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Abstract

In recent years, the interpretability of machine learning models has gained interest. White-box approaches like rule-based

models serve as an interpretable alternative or as surrogate models of black-box approaches. Among these, more compact

rule-based models are considered easier to interpret. In addition, they often generalize better and thus provide higher

predictive accuracies than their overfitting complex counterparts. In this paper, we argue that more complex, “characteristic”

rule-based models are a genuine alternative to more compact, “discriminative” ones. We discuss why characteristic models

should not be considered as less interpretable, and that more included features can actually strengthen the model both in

terms of robustness and predictive accuracy. For this, we evaluate the effects on the decision boundary for models of different

complexity, and also modify a recently developed Boolean pattern tree learner to compare a characteristic and a discriminative

version on five UCI data sets. We show that the more complex models are indeed more robust to missing data, and that they

sometimes even improve the predictive accuracy on the original data.
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1. Introduction
With the rise of neural network models in many machine

learning applications, the need has grown to actually

understand what these black-box approaches learn. This

has brought rule-based models back into the spotlight

which can be used as interpretable surrogates of neu-

ral network approaches, e.g., by extracting rules from

the whole network [1] or with the focus on explaining

decision boundaries [2].

Independent of whether rule-based models are used as

surrogates of neural networks or as a stand-alone model,

usually the principle of Occam’s Razor [3] is followed,

which can be loosely translated as that the simplest ex-

planation is the best one. Consequently, discriminative
rules which discriminate an object of one category from

objects of other categories are preferred over charac-
teristic rules which try to capture all properties that

are common to the objects of the target class [4]. This

principle is also supported by the observation that longer

explanations tend to overfit the training data, leading

to worse performances on test data. Hence, most rule

learner use some kind of pruning policy [5], resulting

in learning short discriminative rules instead of longer

characteristic ones.

However, there is a fine line between avoiding over-

fitting and learning too general theories. Consider the

sample dataset in Table 1 consisting of six countries, three
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Table 1
A small country dataset with three numeric attributes size
(in 1,000 km²), age (median; in years) and 𝐶𝑂2 (emission per

capita and year; in tons)
1
. It is split into six training examples

(three for each of the classes Europe and South America) and

four test examples of unknown class.

Size Age 𝐶𝑂2 Class

Austria 84 42.8 6.9 Europe

Bolivia 1099 23.9 1.8 South America

Brazil 8515 32.8 2.2 South America

Czechia 79 42.6 9.3 Europe

Ecuador 284 27.6 2.3 South America

Slovakia 49 40.6 6.1 Europe

Albania 29 37.3 1.7 ?

Germany 357 44.9 8.0 ?

Kosovo 11 30.5 4.8 ?

Uruguay 176 35.2 2.3 ?

belonging to the class Europe and three to the class South
America. For each country, the value for the three nu-

meric attributes Size, Age and 𝐶𝑂2 is provided.

Traditional rule learners like, e.g., Ripper [6] strive for

discriminative rules, i.e., rules that minimize the number

of used attributes when describing the classes. In this

case, such a perfect, minimal description of the training

data could be learned with a single rule 𝑟1 only consider-

ing the first attribute Size, and the corresponding default

rule 𝑟0 for the other class
2

:

2
In the following, 𝑐𝑙𝑎𝑠𝑠 = 𝑒𝑢𝑟𝑜𝑝𝑒 is abbreviated as 𝑐 = 𝑒 and

𝑐𝑙𝑎𝑠𝑠 = 𝑠𝑜𝑢𝑡ℎ_𝑎𝑚𝑒𝑟𝑖𝑐𝑎 as 𝑐 = 𝑠𝑎
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𝑟1 : 𝑐 = 𝑒← 𝑠𝑖𝑧𝑒 < 184

(𝑟0 : 𝑐 = 𝑠𝑎← ⊤).
(1)

Rule 𝑟1 covers the three examples Austria, Czechia
and Slovakia because these examples fulfill the condition

