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Abstract
Sepsis is a leading cause of mortality in intensive care units (ICUs), representing a substantial medical
challenge. The complexity of analyzing diverse vital signs to predict sepsis further aggravates this issue.
While deep learning techniques have been advanced for early sepsis prediction, their ’black-box’ nature
obscures the internal logic, impairing interpretability in critical settings like ICUs. This paper introduces
a framework that combines a deep learning model with an attention mechanism that highlights the
critical time steps in the forecasting process, thus improving model interpretability and supporting
clinical decision-making. We show that the attention mechanism could be adapted to various black box
time series forecasting models such as N-HiTS and N-BEATS. Our method preserves the accuracy of
conventional deep learning models while enhancing interpretability through attention-weight-generated
heatmaps. We evaluated our model on the eICU-CRD dataset, focusing on forecasting vital signs for
sepsis patients. We assessed its performance using mean squared error (MSE) and dynamic time warping
(DTW) metrics. We explored the attention maps of N-HiTS and N-BEATS, examining the differences in
their performance and identifying crucial factors influencing vital sign forecasting.
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1. Introduction

Sepsis is a life-threatening condition that occurs when the immune system of the body responds
incorrectly to an infection and causes rapid organ dysfunction and failure [1]. A meta-analysis
conducted on articles published in PubMed and the Cochrane Database revealed that the average
30-day mortality rate for sepsis was 24.4%, and the average 90-day mortality rate was 32.2%
between 2009 and 2019 [2]. While sepsis has been acknowledged for a long time, its clinical
definition did not emerge until the late 20𝑡ℎ century [3]. In 1991, a consensus conference
posited that sepsis arises from the individual’s inflammatory response to infection, marked
by systemic inflammatory response syndrome (SIRS), emphasizing the human response to
invading organisms. This syndrome is characterized by variations in temperature, heart rate
(HR), respiratory rate (RR), blood pressure (BP), and white blood cell (WBC) count [4]. In 2016,
the definition of sepsis was revised to multiple organ dysfunction syndrome (MODS) [5]. Systolic
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blood pressure (SBP) and RR abnormalities indicate organ dysfunction [6]. Thus, creating precise
models for forecasting vital signs becomes essential in predicting sepsis [7]. Accurate vital sign
predictions can promptly aid clinicians in identifying and intervening in sepsis cases, potentially
saving lives and improving the intensive care unit (ICU) patient outcomes.

The growth in explainable artificial intelligence (XAI) research is mainly attributed to the rapid
growth in the popularity of deep learning with widespread healthcare applications. However,
most models developed using these technologies are considered ’black-boxes’ by experts due to
their intricate, non-linear structures that are challenging for non-experts to understand [8]. The
proposed research contributes to the following two aspects: (1) Adding an attention mechanism
to show the relationship between input time steps and forecasted results; (2) Providing analysis
and interpretation of the findings derived from the attention map.

1.1. Literature Review

In recent years, the significance of model explainability has been widely recognized, leading to
the integration of an increasing number of explainable methods into data-driven models [9].
Prior research has demonstrated the development of deep learning neural networks incorporat-
ing attention mechanisms, resulting in interpretable models with strong performance within the
medical field. Kaji et al. demonstrated that integrating an attention mechanism into the LSTM
network, trained with Electronic Health Record (EHR) data, not only improves the daily sepsis
onset prediction’s Area Under the Receiver Operating Characteristic Curve (AUROC) score
to 0.876 but also highlights critical time points for prediction [10]. An attention-based gated
recurrent unit (GRU) was developed by Shickel et al. Self-attention was applied to focus on
significant time steps when predicting in-hospital mortality [11]. Choi et al. proposed reverse
time attention (RETAIN), processing EHR data in reverse order, achieving an Area Under the
ROC Curve (AUC) of 0.87 in heart failure prediction. It adds interpretability using a two-level
neural attention model [12].

While previous XAI research integrating deep learning models with interpretable modules has
excelled in time series classification, attention mechanisms in interpretable time series forecast-
ing remain underexplored. Our approach aims to explore attention mechanism interpretability
in time series forecasting.

2. Method

In this section, we begin by detailing the information of the eICU Collaborative Research
Database (eICU-CRD) [13], followed by an outline of the composition of our input data. Sub-
sequently, we dive into the specifics of the attention mechanism and the frameworks of our
forecasting models.

2.1. Dataset Description and Data Preprocessing

The eICU-CRD data is a publicly accessible repository containing data from over 200,000 ICU
admissions across 208 hospitals in the United States between 2014 and 2015 [13]. This com-
prehensive dataset comprises diverse patient information, including demographics, diagnoses,



medications, and laboratory results. Our research focuses on the ’diagnosis’ and ’vitalAperiodic’
tables, from which we extract dynamic physiological data such as temperature, HR, and BP
at 5-minute intervals. The core of our study revolves around forecasting two crucial dynamic
variables: HR and mean blood pressure (MBP), derived from SBP and diastolic blood pressure
(DBP) measurements. Following the works of [14, 15], we create one or more groups within a
9-hour time window for each patient to predict vital signs for the subsequent 3 hours based on
the preceding 6 hours of data. Data preprocessing involves imputing missing values, filtering
outliers, and scaling using domain-specific knowledge. Clinically reasonable boundaries for
each critical vital sign were set using this specialized knowledge: HR ranged from 0 to 300 bpm,
MBP from 0 to 190 mmHg, and RR from 0 to 100 bpm [16].

