
Second Glance: A Novel Explainable AI to Understand
Feature Interactions in Neural Networks using
Higher-Order Partial Derivatives
Zohaib Shahid1,*, Yogachandran Rahulamathavan,1 and Safak Dogan1

1Institute for Digital Technologies, Loughborough University London, United Kingdom

Abstract
Neural networks often operate as "black boxes," making understanding how they arrive at their decisions
difficult. To build trust and improve neural networks, it is essential to identify the most salient inputs
and how they interact within the network. We present "Second Glance," a novel approach for performing
second-order sensitivity analysis on neural networks with Rectified Linear Unit (ReLU) activations
to address this. The first-order sensitivity analysis quantifies the individual influence of the input
features on the model output. However, it fails to capture how features interact, potentially leading to
misleading conclusions. Second-order sensitivity analysis, using second-order partial derivatives, can
reveal these interactions, providing a more comprehensive understanding of the model’s inner workings.
Unfortunately, ReLU activation, a popular choice because of its efficiency, introduces zero second-order
partial derivatives. To overcome this limitation, Second Glance employs a two-stage strategy. First, it
trains a primary neural network with ReLU activations. Then, it trains a separate "surrogate" model using
the concerned features as the input and the first-order partial derivatives obtained from the primary
model as its output. In this paper, we show that the subtle second-order sensitivity analysis of the original
neural network with ReLU activation function can be effectively obtained by analyzing the first-order
partial derivatives of the surrogate model. We further validate the proposed method by experimenting
with popular UCI bank marketing and UCI adult income datasets.
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1. Introduction

In the context of explainable AI (XAI), sensitivity analysis is the quantification and evaluation
of the sensitivity of the output of a machine learning model to changes in its input features.
Concerning sensitivity analysis, the focus of this research is on neural networks. Sensitivity
analysis in neural networks involves assessing the impact of input variations on the neural
network’s predictions. First-order sensitivity analysis is the technique whereby the impact of a
single input on the output is measured. One can also think of it as measuring a linear change
in the output concerning an input. Second-order sensitivity analysis is done to understand
how different inputs affect or interact. This type of analysis is concerned with measuring the
nonlinear changes in an output concerning a number of inputs.
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It is understood that a deeper understanding of the behaviour of the neural networks can be
achieved by quantifying how features interact to affect predictions [1]. There are many ways
to measure the interaction of features like Shap-iq (Computation of Shapley interactions for
arbitrary cardinal interaction indices by using a sampling-based approximator) [2] and analyzing
the directed graph made by bivariate methods [3]. This research focuses on feature interactions
in neural networks based on partial derivatives like the usage of rule ensembles [4], analyzing
interactions in non-linear models [5] and Integrated Hessians [6]. Concerning a function and a
point, the Interaction Effect between a concerned set of features denotes the partial derivative of
the function output with respect to the features. The partial derivatives show the small changes
in the function caused by the change in each chosen feature. Our research is around pair-wise
interactions or second-order partial derivatives, which constitute the elements of the Hessian
matrix.

Neural networks, based on ReLU activation functions, have valuable properties like mitigating
the vanishing gradient problem [7]. Concerning feature interactions, the issue is that these ReLU
networks are piece-wise linear. Therefore, they generate a zero Hessian almost everywhere,
and studying the feature interactions in such networks is impossible. The proposed approach,
Second Glance, as shown in Figure 1, mitigates this issue by taking the first-order partial
derivatives of the concerned ReLU-based neural network (primary model M1) and training a
surrogate model (M2). Table 1 explains what pair-wise feature interactions mean according to
their sign (direction) using one input as an example and vice versa.