𝑠𝑖𝑧𝑒 < 184. Bolivia, Brazil and Ecuador are not covered

by 𝑟1 but only by the most general rule 𝑟0, thus classified

as South America. While these rules perfectly describe the

training examples, they fail to correctly classify the test

example Germany, which is not covered by 𝑟1 and hence

misclassified as South America by 𝑟0. Vice versa, Uruguay
is covered by 𝑟1 and hence misclassified as Europe . Note

that these misclassifications could have been avoided if a

different feature would have been picked, such as, e.g.,

in rules 𝑟2 and 𝑟3:

𝑟2 : 𝑐 = 𝑒← 𝑎𝑔𝑒 ≥ 36.7

𝑟3 : 𝑐 = 𝑒← 𝐶𝑂2 ≥ 4.2.
(2)

However, 𝑟2 does not cover the test example Kosovo,

and 𝑟3 does not cover Albania, so that neither of the three

rules would be sufficient to classify all four test examples

correctly, but only a combined rule set of 𝑟2 and 𝑟3 would

do so. Similarly, the three suggested features 𝑠𝑖𝑧𝑒 < 184,

𝑎𝑔𝑒 ≥ 36.7 and 𝐶𝑂2 ≥ 4.2 can also be connected by

conjunctions to a single rule 𝑟𝑒 for class Europe, while the

respectively contrasting features form rule 𝑟𝑠 for class

South America:

𝑟𝑒 : 𝑐 = 𝑒← 𝑠𝑖𝑧𝑒 < 184 ∧ 𝑎𝑔𝑒 ≥ 36.7 ∧ 𝐶𝑂2 ≥ 4.2

𝑟𝑠 : 𝑐 = 𝑠𝑎← 𝑠𝑖𝑧𝑒 ≥ 184 ∧ 𝑎𝑔𝑒 < 36.7 ∧ 𝐶𝑂2 < 4.2.
(3)

While none of the two rules covers any of the test

examples, a slight modification of their semantics allows

us to use them as reliable classifiers. Instead of requir-

ing that all conditions of a rule need to be satisfied, we

instead assign an example to its closest rule, a method

that is reminiscent of rule stretching [7] or nearest hyper-
rectangle classification [8]. In our example, the first three

test examples are assigned to class Europe, since for each

of them two out of three conditions of 𝑟𝑒 are satisfied and

only one out of three of 𝑟𝑠. Analogously, test example

Uruguay is correctly classified as South America.

Independent of using conjunctions or disjunctions as

the connector, we notice that more characteristic rule the-

ories in Equations 2 and 3 are able to classify all four test

examples correct, while the discriminative rule theory in

Equation 1 is not able to do so. Moreover, the inclusion

of more features in the characteristic concepts might not

only lead to a better performance but also arguably pro-

vide more interesting and interpretable models, stating

2
Retrieved 2024/07/04 from https://ourworldindata.org/age-

structure and https://ourworldindata.org/co2-and-greenhouse-gas-

emissions.

that European and South American countries do not only

differ in size, but also in median age and CO2 emissions.

The rest of the paper is organized as follows: Section 2

further specifies the problem of finding good decision

boundaries and presents characteristic models of non-

rule-based classifiers as an inspiration for adaption in the

rule-based setting, presented in Section 3. We modify a

rule-based learner in Section 4 accordingly and evaluate

a discriminative and characteristic version in Section 5

in terms of predictive accuracy and robustness. Section 6

concludes the results and takes a brief look at the remain-

ing challenges.

2. Decision boundaries
As depicted in the introduction, in contrast to long char-

acteristic rules being prone to overfitting, short discrimi-

native rules come with the risk of providing too simplistic

theories that overgeneralize. This can also be illustrated

by the decision boundary of the country dataset rules,

see Figure 1. For a better visualization, we omit the third

attribute CO2 to obtain a two-dimensional feature space

using the attribute Size in logarithmic scale on the 𝑥-axis

and Age on the 𝑦-axis. The raw data are shown in Fig-

ure 1a; the six training examples as points and the four

test examples as circles, colored in blue for class Europe
and in red for class South America, respectively.

We see that the training examples are quite easily sepa-

rable from each other, while the test examples complicate

finding a good decision boundary. Figure 1b shows a dis-

criminative rule 𝑐 = 𝑠𝑎← 𝑎𝑔𝑒 < 36, covering all four

South American countries along with one European in

the light-red area of the feature space. The light-blue

area (classified by the default rule 𝑐 = 𝑒← ⊤) contains

five true negatives. By adding the condition 𝑠𝑖𝑧𝑒 > 140,

the rule can be defined more characteristic, leading to a

perfect classification of all examples, see Figure 1c.

