
Adapting Plagiarism Detection Techniques for Citation
Identification in Legal Texts
Oleksandr Fetkovych1, Peter Gurský1, Dávid Varga1 and Zoltán Szoplák1

1Institute of Computer Science, Faculty of Science, Pavol Jozef Šafárik University in Košice, Jesenná 5, 040 01 Košice, Slovakia

Abstract
Our work aims to create a tool for identifying citations among legal documents. In this paper, we present a method for
detecting citations of sections of laws in court decisions using an adapted plagiarism detection technique. Our method uses
the full-text database Elasticsearch to select the candidates. Since we are looking for citations of laws within court decisions,
which might change over time, we must also consider the laws’ amendments. We evaluated our approach on a sample of
manually annotated court decisions.

Keywords
legal texts, anti-plagiarism system, citations, court decisions

1. Introduction
In our project, we aim to develop a system for analyzing
relationships among legal texts. Recognizing references
to other legal documents is essential for understanding
connections within legal documentation. We aim to build
a system that identifies which texts refer to other texts
and, vice versa, which are derived from others, along with
the nature and significance of these relationships. Cur-
rently, no available system records such relationships.
Establishing one could improve legal analysis and re-
search, making the legal system more efficient.

At the project’s current stage, we focus on court deci-
sions, which typically rely on the wording of legal para-
graphs from laws and regulations, as well as previous
decisions from other courts in similar or related matters.
In their decisions, judges usually cite specific paragraph
numbers of laws and case file numbers to which they
refer. However, these references can sometimes be unre-
liable. Many cited laws have only a marginal connection
to the text, and sometimes, sections of laws are cited
without explicit reference to paragraph numbers. This
paper introduces a method for detecting citations in the
sense of a quoted text from another legal text. The cited
legal texts have typically stronger connection with the
original text. Therefore, quotations can be an essential
part of relationship analysis.

ITAT 2024 Information Technologies – Applications and Theory 2024,
September 20–24, 2024, Drienica, Slovakia
*Corresponding author.
†

These authors contributed equally.
$ oleksandr.fetkovych@student.upjs.sk (O. Fetkovych);
peter.gursky@upjs.sk (P. Gurský); david.varga@student.upjs.sk
(D. Varga); zoltan.szoplak@student.upjs.sk (Z. Szoplák)
� 0009-0004-4672-4060 (O. Fetkovych); 0000-0002-4744-7390
(P. Gurský); 0000-0002-3176-8106 (D. Varga); 0000-0003-1823-0536
(Z. Szoplák)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

The basic idea of our approach was to utilize a method
from the well-researched area of plagiarism detection.
However, plagiarism detection methods pursue slightly
different goals. There are several important differences
between detecting plagiarism and citations of legal texts:

• While a plagiarist tries to conceal their plagia-
rism by changing sentence formulations, using
synonyms or other methods, a lawyer aims to
quote another legal text as accurately as possible.
Therefore, in our case, we can omit algorithms
that detect word matches based on semantic sim-
ilarity. On the other side, legal citations often
contain typos, omissions of parts of sentences, or
the insertion of phrases into the quoted texts.

• A standard text is usually considered plagiarized
only when there is significant textual similarity
over several sentences, typically spanning several
pages or even paragraphs. On the other hand,
legal text citations can be concise, sometimes lim-
ited to a single sentence from a law. Of course,
this only holds true on certain occasions and can-
not be applied as a general rule, especially in
citations of lower court decisions in appellate de-
cisions, which can involve large text sections.

• When citing laws in court decisions, it is essen-
tial to consider that laws are dynamic documents
that change over time through amendments. A
law cited in a decision typically refers to its most
recent version relative to the decision’s release
date, although this may not always be the rule.
The cited law text definitely does not come from
a version that became effective after the decision
date.

