 over an input
JSON stream is constructed as follows:

𝑇 (𝜃) = (𝑄,Λ𝑖𝑛,Λ𝑜𝑢𝑡,Γ, 𝑞𝑒, 𝑝0, 𝑅)

• 𝑄 = {𝑞𝑒𝑣𝑎𝑙, 𝑞𝑔𝑒𝑛, 𝑞𝑒𝑟𝑟},
• Λ𝑖𝑛 = Λ𝑜𝑢𝑡 = Σ𝐴,
• Γ = 𝑄𝐴 ∪𝑄𝐴,𝑔 , where𝑄𝐴,𝑔 = {𝑝𝑔 | 𝑝 ∈ 𝑄𝐴},
• 𝑅 contains the following rules:

a) Evaluation rules:

(𝑞𝑒𝑣𝑎𝑙, 𝑠𝑡𝑎𝑟𝑡(𝜎), 𝑝) → (𝑞, 𝑝𝑝′), where

𝛿𝐴(𝑝, 𝜎) = 𝑝′, and

𝑝′ /∈ 𝐹𝐴 ⇒ 𝑞 = 𝑞𝑒𝑣𝑎𝑙,

𝑝′ ∈ 𝐹𝐴 ⇒ 𝑞 = 𝑞𝑔𝑒𝑛,

(𝑞𝑒𝑣𝑎𝑙, 𝑒𝑛𝑑, 𝑝) → (𝑞𝑒𝑣𝑎𝑙, 𝜀).

b) Generation rules:

(𝑞𝑔𝑒𝑛, 𝑠𝑡𝑎𝑟𝑡(𝜎), 𝑝) → 𝑠𝑡𝑎𝑟𝑡(𝜎)(𝑞, 𝑝𝑝′𝑔), where

𝛿𝐴(𝑝, 𝜎) = 𝑝′, and

𝑝′ /∈ 𝐹𝐴 ⇒ 𝑞 = 𝑞𝑒𝑣𝑎𝑙,

𝑝′ ∈ 𝐹𝐴 ⇒ 𝑞 = 𝑞𝑒𝑟𝑟,

(𝑞𝑔𝑒𝑛, 𝑒𝑛𝑑, 𝑝) → 𝑒𝑛𝑑(𝑞𝑔𝑒𝑛, 𝜀), where
𝑝 ∈ 𝑄𝐴,𝑔,

(𝑞𝑔, 𝑒𝑛𝑑, 𝑝) → 𝑒𝑛𝑑(𝑞𝑒𝑣𝑎𝑙, 𝜀), where
𝑝 ̸= 𝑄𝐴,𝑔.

4.2.1. Evaluation

The 𝑞𝑒𝑣𝑎𝑙 state is used to evaluate the query. At the
beginning, the stack contains the initial state of DFA𝐴(𝜃)
and we encounter the 𝑠𝑡𝑎𝑟𝑡($) event of the JSON stream.
The first transition is made based on the transition of
𝐴(𝜃) for the initial state and the label $. Let assume 𝐴(𝜃)
moves into the state 𝑝′.

• If 𝑝′ is one of the final states of𝐴(𝜃), it means that
we have found a match for the given query and
that we need to send the subtree of the current
node to the output. Therefore, the transducer
moves to the generating state 𝑞𝑔𝑒𝑛 puts the next
state of 𝐴(𝜃) on the stack.

• If 𝑝′ is not a final state of 𝐴(𝜃), it means that we
have not found a match and we need to proceed
with the evaluation. Thus, the transducer remains
in the evaluation state 𝑞𝑒𝑣𝑎𝑙 and puts the next
state of 𝐴(𝜃) on the stack.

4.2.2. Generation

In the generating state 𝑞𝑔𝑒𝑛, the transducer puts the
whole subtree to the output. It continues in evaluation
only in order to detect the scenarios when input query
violates the branch-disjoint condition on given input. In
that case it enters the error state 𝑞𝑒𝑟𝑟 . The evaluation is
based on the copies of DFA states (denoted by the sub-
script 𝑔) so that the transducer is able to recognize the
end of the subtree and return to the evaluation state.