Still, the provided decision boundary in Figure 1c can

be considered suboptimal when compared with non-rule-

based models. Figure 1d illustrates an arguably better de-

cision boundary which other methods like, e.g., support

vector machines [9], logistic regression [10] and naive

Bayes [11] can find. All approaches have in common that

they usually consider all attributes in the feature space

and rely on continuous coefficients to build their models;

in this case:

𝑐 = 𝑠𝑎← 𝑎𝑔𝑒− 10 · log10(𝑠𝑖𝑧𝑒) ≤ 15.

In comparison to the methods just mentioned, conven-

tional rule learners only use combinations of attribute-

value-combinations for the splits of their classes. As a

consequence, one of the main limitations of rule learn-

ing is arguably its restriction to axis-parallel decision

boundaries. Though, the last two subfigures show two



(a) Original data (b) Discriminative rule (c) Characteristic rule

(d) Support Vector Machine (e) Scoring system (f) Hyper-rectangles

Figure 1: Different decision boundaries of various learning approaches for the country dataset reduced to the attributes Size
(𝑥-axis, logarithmic) and Age (𝑦-axis). (a) shows the six training examples as points and the four test examples as circles,

colored in blue for class Europe and in red for class South America. The remaining subfigures (b)-(f) add a dotted decision

boundary for various learners which show predictions as Europe in light-blue and as South America in light-red.

ways how rule-based methods can still mimic decision

boundaries like in Figure 1d.

In Figure 1e, we see multiple steps in the decision

boundary. Trivially, this behavior can be achieved by

learning one rule for each step. While this is straightfor-

ward in this example, it is too hard to maintain in a high-

dimensional feature space with an exponentially increas-

ing number of combinations. Scoring systems [12] scale

better by assigning low integer scores to attribute-value

combinations, hereby providing a trade-off between rules

and linear models. In the special case that all weights

are binary, the scoring system converts into an m-of-n

concept. With the scores being assigned by the following

scheme and a threshold of 4 for class South America, all

examples are classified correctly while providing a more

customized decision boundary compared to Figure 1c:

𝑎𝑔𝑒 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3 if < 28

2 if < 36

1 if < 40

0 else

𝑠𝑖𝑧𝑒 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3 if ≥ 1100

2 if ≥ 140

1 if ≥ 20

0 else.

Finally, Figure 1f is the illustration of two characteris-

tic rules similar to Equation 3: We describe both classes

Europe and South America without using a default rule.

Obviously, the learned rules of the two classes can over-

lap or — as in this case — leave wide areas of the feature

space uncovered, so that a pure Boolean evaluation of

the rules is not sufficient anymore. One way to han-

dle these uncovered areas are nearest hyper-rectangles

[13]. The decision boundary between the two classes

can be shaped arbitrarily if enough hyper-rectangles, i.e.,

rules, are learned (and is actually neither quite straight

in Figure 1f). Obviously, distances for nominal attributes

can not be defined as straightforward as for numerical

attributes, as is discussed in the following section.

In this work, we aim to expand rule-based approaches

to reach this stronger expressiveness shown in the last

three subfigures while still retaining the properties mak-

ing them interpretable, i.e., without including all features

instead of interactions and, most notably, without con-

tinuous coefficients like in SVMs, logistic regression or

naive Bayes, for what characteristic rules are preferable.



3. Characteristic rule learning
So far we discussed why characteristic rules can be bene-

ficial both in terms of interpretability and performance

but observed as well that almost no rule-based methods

learn such concepts. To understand why conventional

rule learners prefer discriminative rules, we first briefly

introduce the coverage space and related heuristics. Sub-

sequently, we reveal potential issues with the latter and

identify properties which should be taken into considera-

tion when developing a characteristic rule-based learner.