This paper presents our methods for detecting citations
in legal documents. In addition to the specifics mentioned

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:oleksandr.fetkovych@student.upjs.sk
mailto:peter.gursky@upjs.sk
mailto:david.varga@student.upjs.sk
mailto:zoltan.szoplak@student.upjs.sk
https://orcid.org/0009-0004-4672-4060
https://orcid.org/0000-0002-4744-7390
https://orcid.org/0000-0002-3176-8106
https://orcid.org/0000-0003-1823-0536
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

above, our approach also takes into account the speed of
citation detection. This paper is organized as follows:

• Section 2 introduces those anti-plagiarism sys-
tems that inspired the design of our method the
most.

• Section 3 briefly presents our dataset.
• Section 4 details our citation detection methods.
• Section 5 describes the results of testing the effec-

tiveness of our methods.
• Section 6 summarizes the results and the applica-

bility of our methods but also discusses potential
future research directions in the field of citation
detection.

2. Related work
When defining our approach, we have taken inspiration
from other works about creating anti-plagiarism systems.
We are specifically referring to the particular intricacies
of detecting and extracting legal citations mentioned in
the previous section.

The Anti-plagiarism system Copyfind [1] employs a
hashing function to encode all input documents, such
that every word turns out to be a 32-bit hash code. This
system makes pairwise comparisons between all docu-
ments, where cursors move over lists of their hash codes,
searching for an identical pair. However, as in our case,
working with many documents is very time-consuming.
In addition to the aforementioned drawbacks, when work-
ing with long sentences or more structurally complicated
texts, resolving which phrases were similar was problem-
atic and did not fit our needs.

Stamatatos et al. [2] introduced a method for detecting
plagiarism in document collections based on stop word n-
grams. The authors assumed that stop word sequences re-
veal syntactic patterns in the document structure, which
can be used to detect plagiarism. This makes it useful in
cases where other methods based on context might fail to
detect plagiarism. Additionally, the method can be exe-
cuted quickly because it uses a low number of stop words,
reducing processing time. However, such a method also
has its disadvantages. It cannot detect multiple instances
of plagiarism in a scrutinized document and particularly
struggles with short matching fragments between the
source and the inspected documents.

Abdi et al. [3] proposed a method based on syntactic
and semantic features, improving accuracy and efficiency.
The authors use the sentence approach for data prepro-
cessing. They divide the texts into sentences and work
with each sentence separately. However, this method
may require more computing resources and processing
time than other methods due to its reliance on syntac-
tic and semantic features. Moreover, it might perform

poorly when plagiarized fragments have similar syntactic
structures, but different semantics.

The method proposed by Vani and Gupta [4] employs
a vector space model (VSM) alongside syntactic feature
extraction using shallow NLP techniques, such as Part-
of-Speech (POS) tags, to represent documents as vectors.
This approach enhances plagiarism detection by analyz-
ing both syntactic and semantic properties of texts. The
method classifies these features using algorithms such
as Naïve Bayes, Support Vector Machine, and Decision
Trees. However, since it focuses on whole documents
rather than individual sentences, its applicability may be
limited in certain scenarios.

The method of Altheneyan and Menai [5] includes sev-
eral NLP features such as stop word removal, punctuation
removal, and tokenization to prepare the text for com-
parison. The paragraph-level comparison step compares
suspect and source documents at the paragraph level,
while the sentence-level comparison step looks for com-
mon unigrams between sentences. The SVM classifier
then checks detected instances of plagiarism, and consec-
utive sections are merged in a post-processing step. This
method is, therefore, capable of detecting plagiarism in
obfuscated text. The method relies heavily on the num-
ber of common unigrams between sentences and may
not effectively reveal more complex forms of plagiarism
that do not rely on word frequency.

Yalcin et al. [6] introduce an external plagiarism de-
tection system using n-grams of POS tags and seman-
tic vector representations of words. The preprocessing
involves sentence segmentation, tokenization, and as-
signing one of 45 POS tags. The system generates POS
n-grams (POSNG), indexed at the sentence level using
the Lucene search engine 1, to reflect syntactic text prop-
erties. Using the full-text search engine for obtaining
candidate documents was the main inspiration in our
proposed method.

