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Abstract 
Systemic lupus erythematosus (SLE) presents as an autoimmune condition influenced by both genetic 
and environmental factors, showcasing a diverse range of clinical symptoms and often, unpredictable 
disease flares. Despite advancements in classification methods, the timely diagnosis of SLE remains a 
challenge for many patients. This research introduces an interpretable disease classification model 
that combines the robust predictive capabilities of CatBoost with the transparent interpretation tools 
offered by SHapley Additive exPlanations (SHAP). Trained on a local cohort comprising 219 Omani 
patients diagnosed with SLE and individuals with other control diseases, the CatBoost model 
demonstrates high performance. Moreover, utilizing the SHAP library enables the generation of 
individualized explanations for the model's decisions, highlighting key clinical features such as 
alopecia, renal disorders, cutaneous lupus, and hemolytic anemia, alongside patient age, which 
significantly contribute to the prediction process. The model achieved notable metrics, including an 
AUC score of 0.945 and an F1-score of 0.92, underscoring its efficacy in SLE prediction 
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1. Introduction 
Systemic lupus erythematosus (SLE) stands as a chronic autoimmune disease affecting 
multiple systems of the body. Its clinical presentation varies across different races, genders, 
and age groups, rendering diagnosis challenging [1]. Despite significant strides in SLE 
treatment strategies, diagnostic and therapeutic hurdles persist [2]. Early diagnosis remains 
particularly problematic, given the gradual onset of SLE symptoms over years, alongside the 
potential for other conditions to mimic its manifestations, including infectious and 
hematologic diseases [3]. Data analysis underscores the importance of diagnosing SLE 
within a narrow window, as delayed diagnosis correlates with increased flare rates, 
hospitalizations, and the risk of progressive organ damage, ultimately elevating mortality 
rates [4]. In Oman, where the mortality rate stands at 5% and the mean prevalence at 38 per 
100,000 individuals, limited research exists on the specific clinical and serologic 
characteristics of the Omani population. [5], [6]. This study contributes significantly on 
three fronts: firstly, by identifying unique clinical manifestation patterns specific to the 
Omani population, filling a notable gap in the literature. Secondly, by introducing the 
CatBoost algorithm, renowned for its rapid computation, strong generalization, and high 
predictive accuracy, alongside leveraging advanced machine learning techniques such as the 
SHAP algorithm, RFECV-based feature selection, and GridSearchCV-based hyperparameter 
optimization. Thirdly, by integrating the model's predictions with interpretability 

 
Late-breaking work, Demos and Doctoral Consortium, colocated with The 2nd World Conference on eXplainable Artificial 
Intelligence: July 17–19, 2024, Valletta, Malta 
*Correspondint author 

 zidoum@squ.edu.com (H. Zidoum), alansari@squ.edu.om (A. Al-Ansari), sksawafi@squ.edu.om (S. Al-Sawafi) 

 https://orcid.org/0000-0003-0365-650X (H. Zidoum) 

 
© 2024 Copyright for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:zidoum@squ.edu.com
mailto:alansari@squ.edu.om
mailto:sksawafi@squ.edu.om
https://orcid.org/0000-0003-0365-650X?lang=en


algorithms, this research promotes self-explanatory models that empower physicians to 
cross-reference model outputs with their expertise, enhancing diagnostic accuracy and 
fostering the adoption of machine learning in healthcare. 

 

2. Method 

 
DATASET  
 
The dataset utilized in this study originates from the Rheumatology clinic at Sultan Qaboos 
University Hospital. Approval for the study was granted by the Ethics Committee of the College 
of Medicine and Health Science at Sultan Qaboos University (MERC # 1418 and 1650). Data 
extraction involved both structured and unstructured sources, including the hospital's 
Electronic Medical Record (EMR) system named TrakCare, which stores patients' demographic 
information, medical states, and histories. While demographic data were directly obtained from 
TrakCare, clinical data were unstructured and retrieved from patients' medical histories in the 
form of clinical notes from each hospital visit. The dataset comprised records of Omani patients 
from 2006 to 2019 who met the entry criteria outlined by EULAR/ACR, which necessitate a 
positive Antinuclear Antibodies test (ANA test) followed by the application of additional 
classification criteria. Non-Omani patients and those with insufficient data were excluded. The 
dataset encompassed 214 Omani patient records, with 138 diagnosed with SLE, confirmed by 
rheumatologist assessment on a case-by-case basis, while the remaining 81 patients had other 
control diseases. Analysis revealed a female predominance of 92% and a mean age of 38. The Al 
Batinah Governorate accounted for the highest proportion of patients (37.9%), followed by 
Muscat (23.7%).  
 