Table 1
Explaining the meaning of feature interactions (1st order and 2nd order partial derivatives) in neural
networks

𝜕𝑦
𝜕𝑥1

𝜕
𝜕𝑥1

( 𝜕𝑦
𝜕𝑥2

) Explanation
+𝑣𝑒 +𝑣𝑒 As the 1st order partial derivative of 𝑥1 is positive, this means that when 𝑥1

increases, the output of the neural network increases. As the 2nd order partial
derivative is also positive, the rate at which 𝑥2 changes, increases. In short, the

impact of 𝑥2 on the output is amplified by 𝑥1.
+𝑣𝑒 −𝑣𝑒 The output will increase, as the 1st order partial derivative is positive. As the

2nd order partial derivative is negative, the rate of change of 𝑥2 decreases with
the increase in 𝑥1. In short, the influence of 𝑥2 on the output is dampened by

𝑥1.
−𝑣𝑒 +𝑣𝑒 The output will decrease due to the negative value of the 1st order partial

derivative of 𝑥1 (or when 𝑥1 is increased). As the rate of change of 𝑥2 due to
the rate of change of 𝑥1 is positive, this means that the rate of change of 𝑥2

increases. In summary, the absence of 𝑥1 magnifies the influence of 𝑥2 on the
output.

−𝑣𝑒 −𝑣𝑒 The negative sign of the 1st order partial derivative of 𝑥1 indicates an inversely
proportional relationship between itself and the output. The 2nd order partial
derivative being negative shows that the effect of 𝑥2 on the output decreases

as 𝑥1 becomes more negative.



Section 2 gives a brief literature review of gradient-based sensitivity analysis. Section 3
explains the functioning of Second Glance. Section 4 will show some experiments on 2 popular
UCI datasets using Second Glance and how it can lead to another way of estimating feature
interactions where zero Hessians are an issue. Overall, Second Glance aims to provide a more
granular analysis of feature interactions.

2. Literature Review

The gradient-based sensitivity analysis methods will be focused on as they are more relevant to
this research. Given a sample, the gradient-based methods use the natural interpretation of the
gradient as the infinitesimally local importance. A well-known approach is the saliency map
[8], which is simply the gradient of model output with respect to the input. SmoothGrad [9]
mitigated the noise in saliency maps by averaging them and came up with sample complexity
guarantees. Research related to Grad-CAM [10] is gradient-based with the main distinction
that the importance is calculated over hidden (internal) layers. The calculation of the Jacobian
matrix or the matrix of first-order partial derivatives has been thoroughly discussed by [11].

Higher-order interactions are estimated using gradient-based approaches like Gradient-NID
[12], which estimates the corresponding Hessian element squared as the strength of feature
interaction. By extending Integrated Gradients to utilize a path-integrated Hessian, [6] came up
with Integrated Hessian. SmoothHess by [1] convolves the Hessian Matrix of a ReLU network
with a Gaussian to mitigate the issue of zero Hessians.

Though these methods handle ReLU networks in their way, like the replacement of ReLU
function with SoftPlus post-hoc before applying Integrated Hessians [6], similar usage of
SoftPlus activation by [12] and the usage of Stein’s Lemma by [1], there are not many methods
that use surrogate models for second-order sensitivity analysis, specifically. [13] uses AI-
surrogate models to estimate the relationships between input features and ventricular parameters
for medical applications; it does not focus specifically on second-order sensitivity analysis. The
commendable work by [14] uses surrogate models for point cloud deep neural networks based
on LIME (Local Interpretable Model-Agnostic Explanations). The use of generalized additive
models (surrogate models) with pairwise interactions (GA2M) has been explored to understand
the trade-off between accuracy and interpretability in machine learning techniques applied to
clinical data [15] but it does not focus on using partial derivatives. In contrast, Second Glance
targets global explainability by generating second-order partial derivatives of the primary model
using the surrogate model.

3. Proposed Algorithm

In the two-stage process of Second Glance (Figure 1), the primary neural network or model
(M1) is trained and its first-order partial derivatives are obtained. These are put together with
the inputs as a dataset to train the surrogate model or neural network (M2). The surrogate model
(M2) is the main contribution, where the inputs are the features of the primary model, and the
outputs are the first-order partial derivatives from the primary model. The second-order partial



derivatives or the Hessian of the primary model can be obtained by calculating the first-order
partial derivatives of the surrogate model.

Figure 1: High-level view of the proposed Second Glance algorithm

If 𝑀1 takes an input, 𝑥 and produces an output, 𝑦, its first-order partial derivative will be
𝑀 ′

1(𝑥), as shown in (1). The first-order partial derivative of (𝑀1) will be used as the output for
the surrogate model, 𝑀2, which takes an input of 𝑥. As shown in (2), the first-order partial
derivative of 𝑀2 will indeed be equal to the second-order partial derivative of 𝑀1 (represented
by 𝜕2𝑦

𝜕𝑥2 ). In other words, this happened because the first-order partial derivatives (from M1) are
backpropagated to the inputs, in M2 to get the second-order partial derivatives.