Matching POSNG tags between a suspicious doc-
ument and the source indicates potential plagiarism.
Searches for candidate sentences involve querying n-
grams through Lucene, seeking the highest match scores.
The method employs two decision techniques for identi-
fying plagiarism: direct syntactic comparison (POSNGPD)
and syntactic plus semantic analysis (POSNGPD+SSBS),
where the latter assesses semantic similarities using the
Word2Vec model [7].

The authors claim superior accuracy of their method,
although acknowledging slower processing due to exten-
sive data handling.

1Apache Lucene, a high-performance text search engine, available
at https://lucene.apache. org/core/

3. Dataset
To check the correctness of our proposed methods, we
used two data sets: a set of all laws in the Slovak Republic
including its history and a randomly chosen subset of
court decisions.

3.1. Law articles
The Slovak government publishes the collection of laws
on the Slov-Lex portal [8] in HTML format both online
and in a ZIP archive. Obtaining all laws with correspond-
ing articles and historical changes was quite a complex
process. First, we needed to distinguish between the
original laws, their amendments and other kinds of doc-
uments in the archive. Typically, original laws contained
amendments of other laws, therefore, we needed to iden-
tify which parts were relevant. After extracting neces-
sary data, we converted them into the JSON format for
structured storage and easier processing.

Figure 1 below illustrates the JSON object representa-
tion for Section 113 of the Criminal Code. This object
comprises several key attributes:

• _id: A unique identifier for a law section, which
combines the articles section number, in our case
113, with an identifier from the Collection of
Laws, e.g., 300/2005 for the Criminal Code.

• versions: Contains an array of objects repre-
senting all historical versions of the article.

• version: Indicates the effective date from which
the law’s current version applies.

• text: Provides the actual text of the law’s para-
graph for the pertinent version.

• headlines: These are headings within the struc-
ture of the entire law leading to the specific sec-
tion. However, this attribute was not utilized for
our analysis.

3.2. Court decisions
This work analyzes a subset of court decisions published
on the Open Data website of the Ministry of Justice of
the Slovak Republic [9].

The court decisions are structured as JSON objects that
include details like the court type, the court name, the
judge’s name, and the legal domain. Each object also
features a document_fulltext attribute, which holds
the anonymized text of the court decision on which we
focused primarily.

Also, the attribute decision_issue_date signifies
when the court decision was issued. This attribute is
significant because it indicates the specific date when the
judge wrote the decision. With this date, we can avoid
reviewing citations of laws enacted after the judgment

Figure 1: Example of an object (article §113 of the Criminal
Law).

since the judge would not have been able to reference
laws that did not exist then.

4. Methods
Our initial approach to detecting citations involved a
comparison the text from court decisions against all legal
paragraphs to identify citations. Given the extensive
dataset and the complexity of comparison algorithms,
this process proved to be very time-consuming.

Consequently, we transitioned to a more sophisticated
solution utilizing Elasticsearch [10]. Elasticsearch em-
ploys advanced techniques for rapid searching through
extensive text datasets. Its key advantages include storing
data as JSON objects, scalability, and full-text search capa-
bilities. Additionally, Elasticsearch leverages an inverted
index, enhancing the efficiency of search operations. Its
flexible and customizable text analysis methods convert
text into structured data optimized for effective storage
and retrieval, thus significantly improving the system’s
performance and responsiveness.

This new approach consists of several integral stages,
each designed to optimize the processing and analysis of
legal texts. Here are the main components of our new
method, which we will discuss in detail in upcoming
sections:

• Data Indexing: We initiate the process by index-
ing the data of legal paragraphs into an Elastic-
search index. This step organizes the data effi-
ciently, setting the foundation for rapid retrieval
and detailed analysis.

• Finding candidate documents: A specific
query is crafted for Elasticsearch to sift through
the indexed data and extract candidate legal para-
graphs. Finding candidates for deeper inspection
narrows down the scope significantly.

