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Abstract
Event-related potentials (ERPs) are specific transient fluctuations in the brain’s electrical field induced
by the presentation of visual or auditory stimuli. They are time-locked and can help analyse neural
activity in many applications. One of these, the P3b, elicited in the decision-making process, unlike
other ERPs, is not linked to the physical characteristics of a stimulus but rather to a person’s reaction to
it. P3b ERPs can be evoked when completing a task with the oddball paradigm and have only slightly
different waveforms when the target and non-target stimuli are presented. Identifying differences in
these waveforms can help investigate dysfunctions in sensory and cognitive processing, among other
applications. However, such identification is not straightforward because these differences are subtle
and neural data contains many artefacts. Recently, deep learning has been used in addition to traditional
methods to automatically learn the high-level features associated with target and non-target stimuli,
discarding artefacts and supporting their discrimination. Unfortunately, even if powerful in creating
discriminative models, they are regarded as black boxes because their inferential capacity is opaque
and obscured. This research builds on this gap and explores an application of Integrated Gradients, a
method developed within eXplainable Artificial Intelligence, to interpret a convolutional deep neural
network, trained with superlets, specific time-frequency super-resolution of single-channel EEG signals,
for discriminating target and non-target neural responses for an oddball task.

Keywords
Event-related potentials, Deep learning, Convolutional neural networks, Explainable Artificial Intelli-
gence, Integrated gradients, P3b, Oddball paradigm, time-frequency super-resolution, Superlets.

1. Introduction

Event-related potentials (ERP) are specifically shaped fluctuations in brain electromagnetic
activity that are time-locked to specific events, such as stimuli, responses, or decisions. They
are produced in different brain areas and have various shapes depending on the nature of these
events. They represent clusters of activation of neurons involved in the reaction to such events
[1]. These potentials are strong enough to be recorded non-invasively with electroencephalogra-
phy and can provide information about various cognitive processes [2], diagnostics of different
neural [3], psychological conditions [4]. ERPs evoked by events of different natures are referred
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to as components. In turn, components are defined by the perception source of an event or the
mental process connected with it and of different natures [5]. In terms of the type of processing
needed, ERP components have been found to appear in response to error detection and correc-
tion [6], pattern mismatching [7], and face expressions recognition [8]. Each component covers
the different variety of ERP responses caused by its specific type of event inside its component
[9]. The component chosen for investigation, one with great interest commonly researched in
neuroscience, is the P300 component, often referred to as P3b. This is often evoked by the odd-
ball task with two different groups of stimuli, in which a participant has to define whether the
stimulus belongs to the smaller target group or the larger non-target one. The less frequent the
target stimuli, the higher the difference between the peak amplitudes of the corresponding ERP,
and the easier it is to classify signals [2]. Regression analysis [10], polynomial models trained
with support vector machines [11] or boosting methods [12] were all adopted for classifying
ERP signals. More recently, deep learning [13] and specifically convolutional neural networks
were considered [14, 15]. However, the internal structure of the trained models with these
techniques is opaque and hidden from human perception [16]. This research explores how the
Integrated Gradient (IG) attribution method, developed within explainable Artificial Intelligence
(XAI) [17], can improve the interpretability of a convolutional neural network and improve
human trust towards AI-based solutions [18]. This network is trained with single-channel
superlets to classify signals associated with target and non-target and facilitate the extraction
of the ERP component. These are specific time-frequency super-resolution representations,
similar to scaleograms, that can be visually inspected [19]. The remainder of the manuscript
includes a presentation of relevant work in section 2, followed by a description in section 3 of
the design of an experiment and its methods. Eventually, section 4 presents a critical discussion
on the impact of IG for analysing the trained neural network in the context of P3b detection.

2. Related work

The P3b event-related potential is one of the most studied among the others ERPs [2] P3b scalp
distribution is defined as the amplitude change over the midline electrodes (Fz, Cz, Pz placed
according to the International 10/20 System), which typically increases in magnitude from the
frontal to parietal electrode sites [20]. This component has a sharp positive voltage spike that
occurs 300 ms after the stimulus is received, which causes such naming. P3b appears to be
evoked by the oddball stimuli detection tasks [21, 22]. Many methods are traditionally used
within neuroscience to improve the extraction of the P3b component. These include frequency
decomposition [23], discriminant score [10], independent component analysis [24]. Recently,
leveraging the success of machine learning in various application areas, deep learning methods
have been used in computational neuroscience for multiple tasks employing electroencephalo-
graphic data, including the detection of schizophrenia [25], or Parkinson’s in resting-state EEG
[26]. One problem with extracting P3b components is the similarity in neural responses to target
and non-target stimuli. For this reason, deep learning was used to improve such extraction
[14] because of its capacity to learn high-level features from complex EEG data. However,
even if it usually leads to developing robust and accurate classifiers in many applications, this
is not the case in ERP research [27]. To improve P3b detection, EEG segments are usually