FEATURE SELECTION 
 
Initial data comprised 20 clinical and demographic variables (referred to as "features" in 
machine learning), with no missing values detected. Categorical features were encoded using 
Ordinal encoding, and Min-Max normalization was applied due to variations in feature ranges. 
To enhance signal-to-noise ratio and select the most informative features, recursive feature 
elimination (RFE) based on Random Forest (RF) with ten-fold cross-validation (CV) was 
employed. RFE iteratively builds models, identifies the best feature, selects it, and repeats the 
process until all features are traversed. 
 
Table 1 
Characteristics of patients. 

Feature Category Occurrence 
(No. %, 
N=219) 

Fever  
Acute cutaneous lupus (ACL) 
Chronic cutaneous lupus 
Oral ulcers 
Alopecia 
Joint Involvement 
Serositis 
Renal Manifestation 
Lupus Nephritis class 
 
 
 
 

Yes/No 
Yes/No 
Yes/No 
Yes/No 
Yes/No 
Yes/No 
Yes/No 
Yes/No 
None 
Class II 
Class III 
Class IV 
Class V 

48 (21.9%) 
70 (31.9%) 
5 (2.28%) 
29 (13.2%) 
61 (27.8%) 
202 (92.2%) 
9 (4%) 
62 (28.3%) 
112 (51 %) 
1 (0.4%)  
4 (1.8%) 
16 (7.3%) 
5 (2 %) 



Proteinuria 
Vasculitis 
Neurologic Disorder 
 
 
Hemolytic Anemia 
Leukopenia 
Thrombocytopenia 

Yes/ No 
Yes/ No 
None 
Psychosis  
Seizure 
Yes/ No 
Yes/ No 
Yes/ No 

51 (23%) 
12 (5.4%) 
121 (55.2 
%) 
5 (2.2 %) 
12 (5.4%) 
53 (24%) 
19 (8.6%) 
11 (5%) 

 
We have developed four ML models to predict the presence or absence of SLE (Figure 1). In 
addition to three common ML models that are multi-layer perceptron (MLP), support vector 
machine (SVM), and Random Forest, we introduced CatBoost [11] 
 

 
Figure 1: Flowchart of the development and evaluation process 

 
 
CatBoost is an ensemble learning algorithm, similar to gradient boosting, but with some unique 
features. Its implementation of ordered boosting helps it handle categorical variables more 
effectively, which is particularly useful in real-world datasets where categorical features are 
common. The Oblivious Tree structure and random permutations are additional techniques that 
contribute to its robustness and efficiency especially when dealing with categorical data. 
Ordered boosting calculates leaf values during the selection of the tree structure to reduce 
overfitting. Oblivious Tree structure is used to construct CatBoosts’ model ensembles which 
means that all the leaves are in the same level and the same splitting criterion is applied to all 
intermediate nodes within the same level of tree. The use of Oblivious Tree structure greatly 
improves the performance speed and efficiency. Random permutations of the training examples 
are also applied to fight the prediction shift caused by a special kind of target leakage present in 
all existing implementations of gradient boosting algorithms [12].  
To train and validate the performance of our model, the dataset was divided into two parts in a 
70:30 ratio (i.e. 70% of the dataset is used for training and 30% for testing). Additionally, a 
subset of the training data set was used for cross-validation to protect the models from 
overfitting and optimize the model's parameters. 
Due to the imbalanced nature of the data set, several parameters are used to evaluate the 
classification performance such as Recall, Specificity, F1-score, and AUC (Area Under ROC 
Curve). The problem with using imbalanced data set for classification is that the user is biased 
to the performance on cases that are poorly represented in the data samples [13]. Standard 
evaluation criteria tend to focus the evaluation of the models on the most frequent cases, thus if 
applied, could lead to sub-optimal classification models. Each of the models undergoes a hyper-
parameter optimization through grid search with a five-fold cross-validation. Finally, to avoid 
reporting biased results and limit overfitting, we calculated the average of 10 repetitions for 
each model. 
 