• Texts matches: We employ a custom algorithm
to search common parts of the original and candi-
date document. This phase analyses the presence
of citations within the court decisions and evalu-
ates their relevance.

• Decision-Making: After verifying the citations,
we initiate a decision-making process. This step
determines whether the legal paragraphs were
cited accurately in the texts under review.

We validated this methodology by conducting reviews
and analyses of its performance on a real court decision
dataset, as will be discussed in Section 5. The results
confirm the efficacy and efficiency of our approach in
handling complex legal texts.

4.1. The process of data indexing
Due to constant law amendments, most legal paragraphs
have multiple versions over time, as we demonstrated in
Section 3.1.

If we index each paragraph with multiple versions as
a single document, then during the search for similar
law paragraphs for a court decision, Elasticsearch will
compare the text of the court decision with the texts of
all versions of the paragraph, leading to incorrect results.
The paragraph with more versions can be incorrectly
returned because of many common texts, which are in
fact the same texts. Furthermore, the JSON document
returned by Elasticsearch can contain matching texts in
irrelevant versions while there is no match in the relevant
one. To avoid this, we used a simple script to split each
law paragraph into separate documents, each containing
only one unique version of the paragraph while retaining
the original paragraph ID.

This approach allows us to filter relevant paragraph
versions based on the creation date of court decisions.
After preparing the dataset for indexing, we created an
appropriate mapping [11] for an efficient data indexing
process. The mapping in Elasticsearch defines how each
field in the document will be indexed, including text anal-
ysis rules, data types, and storage options. This mapping
is crucial as it ensures that Elasticsearch can efficiently
store and retrieve data, optimize search performance, and
correctly handle our documents’ nested structures.

The mapping begins by establishing a custom analyzer
that simplifies and standardizes text. This text is then
uniformly processed to ensure consistency across all doc-
uments, e.g., lowercasing and ascii folding. The mapping
specifies different types of data fields, including identi-
fiers for precise searches and versioning information to
track document updates. Each document version is ana-
lyzed using the same method to maintain uniformity in
data handling. The result of the indexing is an internal
Elasticsearch structure.

4.2. Finding candidate documents
This step reduces the number of source documents (legal
paragraphs) that are then compared in detail with the text
of the court decision. Using the Elasticsearch index, we
created a query based on the full text of the court decision.
Elasticsearch searches for documents with similar text
and returns an ordered list of source documents ranked
by relevance.

Key features of our query include:

• The similarity query contains the whole text of
the decision.

• The query will return the top 30 most similar
documents to streamline further processing.

• Comparison is then performed based on the court
decision text.

• Each of the 30 documents will have a unique law
article ID and contain only one version, valid at
the time of the court decision.

Since the query is extensive and complex, we omit
its detailed description in this paper. As a result, we
will get 30 candidate documents, which we will use to
search for specific quotes. The number 30, a heuristic
parameter, is chosen to provide us with sufficient results.
It is important to note, however, that this parameter is
not fixed and can be adjusted to suit the needs of our
research.

4.3. Searching for common matching
texts

Elasticsearch does not return positions of matching texts.
Since it is important to us what texts match and where
the matches are located, we need to find the matching
places in both documents.

4.3.1. Finding common sequences using the
Needleman-Wunsch algorithm

To find matching text sequences, we utilized the well-
known Needleman-Wunsch algorithm (NW) of dynamic
programming [12] for the longest common subsequence
search. The core principle of the algorithm is as follows:

• Text preprocessing: Texts are stripped of punc-
tuation and short words, simplifying subsequent
analysis and reducing noise.

• Matrix initialization: A two-dimensional array
𝑀 (dp matrix) is created where each element 𝑀 (𝑖,
𝑗) stores the length of the longest common sub-
sequence between the first 𝑖 words of text1 and
the first 𝑗 words of text2.

Part of the text from the legal paragraph with word offset 10: "...v jeho prospech odvolanie, poškodený, zúčastnená osoba, ako
aj prokurátor sa môžu výslovným vyhlásením vzdať ... Osoba, ktorá je oprávnená podať ..."