3.1. Coverage space and heuristics
Traditionally, rules are gradually refined by adding in-

dividual conditions, whereby conjunctive refinements

specialize a rule (afterwards it can never cover more ex-

amples than before the refinement), whereas disjunctive

refinements generalize a rule (afterwards it can never

cover fewer examples than before the refinement). This

can be visualized in coverage space, a non-normalized

ROC space, where the 𝑥-axis shows the covered negative

and the 𝑦-axis the covered positive examples [14]. For

example, Figure 2 shows a path that gradually refines

an initially universal rule (covering all 𝑃 positive and 𝑁
negative examples, upper right corner of the coverage

space) into the rule +← 𝑐 ∧ 𝑏.

Figure 2: Rule refinement in coverage space

Apparently, a rule refined to the upper left corner can

be considered perfect, since it covers only positive ex-

amples and no negatives. In most scenarios such a rule

can not be found, so that a trade-off must be found be-

tween the importance of covering all positives (complete-

ness) and not covering any negatives (consistency). For

this purpose, heuristics are defined as functions h(𝑝, 𝑛),
where 0 ≤ 𝑝 ≤ 𝑃 (0 ≤ 𝑛 ≤ 𝑁 ) is the number of positive

(negative) examples covered by a rule [14].

In previous studies it was found that most regular

heuristics (in particular those striving for consistency)

lead to the learning of discriminative rules, so that in

this context, so-called inverted heuristics 4(𝑝, 𝑛) are sug-

gested which better reflect the top-down nature of the

rule refinement process in theory by originating from

the other side of the coverage space [15]. Because of

its typical focus on completeness, inverted heuristic can

often "delay" the choice of too specific features, hence

resulting in characteristic rules built of multiple more

general features.

3.2. Limitations
Even though it has been shown empirically for some

datasets that inverted heuristics result in characteristic

rules [15], it is not inherent that they lead to charac-

teristic rules. As a counterexample, consider learning a

rule for the class Europe using all examples of the coun-

try dataset except of Brazil. The best single condition

is 𝑎𝑔𝑒 ≥ 29.1 covering all six examples of class Europe
as well as Uruguay. This false positive can not be ex-

cluded by further (single-cut) conditions on Size or CO2

without losing coverage of at least one true positive, so

that the inverted heuristic stops with a rule consisting

of a single condition. Interestingly enough, in this case,

regular heuristics would even learn longer rules than

inverted heuristics, since they typically prefer this trade

of removing a false positive at the cost of a false negative.

Most importantly though, traditional rule learners

have a severe limitation of focusing only on the cov-

erage of the learned rules but not how (well) they cover

the examples. We already noticed in Table 1 that rule 𝑟1
in Equation 1 can be expanded to 𝑟𝑒 in Equation 3 by fea-

tures considering the age and 𝐶𝑂2 of a country without

covering more positive or less negative examples. Hence,

both 𝑟1 and 𝑟𝑒 correspond to the same point in the cov-

erage space in the top left corner, covering all positive

and no negative training examples. As a consequence,

independent of the chosen heuristic, conventional rule

learners are not able to learn 𝑟𝑒 if a refinement requires

improving the heuristic.

Even if the heuristic improves by adding a new condi-

tion to the original rule a similar issue can occur. Assume

a new rule 𝑟4 learned on all ten examples in Table 1,

which focuses on covering the example Germany based

on the condition 𝑠𝑖𝑧𝑒 ≥ 316. This rule still covers Bo-
livia and Brazil as well and could therefore be refined to

rules 𝑟5 and 𝑟6, both considering the Age-attribute:

𝑟4 : 𝑐 = 𝑒← 𝑠𝑖𝑧𝑒 ≥ 316

𝑟5 : 𝑐 = 𝑒← 𝑠𝑖𝑧𝑒 ≥ 316 ∧ 𝑎𝑔𝑒 ≥ 36.3

𝑟6 : 𝑐 = 𝑒← 𝑠𝑖𝑧𝑒 ≥ 316 ∧ 𝑎𝑔𝑒 ≥ 44.5.

(4)

While 𝑟5 and 𝑟6 both correspond to the same point

in the coverage space (covering one positive example

and no negatives), their coverage on unseen examples



might vary crucially since they cover different areas in

the feature space. Arguably, 𝑟5 should be preferred over

𝑟6 because the added condition 𝑎𝑔𝑒 ≥ 36.3 covers four

additional positive examples (and still no negative) com-

pared to 𝑎𝑔𝑒 ≥ 44.5. So to say, while having the same

"global" concept, we should choose the rule with the

better "local" condition. Note that this is not limited to

numeric attributes.