𝑦 = 𝑀1(𝑥) ;
𝜕𝑦

𝜕𝑥
= 𝑀 ′

1(𝑥) (1) 𝜕𝑦

𝜕𝑥
= 𝑀2(𝑥) ;

𝜕2𝑦

𝜕𝑥2
= 𝑀 ′

2(𝑥) (2)

Following this approach, we can obtain higher-order partial derivatives i.e., to obtain 3rd-order
partial derivatives, we can train a third model (M3) using 𝑥 as inputs but using the first-order
partial derivatives of the 𝑀2 as outputs. The first-order partial derivatives of M3 would be the
3rd order partial derivatives of M1. The 3rd order of partial derivatives identifies how a change
in two features impacts the change in the third feature on the prediction. In this preliminary
study, we focus only on the 2nd order sensitivity analysis.

4. Experiments with Second Glance

To test Second Glance, the UCI bank marketing [16] and UCI adult income [17] datasets were
used, which are for classification problems. They were selected as they are well-known bench-



mark tabular datasets used for testing neural networks. The most influential 5 features from each
dataset were selected using SHAP to make it easy to understand and present the functioning of
Second Glance. However, the proposed approach can support an arbitrary number of features.
The UCI bank marketing dataset contains data for marketing campaigns based on phone calls,
and the target was to assess whether a client would subscribe to a term deposit (yes or 𝑦 = 1)
or not (no or 𝑦 = 0). This dataset has a total of 41,188 instances and 19 multivariate features.
The UCI adult income dataset, which aims to predict whether a person will make over $50K per
year or not, is a multivariate dataset with 30,162 instances (cleaned dataset) and 14 features.

For simplicity, we kept the same architecture for 𝑀1 for both of these datasets as follows: 5
inputs, 3 hidden layers with 4 neurons each (ReLU activation is used in the hidden nodes), and 1
output neuron (Sigmoid activation) to ensure uniformity. Binary crossentropy was used as the
loss. The hidden layers carry ReLU activation because the surrogate model (from Second Glance)
will be created to analyze and mitigate the effect of zero Hessians due to ReLU activations. The
selected 5 features and performance metrics of 𝑀1 and 𝑀2 are in Table 2.

It can be seen that the primary neural network trained on the UCI bank marketing gives
high values of accuracy, recall, and F1 score. The performance metrics of M1 for the UCI adult
income dataset are decent. The explainable AI model, made from any model, only gives accurate
explanations as long as the performance of the original model is high, so it is essential to ensure
that. As M2 had continuous values (first-order partial derivatives from M1) as the output, the
R-squared score was used as the performance metric.

Table 2
Table showing the performance metrics for both M1 and M2

Dataset Selected 5 features Accuracy of
M1

Recall
of M1

F1
score
of M1

R-
squared
score
of M2

UCI bank
marketing

dataset

emp.var.rate,
euribor3m,

cons.price.idx,
contact,
previous

88.9% 98% 0.94 0.914

UCI adult
income
dataset

age, workclass,
education_num,
marital_status,
hours_per_week

73.1% 77.5% 0.59 0.826

Table 3 shows some of the first-order partial derivatives obtained from the primary neural
network trained on the adult income dataset. As there were 5 inputs, the number of partial
derivatives per row is also 5. The range of the partial derivatives is between -1 and 1. As
discussed in Table 1, the positive values mean that the output of the model increased with the
change in the feature. Meanwhile, the negative values depict an inverse relationship between
the input and the output.

The surrogate models (M2) were trained for both datasets with different architectures. It is
emphasized that the surrogate model can have any architecture. The given architecture was



Table 3
Table showing some of the first-order partial derivatives of M1 for the UCI adult income dataset

age workclass education_num marital_status hours_per_week
0.939 -0.482 1.00 -1.00 0.998
1.00 -1.00 -0.476 -0.949 -0.300
0.195 -0.496 1.00 -1.00 0.387

picked to get the best possible performance. Each M2 had 5 input features and the relevant
first-order partial derivatives of M1 as the outputs (5 output neurons with 𝑡𝑎𝑛ℎ as the activation
function to place the continuous values within a suitable range). The number of instances of
input features (along with the choice of inputs) was the same as M1 for M2 in each case.