Part of the text from the court decision with word offset 100 : "...v jeho prospech obvolanie, poškodený, ako aj prokurátor sa
môžu výslovným vyhlásením vzdať ... osobe, ktorá je oprávnená podať ... ako prokurátor môže ..."

jeho10 prospech11 odvolanie12 poskodeny13 ... ako16 prokurator17 mozu18 vyslovnym19 vyhlasenim20 vzdat21 . . .

osoba35 ktora36 opravnena37 podat38 ...

jeho100 prospech101 obvolanie102 poskodeny103 ako104 prokurator105 mozu106 vyslovnym107 vyhlasenim108 vzdat109 . . .

osobe120 ktora121 opravnena122 podat123 ... ako250 prokurator251 moze252 ...

Arrays of matching word 3-grams:
[10, 11, 16, 16, 17, 18, 19, 35, 36]

[100, 101, 104, 250, 105, 106, 107, 120, 121]

Arrays of matching sequencies:
[[10, 11], [16, 17, 18, 19], [16], [35, 36]]

[[100, 101], [104, 105, 106, 107], [250], [120, 121]]

Figure 2: This is an example of how the original texts are preprocessed and matched. The sequences of word 3-grams
highlighted with the same color or surrounded by a frame have a significant similarity (and thus considered equal), even with
a typo in the word ’ob(d)volanie’ and a declension in word ’osoba’. The indices of first words of matching 3-grams of words are
stored in two arrays. The upper one corresponds to the 3-grams of the law article and the bottom one corresponds to the
3-grams of the court decision. Finally, the continuous sequences of word 3-gram indices are merged together, resulting in
arrays of arrays.

• Matrix filling: Using dynamic programming, the
matrix is filled with values based on word com-
parisons. If the words match, the value increases
by one compared to the previous words. Other-
wise, the maximum value from adjacent cells is
selected.

• Subsequence reconstruction: Starting from the
bottom-right element of the matrix, the subse-
quence itself is reconstructed by following the
path that led to the maximum length. This is
achieved by comparing the values in the matrix
and selecting the path with the maximum value.

Since the sequence assembly is performed from the
end, the results (arrays of indices) are reversed to be
presented in the correct order.

4.3.2. Finding common sequences using 3-grams
of words

Although the algorithm in Section 4.3.1 is fast, we found
over time that it had trouble identifying matches in case
of typos. This algorithm cannot return multiple matches
of same texts, resulting in overlooking potentially longer
citations that have words added or removed somewhere

in the middle. Note that the problem of adding or remov-
ing words inside the citations is covered in Section 4.4.
Therefore, we created an alternative approach that would
eliminate these shortcomings.

The approach involves systematically comparing the
text of a judicial decision with candidate paragraphs of
laws. The process begins by taking both decision and
paragraph texts and processing them to remove punc-
tuation marks, numbers, and words shorter than three
characters. This step helps to ensure that only meaning-
ful content is considered, as shorter words typically lack
semantic significance and can easily be replaced by syn-
onyms. Then, we divide each text into 3-grams of words
and calculate the Levenshtein [13] similarity coefficient
for each pair of compared word 3-grams.

We chose the Levenshtein method for its efficiency in
handling typos. Typos are often found in court decisions,
but almost never in laws. By calculating the Levenshtein
distance, we can quickly and accurately identify matches
even in texts containing such errors.

The similarity coefficient (normalized insertion-
deletion similarity) between two 3-grams of words is
calculated using the Levenshtein method described in
[14] according to the following formula:

Similarity = 1− Distance
Length1 + Length2

Where:

• Similarity: similarity coefficient.
• Distance: Levenshtein distance between two 3-

grams.
• Length1: length of the first 3-gram.
• Length2: length of the second 3-gram.

This coefficient reflects the normalized similarity be-
tween two 3-grams of words on a scale from 0 to 1,
where 0 means complete dissimilarity and 1 means com-
plete match. If similarity of compared 3-grams exceeds a
threshold of 0.9, we consider the 3-grams to be equal. The
indices of their positions in original texts are recorded in
arrays: one for the 3-gram indices of the court decision
and one for the law paragraph.