 
MODEL INTERPRETATION  



 
In clinical applications, the ability to justify the prediction is equally as important as the 

prediction score itself. This is because of the high sensitivity of the medical environment where 
misclassification could lead to devastating consequences. It is therefore challenging to trust 
complex ML models for a number of reasons. First, the models are often designed and 
rigorously trained on specific diseases in a narrow environment. Second, it depends on the 
user’s technical knowledge of statistics and ML. Third, how the data is labeled affects the results 
produced by the model [14]. For these reasons and more, Interpretable ML has thus emerged as 
an area of research that aims to design transparent and explainable models through developing 
means to transform a black-box ML model into a white-box ML model. By providing transparent 
prediction, domain experts can accurately interpret the results meaningfully. In 2017, Lundberg 
and Lee proposed a unified framework to interpret ML predictions. SHapley Additive 
exPlanations (SHAP) is derived from ‘Shapley values’, a concept that is commonly used within 
the field of cooperative game theory to determine the payout for each player within a 
cooperative coalition [14]. Casting this concept onto prediction models, the payout is mapped as 
the final prediction while players are mapped as the model’s features. The contribution of a 
feature to the final prediction can be determined by looking at the magnitude and sign of the 
Shapley value. Specifically, the importance of a feature relative to the payout (prediction) is 
represented by the magnitude of the related Shapley value. More importantly, this framework 
provides local and global interpretability simultaneously 

3. Results 

Applying the RFE feature selection algorithm resulted in 13 optimal features (Figure 2). In Table 
3, the features that were selected are indicated with a True value. Overall, three demographic 
features, as well as 10 clinical features, were selected 
 

 
Figure 2: Visualizing RFE’s optimal number of features with 10-fold CV 

 

Table 2 
Comparing feature sets obtained from different feature selection algorithms. 

Feature Name Selected by RFE 

AGE True 

Disease Duration True 

PROV True 

Fever True 

ACL True 

Oral_Ul True 

Alopecia True 

Serositis True 

Renal True 

Proteinuria True 



Neurologic True 

Hemolytic_Anemia True 

Leukopenia True 

Age onset False 

Thrombocytopenia False 

 

 
Comparing between the performance of the different classifiers (Table 4), CatBoost had the 

highest AUC score of 0.956 providing a slight edge in performance (Figure 3). This superiority in 
performance was also indicated in benchmarks against other recent classifiers (e.g. XGBoost 
and LightGBM) on a set of popular publicly available datasets [12]. In training phase, each set of 
decision trees is built consecutively with successive trees focusing on minimizing the loss 
compared to previous trees. 
 

 
Figure 3: ROC plots for the 4 classification models considered in this work using the features 

produced by the RFE algorithm 
 

Table 3 
Comparing between the different classifiers 

Model Precision Recall F1-score AUC 

SVM 
Random Forest 
CatBoost 
MLP 

0.85 
0.85 
0.90 
0.86 

0.83 
0.96 
0.95 
0.86 

0.85 
0.85 
0.90 
0.86 

0.91 
0.93 
0.956 
0.89 

 

Compared with the help of SHAP algorithm, we can break down each prediction individually. As a 

demonstration, we took two individuals from the testing set: a 40-year-old patient that was predicted 

to have the disease and a 56-year-old patient that was not. In table 5, the non-normalized features of 

the two patients are shown. 
 