2.2. Experiment Setup

The dataset is divided into training, validation, and test sets in an 80:10:10 ratio. Within these
intervals, the initial 6 hours consist of 72 time steps, while the subsequent 3 hours encompass
36 time points. The forecasting model integrates either HR alone or HR combined with RR as
covariates to forecast MBP or conversely. Training of the model occurs over the first 72 time
steps, followed by predictions for the remaining 36 time steps. Ultimately, model performance is
assessed through Mean Squared Error (MSE) and Dynamic Time Warping (DTW) evaluations.

2.3. Deep Learning Forecasting Model

Based on the forecasting performance of the N-HiTS and N-BEATS model [17, 18, 19], as well as
the idea proposed by Pantiskas et al. [20] we aim to address their inherent lack of interpretability
and understand why the model has different performances. To achieve this, we implemented
an attention mechanism that can be applied to the N-HiTS and N-BEATS architecture, which
may also be applied to other black-box deep learning models. The N-HiTS and N-BEATS model
consists of a series of stacks, each responsible for learning residual values from the preceding
stack.

Within each stack are blocks comprising several fully connected layers, which generate
backward (𝜃𝑏𝑙 ) and forward (𝜃𝑓𝑙 ) expansion coefficients according to Equation 1 , where ℎ𝑙,4
represents the output of the fourth fully connected layer in the basic block, and 𝐿𝑖𝑛𝑒𝑎𝑟 denotes

Figure 1: Structure of our implementation. Adding the attention layer at the top of stacks, getting the
results from the output.



a linear projection layer [17]:

𝜃𝑏𝑙 = Linear𝑏𝑙 (ℎ𝑙,4), 𝜃𝑓𝑙 = Linear𝑓𝑙 (ℎ𝑙,4), (1)

Additionally, each block includes backward (𝑔𝑏𝑙 ) and forward (𝑔𝑓𝑙 ) basis layers that produce
backcast and forecast outputs as per Equation 2, where ̂︀𝑦𝑙 and ̂︀𝑥𝑙 denote forecast and backcast
outputs, respectively:

̂︀𝑦𝑙 = dim(𝜃𝑓𝑙 )∑︁
𝑖=1

𝜃𝑓𝑙,𝑖v
𝑓
𝑙,𝑖, ̂︀𝑥𝑙 = dim(𝜃𝑏𝑙 )∑︁

𝑖=1

𝜃𝑏𝑙,𝑖v
𝑏
𝑙,𝑖. (2)

Here, 𝑣𝑓𝑙,𝑖 and 𝑣𝑏𝑙,𝑖 represent forecast and backcast basis vectors. Notably, for N-HiTS, it has a
max-pooling layer (Equation 3) before passing the values to the fully connected layer, which is
applied to enable multi-rate signal sampling for the 𝑙𝑡ℎ basic block [17]:

𝑦
(𝑝)
𝑡−𝐿:𝑡,𝑙 = MaxPool (𝑦𝑡−𝐿:𝑡,𝑙, 𝑘𝑙) , (3)

where 𝑘𝑙 is the kernel size of the MaxPool layer.
Subsequently, inspired by Pantiskas et al. [20] idea, we introduced an attention mechanism

to explore the relationship between learned information and original inputs after obtaining the
residuals from the final stack. The forecasted result is utilized to construct the Query (Q), while
the original input forms the basis for the Value (V) and Key (K) [20]. The resulting output is
computed as follows:

𝑂𝑁*𝐻 = 𝐷 · 𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√
𝐿

)𝑉 (4)

𝐾𝑁*1*𝐿 = 𝐼𝑁*1*𝐿 ·𝑊𝑁*𝐿*𝐿
𝐾 + 𝑏𝑁*1*𝐿

𝐾 (5)

𝑉 𝑁*1*𝐿 = 𝐼𝑁*1*𝐿 ·𝑊𝑁*𝐿*𝐿
𝑉 (6)

and 𝑁 is the number of input multi time seires, 𝐻 is the forecasting horizon length, and 𝐿
is the history input horizon. As shown in Figure 1, after the attention layer, a normalizer is
applied, and skip connections are employed to mitigate the vanishing gradient issue. Finally, a
fully connected layer is utilized to generate the forecasted results.

2.4. Interpretable Attention Map

To illustrate the attention map for a specific item, we computed [20]:

𝐴𝐻*𝐿*𝑁 = 𝐷𝐻*𝐿 · 𝑎𝑏𝑠(𝑊𝑁*𝐿*𝐿
𝑣 )𝑇 (7)

Here, 𝐴𝐻*𝐿*𝑁 denotes the attention map, where 𝐴𝐻*𝐿
𝑖 represents the 𝑖𝑡ℎ series in the

multivariate time series. Each row 𝑗 in𝐴𝐻*𝐿
𝑖 signifies the relationship between the 𝑗𝑡ℎ forecasted

data point and the historical input of length 𝐿.
This computation enables the visualization of how the model attends to different historical

inputs when forecasting specific data points across the multivariate time series.