Next, the algorithm searches for increasing continu-
ous sequences of indices, resulting in all common sub-
sequences with at least 3 words between the two texts.
The result is represented as an array of arrays of word
3-gram positions, as depicted in Figure 2.

4.4. Inserted and missed words in
citations

The previous two methods are designed to find continu-
ous sequences within analyzed texts. Sometimes, judges
use extra words or miss some words from cited laws and
thus do not form precisely continuous citations. This step
takes into account these kinds of citations and merges
them. However, we cannot merge similar 3-grams of
words if they are too far apart, so we merge only those
sequences that are at most ten words apart. Finally, the
process returns two arrays that store sequences that are
merged if possible, one associated with the law article
and the other with the decision.

Below we provide an example, where we continue our
example from Figure 2. Each input array contains sub-
arrays with strictly increasing subsequences by 1. In
Figure 3, the green color marks the last and first elements
of adjacent arrays whose difference is less than ten po-
sitions in both texts; these will be merged into a single
sub-array, as seen in Figure 4.

The red color marks the last and first elements of adja-
cent arrays whose difference is greater than ten words,
indicating they will not be merged in the array for a court
decision nor corresponding sub-arrays for the law article.
We can see that the pair of subarrays <[16],[250]> do not
merge with <[10,11], [100,101]>, because the distance
between 101 and 250 is too big.

[[10, 11], [16 , 17, 18, 19], [35 , 36], [16]]

[[100, 101], [104 , 105, 106, 107], [120 , 121], [250]]

Figure 3: Indices of similar word 3-grams with connectivity
conditions.

[[10, 11, 16, 17, 18, 19], [16], [35, 36]]

[[100, 101, 104, 105, 106, 107], [250] [120, 121]]

Figure 4: Merged sequences after applying connectivity con-
dition.

4.5. Decision making
After the entire process, we obtain a set of arrays con-
taining sequences of indices of words found in both texts.
Next, we need to decide, which matching texts are real
citations. Many times, even if there are matched texts, it
is just a coincidence, not a real citation.

Actually, it is difficult to correctly identify real citations.
Judges often do not put quoted text in quotation marks.
Sometimes, even a relatively short text is a real citation
and at the same time a longer text does not have to be a
citation. Therefore, the following two approaches should
be considered heuristics rather than informed decisions.

The decision-making process results in whether or not
the law article is cited in the judicial decision. We decide
whether a citation is present in the judicial decision based
on the longest sequence length in input arrays.

We have tested the following two conditions

• The longest citation contains at least 7 words
• The longest citation covers at least 5% of the orig-

inal law article

The first approach was chosen to minimize the risk
of false positives arising from random or insignificant
matches of short text segments. Such short citations are
often too general to identify a specific legal provision
uniquely and could lead to incorrect conclusions. This
threshold allows us to increase the accuracy and reliabil-
ity of the method.

The second approach prefers citations that cite a sig-
nificant part of the law article. This approach suppresses
the occurrence of false positives but, on the other hand,
citations within large law articles can be skipped.

As a result of the last step, the identifiers _id and
version of the legal articles, together with the cited
positions, are returned.

5. Evaluation
We created two methods for citation search and two meth-
ods for decision-making. We used two decision-making

Table 1
Evaluation of methods with combination of decision making approach. We present true positives as TP, false negatives as FN,
false positives as FP, precision, recall and an F1 Score metric.

Methods TP FN FP Precision Recall F1 Score
NW, absolute length 179 0 145 0.55 1.00 0.71
NW, percentage 73 106 0 1.00 0.40 0.58
3-grams, absolute length 174 5 37 0.82 0.97 0.89
3-grams, percentage 174 5 45 0.79 0.97 0.87

methods for each citation search method, resulting in
four distinct methods in total. The implementation can
be found on our GitHub repository [11]. Due to the
many versions of laws, we were unable to compare our
approach with other plagiarism detection systems.