4.2.3. Complexity Summary

It is easy to see that the transducer performs a single
transition at each event. Implementation of this transi-
tion actually consists of several operations (reading the
input stream, parsing, DFA transition, manipulating the
stack, generating the output stream). However, as shown
in the following section, the latency remains consistent.
A stack of the size proportional to the depth of the input
JSON tree is used. In addition, the size of the constructed
DFA counts towards the overall memory footprint used
by the evaluator. Since this work is not focused on mini-
mizing the memory usage, further optimizations might
be possible to reduce the DFA’s size.

5. Implementation
We prototyped a low-latency SST-based evaluator in Java
to validate our design of an SST-based algorithm for
JSONPath evaluation, to ensure that our design trans-
lates to actual performance as intended and to compare
it to other JSONPath evaluators. We used the Jackson
streaming parser [17] for event-based parsing. Java was
chosen as it is well-suited for rapid prototyping that fa-
cilitates our primary goals mentioned above.

The following mapping issues have been identified and
resolved:

• Root symbol. Since the root symbol $ does not oc-
cur in JSON data, it is generated at the beginning
of the evaluation.

• Arrays. JSON does not explicitly index array ele-
ments, thus the indices are generated at evalua-
tion time. For each array value, we store the cur-
rent size of the array (𝑠𝑖𝑧𝑒) on the stack. When a
new array element is encountered, the 𝑠𝑖𝑧𝑒 value
is popped out of the stack, and a surrogate la-
bel 𝑠𝑖𝑧𝑒 is generated that represents the index
of given element. The 𝑠𝑖𝑧𝑒 value is incremented
and pushed back on to the stack. Array delim-
iters are filtered out since they are not used by
the transducer.

• Placeholder symbol. All symbols not mentioned
in regular expression are replaced by the place-
holder symbol 𝜎𝑝ℎ.

• Literal values. The proposed algorithm abstracts
from literal values. As the low-latency JSONPath
subset does not use literal values in queries, they
are skipped in the evaluation mode and outputted
in the generating mode.

Focusing primarily on the measuring the latency of query
processing step, additional features (e.g., compiled query
storage), although important in real-world use cases,
have not been implemented.

We compared the presented evaluator with both JSON-
Path streaming evaluators mentioned in Section 1.1. For
the Java-based evaluators (our SST-based implementation
and JsonSurfer [8]), we employed the JMH framework
[18] to measure running time per single event, mitigating
GC impact through extended warmup, forced GC, and
JMH’s built-in techniques. The C-based JPStream [9] was
evaluated using the clock_gettime system call, pro-
viding sufficient precision for our comparative analysis.

As a proof-of-concept optimized for benchmarking, the
implementation of SST-based evaluator strictly follows
the code structure required by JMH. On the other hand,
JsonSurfer needed some code restructuring to make JMH-
based evaluation possible. As JPStream makes two passes
over the input and the latency is then inherently high,
only the first pass was measured and the second one was
skipped,which resulted in excluding filter expressions
from the test queries. Two test suites were used:

• Test suite 1 consists of test data and queries from
the JPStream project [9], while excluding con-
structs outside the low-latency subset. Extra
queries with descendant axis were added. This
suite was aimed to ensure that the SST-based eval-
uator exhibits low and consistent latency for these
queries and to enable comparison with existing
solutions.

• Test suite 2 uses the same test data, but queries
with constructs beyond the low-latency subset
were chosen (negative indices, negative steps, fil-
ter expressions, reordering selectors, descendant
axis violating branch-disjoint condition). This
suite was intended to confirm the need for high-
latency processing of these constructs by other
evaluators. It was not meant to be processed by
SST-based evaluator as it does not support them
intentionally.

The evaluation results are shown in Table 1. For Test
suite 1, the time per event (including parsing and output
generation) exhibits lowest values and highest consis-
tency in the case of the SST-based evaluator presented
in this paper. The values for the other two evaluators
are still reasonably low and consistent. Although they
are highest in case of the JPStream, it must be taken into
account that different measurement method was used.