transformed in the time-frequency domain, either leading to spectrograms [22] or scaleograms
[28] Subsequently, such representations are used with Convolutional Neural Networks to train
discriminative models [29, 28]. However, although these models’ performance is reasonable,
they are regarded as black boxes because it is difficult to interpret their inferential mechanisms
and understand the high-level features they have learned to discriminate the dependent classes.
In other words, the internal structure of these models is hidden from human perception [16]. The
field of explainable Artificial Intelligence (XAI) actively explores different methods for interpret-
ing black boxes [17]. Applying XAI methods to data-driven trained models for discriminating
target and non-target classes, as in the case of the P3b, can help understand what high-level
features contribute exactly to discriminating these classes, facilitating the understanding of the
nature underlying their differences [30]. One of the XAI methods that is simple and suitable for
such tasks is the Integrated Gradients [31]. It is used to visualise the influence of different input
parts on a neural network’s class mapping [32]. In detail, the method is based on computing the
model’s gradients on the path from the baseline input to the actual input and then accumulating
these gradients. This axiomatic attribution method is simple to implement and replicate because
it does not require almost any modification of the underlying network it aims to interpret [31].
Recently, this has been applied with EEG data for ERP research [33]. This trend inspired this
study, and a novel empirical experiment, as described in the next section, was designed to merge
deep learning, trained with superlets, unique time-frequency representations of EEG data, and
Integrated Gradients from XAI.

3. Experiment design and methods

An empirical study was designed to support the identification of the P3b ERP component by
employing deep learning with superlets and Integrated gradients, as depicted in Fig. 1).

Figure 1: The design of the research experiment

Phase A: Data selection - The ERP-core project was selected, a freely available set of resources
on different ERP paradigms, experiments, electroencephalographic data and functions, such
as pre-processing steps, to support methods applicability and results reproducibility [34]. The
P3b (Active Visual Oddball Paradigm) was selected, containing data from 40 participants. The
experiment consists of 5 trials, with a short break between them. For each trial, one of the 5
letters (A, B, C, D, E) is randomly chosen as a target letter; the rest are non-targets (standards).



Then, a single letter is shown 40 times for each trial, chosen randomly from a pool. Eight letters
are the chosen targets, and the remaining 32 are randomly selected from the non-target. The
letter is shown for 0.2 seconds. Subsequently, a black screen appears for 1200-1400 ms, with a
white dot in the centre. When the letter is shown, a participant must recognise whether it is the
target and press the up arrow on the keyboard or the down arrow otherwise. EEG data was
recorded during the entire experiment along with a timestamp for each shown letter, and what
letter was the target and which one was shown [34].

Phase B: pre-processing - Makoto’s preprocessing pipeline is a widely used protocol in ERP
studies to clear the noise, remove artefacts, and extract the signal. Inspired by this, EEG
signals were preprocessed by shifting the epochs to 28 ms to compensate for the screen latency,
applying a band-pass filter (0.01-45 Hz) and performing Independent Component Analysis (ICA)
to remove artefacts. Only data from the Pz channel is chosen because the P3b signal at this
location is the strongest [34]. The ERP-Core team excluded data from 6 out of 40 participants
because it was considered too noisy due to too strong artefacts. The EEG data of the remaining
34 participants was preserved, split into intervals around stimuli presentation, precisely 200
milliseconds before and 800 milliseconds after it.

Phase C: Time-frequency super-resolution - State-of-the-art deep learning approaches have
employed spectrograms or scaleograms for time-frequency resolution of single-channel EEG
signals as training instances [29, 28]. However, due to the Heisenberg-Gabor uncertainty prin-
ciple, finite oscillation transients are difficult to localise simultaneously in time and frequency.
Classical estimators, including the short-time Fourier or the continuous-wavelet transforms,
optimise temporal or frequency resolution or find a suboptimal tradeoff. Plausibly and conse-
quently, this is why deep learning-based models trained with single-channel EEG time-frequency
representations exhibited a sub-optimal performance [14]. To counteract this limitation, this
study employed superlets [19]. A superlet (SL) is a finite set of 𝑜 (order) wavelets spanning a
range of 𝑐 different multiple bandwidths (cycles) at the same central frequency 𝑓 . These are
combined geometrically to maintain the good temporal resolution of single wavelets and gain
frequency resolution in upper bands. The parameters for the superlets transformation were
chosen: sampling frequency of 1024 Hz, band-pass filter within 0.01 to 30 Hz, the base number
of cycles parameter is 5, and the order spanned across the frequencies of interest is 8. As in the
case of scaleograms, a superlet can be shaped and visualised as a matrix.