We tested our methods on randomly chosen 100 court
decisions and all laws of the Slovak Republic and sum-
marized the results in Table 1.

In our study, we used the F1 Score to evaluate our
method for identifying law citations in court decisions.
We chose this metric because it balances precision and
recall, making it a reliable measure of our method’s accu-
racy. The F1 Score helps ensure that we correctly identify
real citations while reducing mistakes, which is crucial
for trustworthy legal analysis.

While achieving perfect recall, the NW, absolute length
method suffers from low precision, resulting in numerous
false positives and an F1 Score of 0.71.

The NW, percentage method offers perfect precision
but low recall, leading to an F1 Score of 0.58. It iden-
tifies citations accurately but misses a large number of
citations.

The 3-grams, absolute length method shows a balanced
performance with both high precision and recall, yielding
an F1 Score of 0.89, indicating effective citation detection.

The 3-grams, percentage method also performs well,
with slightly lower precision and an F1 Score of 0.87
compared to its absolute length counterpart. Overall,
the 3-gram methods outperform the NW methods in
balancing precision and recall, suggesting they are more
suitable for nuanced detection of legal citations in court
decisions.

When we compare these results, we can see, that
Needleman-Wunsch algorithm can only search for exact
matches; it often fails to detect long citations and typi-
cally only detects smaller parts of citations. As a result,
it often happens that the longest citation does not reach
5% of the content of the paragraph of the law. On the
other hand, NW method does not have the restriction
of at least three consecutive matching words forming a
3-gram. The consequence is that the method for dealing
with inserted and missing words (Section 4.4) may mis-
takenly evaluate as citations close matches of unigrams
and bigrams up to a total length exceeding the threshold
of 7 words. Therefore the NW, absolute length method

identifies many false positives.

6. Conclusion
In this article, we presented our methods for searching
for citations in legal texts. Although at first glance it
looks like a classic plagiarism detection task, citations
in legal texts have their specifics, which we listed in
Section 1. We focused on finding citations of laws in
court decisions. We presented a total of 4 methods to
find citations and compared them on a dataset of 100
random judicial decisions.

In the future, we would like to explore other ap-
proaches to the decision-making process, for example,
involving the semantic proximity of the court decision
and the cited law.

Another goal is to examine the search for citations
among judicial decisions. We will experiment with
replacing the Needleman-Wunsh algorithm with the
Smith–Waterman [15] one as it should be more suitable
for finding local alignments such as law citations within
larger, potentially dissimilar texts. For the purposes of
faster detection for real-time tasks, we also plan to test
the suitability of the BLAST algorithm [16] applied to
such a task with natural language text instead of biologi-
cal sequence identification.

Building on our previous research [17], which involved
extracting references to laws, we aim to refine how rela-
tionships are weighted within legal texts. When a law is
both referenced and cited within a ruling, it underscores
its substantial influence. We currently use references to
law paragraphs to extract keyphrases. In the future, we
plan to explore assigning greater weight to phrases from
highly valued law paragraphs to enhance our keyphrase
extraction method. In our future work, we also aim to
test whether removing stop words instead of short words
improves our performance.

Judges sometimes omit specific letters, sections, or
even laws’ names, yet may still cite the text directly.
Identifying these citations helps accurately pinpoint the
relevant law paragraph, further enhancing the precision
of our law reference extraction.

Acknowledgments
The Slovak Research and Development Agency supported
this work under contract No. APVV-21-0336 Analysis
of Court Decisions by Methods of Artificial Intelligence.
Pavol Jozef Šafárik University in Košice supported this
work with the internal project at vvgs-2023-2547 Legal
Text Analysis Using Computer Linguistics. This article
was also supported by the Scientific Grant Agency of
the Ministry of Education, Science, Research and Sport
of the Slovak Republic under contract VEGA 1/0645/22
entitled Proposal of Novel Methods in the Field of Formal
Concept Analysis and Their Application.