Concerning M2 for the bank marketing dataset, there were 3 hidden layers, with ReLU
activation used in the first 2 layers and sigmoid activation in the last hidden layer. Concerning
the adult income dataset, the surrogate model had 5 hidden layers. ReLU was used in the first
2 layers. The 3rd and 4th layers had GeLU (Gaussian error Linear Unit) activation. Sigmoid
was used in the last hidden layer. The loss used in both cases was Mean Squared Error. The R-
squared score for the trained surrogate (M2) models in Table 2 shows that the models performed
modestly. The first-order partial derivatives of all M2 models were obtained by using (2) and
accordingly, the first-order partial derivatives (or the Jacobian matrix) of M2 indeed represent
the Hessian matrices of 𝑀1 in each case.

Figure 2: Feature Interaction
Based on SHAP.

Figure 3: Feature Interaction
based on Second
Glance.

Figure 4: Matching Polarities.

SHAP interactions were calculated from XGBoost Classifiers trained for both datasets to
validate the Hessian matrices generated by Second Glance. XGBoost Classifiers were used
because the present version of the SHAP Python library can only calculate interactions for
XGBoost models [18]. Although SHAP interactions and Second Glance are very different
in implementation, feature interactions exist regardless of the model used, as long as the
relationship between the features influences the outcome [19]. In Figure 3, each value represents
the measure of interaction (second-order partial derivative) between the features. The black
squares represent highly negative values, while the white represent highly positive values. The
grey represent the rest of the values that lie between them. The negative and positive values
(polarity) play a significant role in interpreting the results. The SHAP interactions and the
Hessian matrices were calculated for all the instances of both datasets for a better understanding.



Upon comparing the polarities, it was found that for the bank marketing dataset, 45.4% of the
polarities were the same in the SHAP interactions and the Hessian matrices. This amount was
50.4% in the case of the adult income dataset. This validates the correctness of the proposed
approach. The reason is that if the proposed approach’s outputs are random then the probability
of matching 50% of the polarities between both the approaches would be around 1

212.5
≈ 0.01%.

For the selected features for a single datapoint of the bank marketing dataset, the Hessian
matrix (Figure 3) has been compared with the SHAP interactions (Figure 2). As shown in Figure
4, nearly 40% of the total feature pairs have similar polarities. SHAP interactions show the
absolute impact on the output due to the interactions, while Second Glance shows the increase
or decrease in the rate of change of an output with respect to the interaction between features (as
explained generally in Table 1). For example, in terms of the interaction of the emp.var.rate
with itself, the effect on the output is positive. The relevant SHAP interaction (Figure 2) shows
that the probability of a client subscribing to a term deposit increased by 2.06% while Figure 3
shows that this interaction amplifies the influence of emp.var.rate on the output. In terms of
the interaction between previous and euribor3m, both heatmaps carry a negative value near
zero. This confirms that there is no or less effect on the output of this interaction. The value
of −3.4367 corresponding to contact and euribor3m (Figure 3) means that the influence of
contact is lessened or dampened by euribor3m or vice versa. As the influence of one of the
features is being dampened, the corresponding SHAP interaction shows that there is indeed a
negative impact on the output, but not a lot (overall output not much affected). In short, the
probability of a subscription by a client decreased but not significantly.

5. Conclusions and Future Works

The proposed method, Second Glance, provides a unique post-hoc way to generate Hessians for
ReLU-based neural networks. It opens up another research direction where surrogate models
and more granularity can be considered while aiming to generate non-zero Hessians from ReLU-
based neural networks. We have done some preliminary experiments with the tabular UCI bank
marketing and UCI adult income datasets and interpreted what the result (Hessian), produced
by Second Glance, shows and validated the results with the SHAP feature interactions. Our
research aims to expand Second Glance’s capabilities to encompass image datasets. As a future
research direction, we will conduct a rigorous comparison against contemporary gradient-based
second-order sensitivity analysis algorithms, scrutinizing metrics such as the frequency of zeros
in the Hessian and symmetry while prioritizing enhancements in efficiency.
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