To summarize, characteristic rules are usually not

learned because the learners rely on heuristics that only

take the number of covered positive and negative ex-

amples into account instead of separating positive and

negative examples with a variety of rules and conditions.

Particularly, adding a condition without changing the

covered examples results in the same heuristic value, in

which case so far the shorter explanation is used, and the

search usually stops. Additionally, the mere focus on the

global coverage can lead to suboptimal "local" conditions

if ties are not handled appropriately.

4. Boolean Pattern Trees
For the experimental comparison of deterministic and

characteristic concepts, we use two versions of an alter-
nating Boolean pattern tree (ABPT) learner recently devel-

oped in our group [16]. The task of learning an ABPT is

quite similar to learning a rule: For every specific class

𝑦𝑗 ∈ Y, a tree 𝑡 : 𝑦𝑗 ← 𝐵 is learned, where 𝐵 is a logical

expression defined over the input features, which can

be much more flexible than for rules. In contrast to rule

learners which use either conjunctions or disjunctions,

ABPTs can connect binary features by conjunctions and

disjunctions in any arbitrary order. This also complicates

the iterative learning of 𝐵, having multiple insertion

options per feature. E.g., inserting a disjunction with

feature 𝑐 in 𝐵 = 𝑎∧𝑏 can result in 𝑐∨(𝑎∧𝑏), (𝑎∨𝑐)∧𝑏
or 𝑎 ∧ (𝑏 ∨ 𝑐), which are all logically different. These

insertions are repeated until the maximum number of

iterations 𝑘 (= number of features in the pattern tree) is

reached. We refer to [16] for further details of the algo-

rithm and focus on two adjustments for the experiments

in the following.

First, we notice that in the standard version of aBpt

already multiple heuristics for the evaluation of a tree ex-

tension are used, focusing on consistency and complete-

ness in different search branches. By using various cost

ratios in the linear cost metric (ℎ𝑙𝑐(𝑡) = 𝑐 ·𝑝−(1−𝑐) ·𝑛),

aBpt is capable to learn both models preferred of regu-

lar and inverted heuristics. Though, Section 3 presented

as well problems that could not be fixed solely by the

heuristic. To choose characteristic models instead of dis-

criminative ones in case of ties, the learner picks the

tree learned in a later iteration, i.e., using more condi-

tions (and vice versa). This way we do not stop in local

optima, but always use all 𝑘 iterations. Furthermore,

all conditions are sorted based on the accuracy metric

(ℎ𝑎𝑐𝑐(𝑡) =
𝑝+𝑁−𝑛
𝑃+𝑁

) in the first iteration, so that in sub-

sequent iterations always the best "local" condition can

be picked, as discussed in Section 3.

Second, the handling of multiple pattern trees is crucial

for the decision boundary. In the original aBpt classifier,

one pattern tree for each class 𝑦 ∈ Y is learned. Since in

a Boolean context, the output of the Boolean expression

represented by the pattern tree can only be true or false

for the features of the test example, ties occur if a test

example is matched by multiple pattern trees, which

can be broken by a fixed order of the pattern trees in a

decision list.

An alternative that is used in fuzzy pattern tree clas-

sifiers [17] is evaluating all pattern trees in a probabilis-

tic way, whereby the highest probability decides about

the class prediction. A straightforward way to achieve

this behavior in aBpt is using a constant uncertainty

factor 𝑢, resulting in probabilities 𝑝(𝑓) = 1 − 𝑢 for

fulfilled features and 𝑝(𝑓) = 𝑢 else, which are then

aggregated bottom-up over the respective child nodes

𝐶 as 𝑝(𝑛) =
∏︀

𝑖∈𝐶 𝑝(𝑖) for conjunctive and 𝑝(𝑛) =
1−

∏︀
𝑖∈𝐶(1−𝑝(𝑖)) for disjunctive nodes. However, this

comes with two inconveniences of (a) weighing all child

nodes the same — independent of their importance and (b)