 

Table 4 
Non-normalized values for test patients 1 and 2 
 

Feature Name 
Patient 1                
(positive for SLE) 

Patient 2 
(Negative for 
SLE) 

AGE 
Disease_Duration 
PROV 
Fever 
ACL 
Oral_Ul 
Alopecia 
Serositis 
Renal 

40 
21 
Dakhiliyah 
N 
N 
N 
N 
N 
Nephritis 

56 
13 
Muscat 
N 
N 
N 
N 
N 
N 



Proteinuria 
Neurologic 
Hemolytic_Anemia 
Leukopenia 
 

 

Y 
N 
N 
N 

 

N 
N 
N 
N 

 

The force plot attributes the positive prediction of patient 1 to renal disorders, and the patient’s age (Figure 

4.a). Since the values in Figure 4 are normalized we cross-reference them with table 4, we find that the patient is 

40 which falls within the age group SLE is most active in. Additionally, the patient has been diagnosed with 

Lupus Nephritis a disease that is commonly caused by an auto-immune disorder. In contrast, patient 2 (Figure 

4.b) displays a lack of any autoimmune manifestation, long disease duration, and the age of 56 makes him 

outside the age group that SLE is most active in. 

 

 

 
Figure 4: Force plot of CatBoost model prediction for patient 1 (values are normalized).  

 
Looking at the waterfall plot in Figure (5.a), we find the feature with highest SHAP value for 
patient 1 is renal disorders by a large margin. Due to its high SHAP value, the presence of renal 
disorder in patient 1 had the greatest contribution to the positive prediction of SLE. This was 
followed by the age and province features. Overall, there were four blue features pushing the 
prediction probability lower toward class 0. The non-existence of alopecia, hemolytic anemia, 
and ACL in patient 1 profile in table 4 resulted in negative SHAP values. The remaining features 
had minimal impact on the prediction probability evident by their low SHAP values. The 
waterfall plot for patient 2 (Figure 5.b) indicates that age is the largest contribution toward 
class 0, followed by the absence of any renal disorders. 
 

 
Figure 5: Waterfall plot of CatBoost model for patient 1. The waterfall plot displays SHAP 

values representing feature contribution toward a positive prediction.  
 
Ranking Features. In Figure 6, the older the patient is the less likely it is to have SLE, which is 
evident by the red dots on the negative scale of SHAP values. The same can be said for disease 



duration, we find that long disease durations without autoimmune manifestation correlated 
with the absence of SLE. Experts point out, however, that SLE intensity increases and decreases 
at intervals differently from patient to patient, thus in rare occasions clinical symptoms might 
not manifest until late phases of the disease [15]. Our result indicates that the higher the 
patient’s age and disease duration the less likely that SLE is the cause. Renal disorders are 
ranked the highest in contribution followed by alopecia, Acute Cutaneous Lupus (ACL), and 
hemolytic anemia. The lowest contributing features are serositis, proteinuria, and leukopenia. 

 

1.  
Figure 6: Summery plot of CatBoost model. The summary plot combines feature importance 

with feature effects.  

4. Conclusions  

In this study, the first SLE prediction model has been developed with our proposed self-
explainable framework that aims at establishing trust in ML prediction. SHAP interpretation 
tool was implemented to explain and justify individual predictions and thereby eliminate any 
risk of misclassification. Additionally, a minimum set of 13 early predictors achieved the highest 
scores of 0.95 AUC and 0.92 F1-score metrics. The dataset features comprise demographic and 
clinical symptoms available to physicians at early stages.  

By interpreting Catboost predictions, we found that four clinical features had the highest 
influence on the prediction in addition to the patient’s age. The features were alopecia, renal 
disorders, cutaneous lupus, and hemolytic anemia. All are considered indicators of lupus 
activity at varying rates, combined with the patient’s age and age-onset the model was able to 
establish a profile of the disease relative to the Omani population.  
With such scores, our model can predict with reasonable certainty the presence or absence of 
SLE. This can alert physicians to investigate further with the help of immunological tests such as 
antinuclear antibodies test and Anti-dsDNA test. Overall, our framework and its application can 
aid in providing a more practical introduction of machine learning and interpretation tools to 
medical diagnosis, thereby increasing the efficiency of medical testing and subsequently 
maximizing chances of disease mitigation and management. This is expected to reduce the cost, 
of medical care as well as decrease the cases of unmitigated severe cases of SLE. 
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