Test
suite 1

Test
suite 2

Method

SST-based
evaluator

85 to 88 ns,
me < 2.15 ns

N/A JMH

JsonSurfer
333 to 347 ns,
me < 8.2 ns

N/A JMH

JPStream 20 to 2615 ns N/A
clock_
gettime

Table 1
Comparison with JsonSurfer and JPStream (”me” stands for
margin error)

Moreover, since we operate at the nanosecond level, these
particular differences might be considered not significant.
Evaluation showed that JsonSurfer and JPStream are not
able to process the whole low-latency JSONPath subset,
so they are less powerful than the SST-based evaluator
when latency matters. JsonStream does not support star
selector and descendant axis, JPStream does not support
multiple selectors and step in array slice selector. Al-
though these two evaluators demonstrate low latency
for supported test queries, it is important to mention
that they lack formal latency analysis, preventing a clear
understanding of their latency guarantees for different
query types.

Surprisingly, queries in Test suite 2 failed to process
correctly with both JsonSurfer and JPStream, so it was not
possible to perform planned measurements. JsonSurfer
produced incorrect results, while JPStream either does
not support the constructs explicitly (negative indices,
multiple selectors, step operator), requires additional pass
over the input (filter expressions), or yields unhandled
exception (queries with descendant axis violating the
branch-disjoint condition).

6. Conclusion and Future Work
This work analyzes a new JSONPath standard and identi-
fies a powerful subset of JSONPath queries that can be
evaluated over JSON data streams performing a constant
number of steps at each event. An evaluation algorithm
has been presented that is based on finite automata and
tree transducers. The constant time complexity per input
event is guaranteed and leads to low-latency processing
as required in real-time / near-real-time scenarios. The
algorithm operates within a basic processing model char-
acterized by schema-agnosticism, single-query execution,
sequential processing, and a single output stream. The
presented evaluator has been compared with two other
JSONPath streaming evaluators, and the results show that
it not only supports the larger low-latency subset, but
even more importantly, based on its formal background
it gurantees the latency to be low and consistent for all

queries from the low-latency subset and any input JSON
data.

The work is in progress; to enhance the baseline al-
gorithm, future work will focus on refining JSONPath
predicate analysis to identify a processable subset and
optimizing the compiled query’s space complexity.

The presented evaluator is designed to process a well-
defined subset of JSONPath queries based on a specific
set of rules. These limitations can potentially be relaxed
by exploring several extensions to the basic processing
model, such as

• incorporating knowledge about the structure of
the input JSON data (e.g., by employing schema-
aware or learning approaches),

• introducing parallelism and /or parallel output
streams.

As mentioned earlier, making assumptions about the
structure of the input JSON data may considerably limit
the set of possible input streams. If this leads to the
exclusion of input streams that participate in the worst-
case scenarios identified in this work, a larger subset of
JSONPath can be possibly processed by the low-latency
evaluator. Parallelism and parallel output streams allow
us to process multiple tasks at the same time, and such an
approach could eliminate some situations where one task
is waiting for another in a sequential model. However,
the exact benefit of this approach depends on the partic-
ular definition of the parallel processing model (e.g., the
way in which the output streams are synchronized).

Another possible direction for future work involves ex-
tending the processing model to evaluate multiple queries
in parallel. While the current design focuses on single-
query processing, a straightforward approach to achieve
multiquery evaluation could involve: a) compiling each
query into DFA, and b) maintaining a stack of state tu-
ples, where each tuple tracks the evaluation state for a
specific query’s DFA. However, this approach presents
several challenges: new branch conflicts may arise due
to parallel evaluation of multiple queries, and the overall
space overhead of DFAs can increase significantly. For
the latter case, techniques on combining DFA states could
be explored [19].

References
[1] S. Chakravarthy, Q. Jiang, Stream Data Process-

ing: A Quality of Service Perspective: Model-
ing, Scheduling, Load Shedding, and Complex
Event Processing, Advances in Database Systems,
Springer US, 2009.

[2] V. Christophides, V. Efthymiou, T. Palpanas, G. Pa-
padakis, K. Stefanidis, An Overview of End-to-End
Entity Resolution for Big Data, ACM Comput. Surv.
53 (2020).