penalizing all conjunctive conditions (always decreasing

𝑝(𝑛)) and rewarding all disjunctive conditions (always in-

creasing 𝑝(𝑛)) independent of their quality, which partic-

ularly affects characteristic models negatively. To address

(a), we determine 𝑝(𝑓) flexibly in the range [𝑢, 1− 𝑢] as

𝑝(𝑓) = 𝑢+ (1− 2𝑢) · 𝑝
𝑃

for fulfilled features (≃ probability a positive example

fulfills the feature) and

𝑝(𝑓) = 𝑢+ (1− 2𝑢) · 𝑃 − 𝑝

𝑃 − 𝑝+𝑁 − 𝑛

else (≃ probability a positive example not fulfilling the

feature is negative). Additionally, for (b) we relax 𝑝(𝑛)
for the interior tree nodes as

𝑝(𝑛) =
1

2
· ( 1

|𝐶| ·
∑︁
𝑖∈𝐶

𝑝(𝑖) + min
𝑖∈𝐶

𝑝(𝑖))

for conjunctive nodes and as

𝑝(𝑛) =
1

2
· ( 1

|𝐶| ·
∑︁
𝑖∈𝐶

𝑝(𝑖) + max
𝑖∈𝐶

𝑝(𝑖))

for disjunctive nodes, resulting in a probability less de-

pendent on the number of child nodes, so that models

with different numbers of conjunctive and disjunctive

nodes can be compared better.



Table 2
Predictive accuracies of the aBpt learner on five UCI datasets for six different settings using 10-fold-cross-validation. In the

first row a Boolean evaluation and in the second row a probabilistic evaluation of the pattern tree is used. The first column

shows results on the original dataset, the second on an incomplete version of the dataset where 30% of the values are replaced

by missing values, and the third a combination using the original data for training and the incomplete data for testing.

discr. char.

labor 87.72 84.21

mushroom 100.00 100.00

soybean 92.68 92.53

vote 94.48 94.71

zoo 89.11 86.14

(a) Original + Boolean

discr. char.

labor 77.19 78.95

mushroom 96.91 96.91

soybean 66.03 66.33

vote 88.28 88.74

zoo 76.24 76.24

(b) Incomplete + Boolean

discr. char.

labor 78.95 80.70

mushroom 84.00 88.00

soybean 19.77 46.71

vote 78.39 78.16

zoo 41.58 65.35

(c) Mixed + Boolean

discr. char.

labor 66.67 64.91

mushroom 83.83 87.64

soybean 90.04 90.48

vote 95.40 95.40

zoo 89.11 92.08

(d) Original + Probabilistic

discr. char.

labor 64.91 64.91

mushroom 49.93 49.93

soybean 67.64 68.52

vote 88.51 88.51

zoo 77.23 75.25

(e) Incomplete + Probabilistic

discr. char.

labor 64.91 64.91

mushroom 79.60 75.49

soybean 52.86 57.25

vote 87.13 87.13

zoo 62.38 85.15

(f) Mixed + Probabilistic

5. Experiments
In the experiments we analyze two different aspects of

the aBpt learner — using the default configuration of

𝑘 = 20 iterations and accuracy and seven different val-

ues for the linear cost as metrics. First, we compare a

discriminative version preferring smaller trees in case

of tied heuristics and a characteristic version preferring

bigger trees. Second, we evaluate both versions not only

in a Boolean setting but also in a probabilistic setting, as

suggested in the end of Section 4.

For the experiments, we choose five UCI [18] datasets

where most features are not used in the discriminative

models and therefore the characteristic models could dif-

fer remarkably: labor, mushroom soybean, vote and

zoo. On some datasets (labor, soybean, zoo) the oth-

erwise inferior naive Bayes classifier even outperforms

rule learners likeRipper, indicating potential for improve-

ment of the decision boundary in the probabilistic setting.

The learners are not only applied to the original

datasets but also to an "imcomplete" version of the dataset,

where 30% of the values are replaced by missing values,

and finally a "mixed" version, where only the test data is

"incomplete". This way we can analyze the robustness of

the learned models, where characteristic models might

be expected to perform better, since additional features

are used as a fallback option.