Table 1
Performance of forecasting models on forecasting MBP and HR. Here, covariates (W C) for MBP are HR
& RR, and covariates for HR are MBP & RR. *The MSE values are scaled by 1𝑒−4 for better representation.
†The DTW values are scaled by 1𝑒−3 for better representation.

Models Cov. MBP (MSE*) MBP (DTW†) HR (MSE*) HR (DTW†)

Persistence [19] - 24.55 34.50 7.35 17.52
N-HiTS [19] W C 18.46 18.70 7.37 13.12
N-HiTS [19] W/o C 18.02 20.46 7.22 13.97

N-BEATS [19] W C 19.79 19.37 8.73 14.36
N-BEATS [19] W/o C 18.52 17.63 7.48 10.71

TFT [19] W C 18.89 25.93 7.71 16.12
TFT [19] W/o C 19.45 25.65 8.12 16.65

N-BEATS with Attention W C 21.86 21.07 8.04 14.32
N-BEATS with Attention W/o C 18.71 18.03 8.40 11.33
N-HiTS with Attention W C 18.78 20.44 7.24 13.32
N-HiTS with Attention W/o C 19.73 20.42 6.97 12.24

3. Results and Discussion

3.1. Forecasting Benchmarks

Here, table 1 shows the results using different deep learning time series forecasting models.
We compared N-HiTS [17], N-BEATS [18], Temporal Fusion Transformer (TFT) [21], which are
computed by Bhatti et al. [19] using MSE and DTW as the evaluation metrics.

The results indicate that the N-HiTS model, both with and without an attention mechanism,
consistently outperforms other models across MBP and HR predictions when considering MSE.
Similarly, the N-BEATS model also performs well both with and without attention mechanisms.

Furthermore, the TFT model demonstrates competitive performance, especially when con-
sidering MSE. But in the previous paper by Bhatti et al. [19], the forecasting result of TFT is
relatively smooth and doesn’t show fluctuations.

In conclusion, the N-HiTS model, when augmented with an attention mechanism, emerges
as a robust choice for forecasting MBP and HR, showcasing its efficacy in capturing complex
temporal patterns. However, further exploration and experimentation are warranted to optimize
model performance, particularly regarding temporal alignment and covariate incorporation.

3.2. Interpretability Analysis

In the heatmap provided (Fig 2a, Fig 2b), darker colors indicate higher attention weights at
specific time points, which correspondingly have a greater influence on prediction outcomes.
Conversely, lighter colors suggest a lesser impact. The "N-HiTS + Attention" in Fig 2a demon-
strates that areas after the 20𝑡ℎ time point exhibit darker shades compared to earlier sections.
Notably, significant changes or peaks at certain points (like the 35𝑡ℎ, 54𝑡ℎ, and 63𝑟𝑑 points)
increasingly darken, highlighting their crucial role in shaping the prediction. This pattern sug-
gests that N-HiTS places a stronger emphasis on data after the 20𝑡ℎ points, effectively capturing



(a) N-HiTS Attention distribution

(b) N-BEATS Attention distribution.

Figure 2: N-HiTS & N-BEATS with attention using covariates to forecast MBP after minmax filter.

both data fluctuations and overall trends. As a result, the predictions closely align with the
actual data and accurately reflect downward trends.

On the other hand, the predictions from N-BEATS do not closely follow the downward trend
of the actual data and display considerable fluctuation. This model’s attention map reveals that
N-BEATS in Fig 2b assigns larger weights to almost every rise and fall (such as at the 3𝑟𝑑, 10𝑡ℎ,
and 29𝑡ℎ points), but without considering if it’s worth to focus on the trend, which contributes
to less effective information capture. Moreover, it appears that N-BEATS prioritizes data from
the initial 1-2 hours more than N-BEATS, contributing to less stable prediction outcomes.

Both models indicate that the initial 1-3 hours are crucial for prediction, suggesting that
medical staff should focus on interventions during this period. Significant changes occurring
up to three hours prior also substantially impact the predictions.



Figure 3: N-HiTS forecasting results with attention using covariates after minmax filter

4. Conclusion

In this paper, we presented an interpretable time series forecasting algorithm that combines
black-box deep learning models (N-HiTS & NBEATS) with a general attention mechanism. This
approach allows us to observe how the deep learning algorithm assigns importance to inputs
while transparently generating each step of its output. Upon applying this advanced architecture
to the eICU-CRD dataset, our findings demonstrate that the attention mechanism can enhance
interpretability in deep learning time series forecasting models with minimal reduction or even
no change in accuracy. By visualizing attention distributions, clinicians can identify which
vital signs and historical data points are most influential in predicting sepsis. Furthermore, our
model-agnostic attention mechanism is applicable to various deep learning forecasting models.
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