References
[1] L. Bloomfield, WCopyfind, University of Virginia.

Available at URL: http://plagiarism. bloomfieldme-
dia. com/wordpress/software/wcopyfind/. (2016).

[2] E. Stamatatos, Plagiarism detection using stopword
n-grams, Journal of the American Society for In-
formation Science and Technology 62 (2011) 2512–
2527.

[3] A. Abdi, N. Idris, R. M. Alguliyev, R. M. Aliguliyev,
Pdlk: Plagiarism detection using linguistic knowl-
edge, Expert Systems with Applications 42 (2015)
8936–8946.

[4] K. Vani, D. Gupta, Text plagiarism classification us-
ing syntax based linguistic features, Expert Systems
with Applications 88 (2017) 448–464.

[5] A. S. Altheneyan, M. E. B. Menai, Automatic plagia-
rism detection in obfuscated text, Pattern Analysis
and Applications 23 (2020) 1627–1650.

[6] K. Yalcin, I. Cicekli, G. Ercan, An external pla-
giarism detection system based on part-of-speech
(POS) tag n-grams and word embedding, Expert
Systems with Applications 197 (2022) 116677.

[7] T. Mikolov, K. Chen, G. Corrado, J. Dean, Effi-
cient Estimation of Word Representations in Vector
Space, 2013. arXiv:1301.3781.

[8] Slov-Lex, 2022. URL: https://www.slov-lex.sk/
vyhladavanie-pravnych-predpisov.

[9] Rozvoj elektronických služieb súdnictva (RESS)
(2016). URL: https://obcan.justice.sk/.

[10] Elastic, Elasticsearch, 2024. URL: https://www.
elastic.co/elasticsearch/.

[11] O. Fetkovych, P. Gurský, Revealing implicit le-
gal phrases in court decisions, https://github.com/
vargadavid304/legal_citations, 2024. GitHub reposi-
tory.

[12] S. B. Needleman, C. D. Wunsch, A general method
applicable to the search for similarities in the amino
acid sequence of two proteins, Journal of molecular
biology 48 (1970) 443–453.

[13] V. I. Levenshtein, et al., Binary codes capable of
correcting deletions, insertions, and reversals, in:
Soviet physics doklady, volume 10, Soviet Union,
1966, pp. 707–710.

[14] M. Bachmann, python-levenshtein, 2021. URL:
https://rapidfuzz.github.io/Levenshtein.

[15] R. Mott, Smith–Waterman Algorithm, 2005. doi:10.
1038/npg.els.0005263.

[16] S. Altschul, BLAST Algorithm, 2005. doi:10.1038/
npg.els.0005253.

[17] D. Varga, M. Gojdič, Z. Szoplák, P. Gurský, Horvát,
S. Krajči, L. Antoni, Extraction of legal references
from court decisions., in: ITAT, 2023, pp. 89–95.

http://arxiv.org/abs/1301.3781
https://www.slov-lex.sk/vyhladavanie-pravnych-predpisov
https://www.slov-lex.sk/vyhladavanie-pravnych-predpisov
https://obcan.justice.sk/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://github.com/vargadavid304/legal_citations
https://github.com/vargadavid304/legal_citations
https://rapidfuzz.github.io/Levenshtein
http://dx.doi.org/10.1038/npg.els.0005263
http://dx.doi.org/10.1038/npg.els.0005263
http://dx.doi.org/10.1038/npg.els.0005253
http://dx.doi.org/10.1038/npg.els.0005253

	1 Introduction
	2 Related work
	3 Dataset
	3.1 Law articles
	3.2 Court decisions

	4 Methods
	4.1 The process of data indexing
	4.2 Finding candidate documents
	4.3 Searching for common matching texts
	4.3.1 Finding common sequences using the Needleman-Wunsch algorithm
	4.3.2 Finding common sequences using 3-grams of words

	4.4 Inserted and missed words in citations
	4.5 Decision making

	5 Evaluation
	6 Conclusion