The predictive accuracies of a 10-fold-cross-validation

are shown in Table 2. Each table shows a head-to-

head comparison of the discriminative and characteristic

learner in a given setting of dataset type and used evalu-

ation. Overall, we see that the discriminative and charac-

teristic learner perform roughly equally well, while the

effects of missing values vary considerably between the

datasets. Except few cases, the harder the setting (from

left to right), the lower the predictive accuracy.

Independent of the dataset setting, the predictive ac-

curacy drops drastically for labor and mushroom when

changing from the Boolean to the probabilistic setting.

Though, it often increases for the other three datasets —

in particular, in the "mixed" setting, the accuracies can be

improved drastically using a probabilistic evaluation, in-

dicating that the adjusted decision boundaries can make

the model more robust to incomplete training data.

c1← eggs=false.
c1← hair=true.

c2← toothed=true.
c2← catsize=true.
c2← legs=(1.0:4.0].

c3← backbone=true.
c3← airborne=false.
c3← aquatic=false.
c3← fins=false.
c3← tail=true.
c3← domestic=false.
c3← predator=false.
c3← predator=true.
c3← domestic=true.
c3← tail=false.
c3← catsize=false.
c3← fins=true.

c← milk=true ∧ c1 ∧ c2 ∧ breathes=true∧
feathers=false ∧ c3.

Figure 3: Model learned by characteristic aBpt on the zoo

dataset for 𝑐𝑙𝑎𝑠𝑠 = 𝑚𝑎𝑚𝑚𝑎𝑙 when being transformed into

a set of conjunctive rules.



As an example, consider the characteristic model for

the zoo dataset in Figure 3. In Boolean evaluation, the

missing values result in too many examples being not

covered by the model, However, the numerous conditions

still indicate the correct class with a probabilistic evalua-

tion. We also notice a big gap between the performances

of the discriminative and characteristic model here, indi-

cating that the small trees with only up to four conditions

of the discriminative learner (e.g., for class=mammal it

only uses the condition mlik=true) are not as robust as

the trees of the characteristic counterpart.

As Figure 3 also shows, the characteristic models are

usually considerably larger. From an interpretability per-

spective, this can be preferred, since in this case we do not

only discover that mammals yield milk but also breathe,

do not wear feathers, either do not lay eggs or have hair

and either are toothed, catsized or have 1-4 legs. We also

notice that the last concept c3 (which was also the last

to be added to the model) is not helpful at all and indeed

can be reduced to true because of tautologies. This in-

dicates that in a characteristic setting stopping criteria

or pruning techniques are needed as well to preserve

interpretability.

6. Conclusion
In this paper, we look at the possible advantages that

characteristic models, which are rarely learned in con-

ventional rule learning algorithms, can provide. While

previous work on characteristic rules usually focused

on the interpretability aspects, we have shown that the

inclusion of additional features, both via conjunction and

disjunction, can additionally help to find better decision

boundaries, resulting in more robust models. We also

discussed that for learning characteristic rules a mere

focus on coverage is insufficient so that both regular and

inverted heuristics can not guarantee learning character-

istic rules. Finding a suitable distance metric to separate

positive and negative examples remains as an open ques-

tion.

To analyze the effects of characteristic rule-based mod-

els empirically, we implemented a characteristic version

of the aBpt learner and compared it with the original

discriminative version on five UCI datasets. The exper-

iments did not show a clear advantage for any of the

learners in terms of predictive accuracy, indicating that

smaller models are not necessarily overgeneralizing and

larger models not inevitably lead to overfitting. In a ro-

bustness check using incomplete test data, characteristic

models outperformed discriminative models. Further-

more, characteristic models slightly outperformed dis-

criminative models when combined with probabilistic

evaluation.

We also see multiple paths to further develop the po-

tential of characteristic models in future work: Most

importantly, the decision boundary artificially moved by

a probabilistic evaluation (which certainly provides room

for improvement as well) should not only be considered

during classification but also in the learning phase. In this

regard, the definition of heuristics not only considering

coverage but also the "quality" of the coverage, connected

to the distance between the example and the decision

boundary, is crucial. This way rule learners could not

only deliver a prediction but also determine how certain

the prediction is, and optionally abstain from making a

prediction.
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