Phase D: Model training - All the intervals around each stimulus (-200ms, +800ms) at the Pz
channel, with 1024 hertz, are converted to superlets. These superlets are normalised from 0 to 1
and labelled with [1, 0] for the target stimuli and [0, 1] for non-target stimuli. Subsequently,
these instances are separated into training, validation, and test sets with a 65/15/20% ratio (1768,
408, and 544 instances). Due to the unbalanced nature of the data, since non-target instances
are significantly higher than target instances, undersampling was performed randomly to the
majority class (non-target) to balance the training material evenly for each participant. The
classifier devised is a deep convolutional neural network with five hidden convolutional layers,
a Relu activation function, a 0.1 dropout rate, 1024 filters in the first four layers, and 512 in the
fifth. The kernel sizes are 3, 5, 7, 11 and 13. The flattening layer produces vectors. One dense
hidden layer has 512 hidden units, Relu activation and the Dense output layer has two output
units with the softmax activation function. The model is trained with the Adam Optimiser.
The loss function used is categorical cross-entropy. Early stopping with a patience of 10 and a



minimal delta of 1e-4 is applied to avoid overfitting.
Phase E: Model evaluation - The model is evaluated using accuracy, precision, recall, the F1

score, and the ROC Area Under the curve (AUC).
Phase F: Model Interpretability - This research uses integrated gradients to explain how the

trained model chooses the class during classification. The one-hot version of the classification
method is chosen to have separate firing neurons for different classes. For the target (TRUE) and
non-target classes (FALSE), integrated gradients can be computed and demonstrated separately
for each class. Finding integrated gradients is based on creating a random baseline for the image
and then computing model gradients on the path concerning the actual data superlets. These
were grouped by true positives (TP: actual targets), true negatives (TN: actual non-targets), false
positives (FP: non-targets recognised as targets), and false negatives (FN: targets recognised as
non-targets) to facilitate interpretation and understanding of why the model learnt the mapping.

4. Results and Discussion

The trained model exhibited 0.6342 accuracy, 0.6346 precision, 0.6324 recall and ROC-AUC 0.659.
In detail, the TP rate is 0.634, the TN is 0.633, the FP is 0.365, and the FN is 0.366 While these
metrics might appear low, building an automatic binary classifier for discriminating targets from
non-target brain responses is extremely difficult, given their subtleties. Anyway, such results
are higher when compared to a similar work [35], thus demonstrating an improvement. A visual
analysis of the averaged time series, as depicted in figure 2, confirms that the event-related
potentials P3b were higher for true-positive (TP, blue) than the other cases.

Figure 2: Averaged signals in different groups - the baseline noise is very high in misclassified ones).

Given this, it is intuitive to expect that the integrated gradients associated with the TPs
exhibit some characteristics different from those associated with the other cases (FP, FN, TN).
Figure 3 marks in red the areas where the integrated gradients of the trained model are the
highest overlayed over the average of the superlets from the respective group to mark the most
important parts. Noticeably, on the one hand, the true positives (TPs) have a clear, well-defined
region of integrated gradients between 0.15 and 0.45 ms in the delta band (area 1), exactly where
neural activity associated with the P3b erp is expected. As expected, it also highlights a time
transition of activity from this region of integrated gradients to another (read 2) in the theta
band. On the other hand, the average superlet associated with false positives (FP) deviates from



this configuration by showing an additional region of activity in the beta band (area 3). This
new area contains integrated gradients that are not present for TP, but they are weaker than
those in areas 2 an 3, suggesting this might be EEG noise. Removing this area, probably the
0.365% of false positives can turn into true positives. Regarding true negatives (TNs), evident
activity can be seen in the low part of the delta band across the timeline (area 4), suggesting that,
successfully, no actual neural peak of activity can be spotted post-stimulus. Unfortunately, the
activity of the false negatives (FNs) is similar to this, and no significant differences in integrated
gradients can be spotted, hence their incorrect classification. However, examining Figure 2,
the average of P3b ERPs for FN (in red) is higher than that of the TN (orange), suggesting why
the model made a wrong classification. Again, perhaps by better pre-processing the raw EEG
signals, noise can be mitigated, and a higher accuracy can be achieved. Overall, this research
study demonstrated a possible application of integrated gradients on the superlets associated
with brain responses post-stimulus to help spot the characteristics of P3b event-related potential
and support visual analysis.

Figure 3: Integrated gradients associated with the true-positive, false-positive, false-negative, and true-
negative on the training data (target class=positive, non-target=negative) overlapped on the averages of
the superlets in their respective groups.
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