[3] A. Zheng, A. Casari, Feature Engineering for Ma-
chine Learning: Principles and Techniques for Data
Scientists, O’Reilly Media, 2018.

[4] ECMA-404 The JSON data interchange
syntax, 2nd Edition, ECMA, 2017.
https://ecma-international.org/
publications-and-standards/standards/
ecma-404/.

[5] The JavaScript Object Notation (JSON)
Data Interchange Format, Internet En-
gineering Task Force (IETF), 2017.
https://datatracker.ietf.org/doc/html/
rfc8259.

[6] JSONPath: Query Expressions for JSON, In-
ternet Engineering Task Force (IETF), 2024.
https://datatracker.ietf.org/doc/html/
rfc9535.

[7] Extensible Markup Language (XML) 1.0 (Fifth
Edition), W3C Recommendation, W3C, 2008.
http://www.w3.org/TR/REC-xml.

[8] A streaming JsonPath processor in Java, 2024.
https://github.com/jsurfer/JsonSurfer/,
Retrieved: 2024-06-08.

[9] L. Jiang, X. Sun, U. Farooq, Z. Zhao, Scalable Pro-
cessing of Contemporary Semi-Structured Data on
Commodity Parallel Processors - a Compilation-
based Approach, in: Proceedings of the Twenty-
Fourth International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, ASPLOS ’19, Association for Com-
puting Machinery, New York, NY, USA, 2019, pp.
79–92.

[10] G. Gou, R. Chirkova, Efficient Algorithms for Eval-
uating XPath over Streams, in: Proceedings of the
2007 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’07, Association for
Computing Machinery, New York, NY, USA, 2007,
pp. 269–280.

[11] D. Olteanu, SPEX: Streamed and Progressive Eval-
uation of XPath, IEEE Transactions on Knowledge
and Data Engineering 19 (2007) 934–949.

[12] O. Gauwin, J. Niehren, Streamable Fragments of
Forward XPath, in: B. Bouchou-Markhoff, P. Caron,
J.-M. Champarnaud, D. Maurel (Eds.), Implementa-
tion and Application of Automata, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011, pp. 3–15.

[13] J. Dvořáková, Automatic Streaming Processing of
XSLT Transformations Based on Tree Transducers,
in: C. Badica, M. Paprzycki (Eds.), Advances in Intel-
ligent and Distributed Computing, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008, pp. 86–94.

[14] P. Bourhis, J. L. Reutter, F. Suárez, D. Vrgoč, JSON:
Data model, Query languages and Schema spec-
ification, PODS ’17, Association for Computing
Machinery, New York, NY, USA, 2017, pp. 123–135.

[15] T. Böhme, E. Rahm, Supporting Efficient Streaming
and Insertion of XML Data in RDBMS, in: Proc.
3rd Int. Workshop Data Integration over the Web
(DIWeb) 2004, 2004.

[16] A. V. Aho, S. Ravi, J. D. Ullman, Compilers: Prin-
ciples, Techniques, and Tools (1st ed.), Addison-
Wesley, 1986.

[17] Main Portal page for the Jackson project, 2024.
https://github.com/FasterXML/jackson,
Retrieved: 2024-06-08.

[18] Java Microbenchmark Harness (JMH), 2024.
https://github.com/openjdk/jmh, Re-
trieved: 2024-06-08.

[19] Y. Diao, M. J. Franklin, High-Performance XML
Filtering: An Overview of YFilter, IEEE Data Eng.
Bull. 26 (2003) 41–48.

	1 Introduction
	1.1 Related Work

	2 Formal Foundations
	2.1 JSON Abstraction
	2.2 JSONPath
	2.3 Simple Streaming Transducer

	3 Low-Latency Processing Constraints
	3.1 Order-Preserving Queries
	3.2 Branch-Disjoint Queries
	3.3 Locally Evaluable Queries
	3.4 Identified Low-Latency JSONPath Subset

	4 Low-Latency Evaluator
	4.1 Query Compilation
	4.2 Query Processing
	4.2.1 Evaluation
	4.2.2 Generation
	4.2.3 Complexity Summary

	5 Implementation
	6 Conclusion and Future Work

