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Abstract
Protein pocket detection is an essential step in structure-based virtual screening methods for identifying
potential drug targets. To facilitate efficient molecular docking, an accurate determination of target
binding sites is indispensable. In this study, we present GENEOnet, an innovative machine learning
model based on Group Equivariant Non-Expansive Operators (GENEOs) for protein pocket detection.
Our proposed method sets itself apart from other artificial intelligence techniques in the domain due
to its reduced number of parameters, increased transparency, and integration of prior knowledge. The
experimental assessment validates GENEOnet’s efficacy with a limited training dataset, surpassing several
established state-of-the-art methods based on multiple critical performance indicators computed using
extensive public datasets of ligand-protein complexes. GENEOnet, the result of an ongoing collaborative
effort between Italian universities and the pharmaceutical company Dompé Farmaceutici S.p.A., is
accessible as a web service at https://geneonet.exscalate.eu to enable the scientific community to evaluate
the pre-trained model for pocket detection.
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1. Introduction

Molecular docking, a critical research area in both pharmaceuticals and academia, is a simulation
technique utilized to predict the binding mode of small molecules with respect to specific
target proteins based on their three-dimensional structures [1]. This method plays a crucial
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role in elucidating molecular interactions and has significant applications, particularly in
drug repurposing [2]. Repurposing existing and approved drugs involves identifying new
therapeutic uses and, bypassing the time-consuming and costly drug development process,
enables researchers to expedite the delivery of novel therapies to patients in an efficient and
affordable manner.

Blind docking involves the tentative to accommodate the ligand trying anywhere on the
protein surface. However, blind docking comes with challenges like false positives, where
ligands may score well but have no experimental binding affinity to the target due to limitations
in scoring functions.

To address these concerns, “informed” docking [3] is an alternative approach that restricts the
search only to promising areas of a protein’s surface, known as pockets. This method reduces
false positives and computational time needed for extensive virtual screening. Protein pocket
detection, which is the problem of identifying such pockets on a target protein, in recent years
has been addressed through machine learning and AI methods. However, explainability and
trustworthiness of these methods have been neglected.

In this paper, we present some recent findings relative to GENEOnet [4] a simple and thus
quite explainable machine learning method for protein pocket detection which is built using
the mathematical theory of Group Equivariant Non-Expansive Operators.

2. Methods

2.1. GENEOs

In this study, we further investigate GENEOnet a shallow network composed of Group Equiv-
ariant Non-Expansive Operator units, whose architecture is depicted in Figure 1a. For a com-
prehensive understanding of GENEOs, we refer the reader to [5, 6]. GENEOs possess good
mathematical properties that make them interesting for machine learning applications. Two
primary features of GENEOs are equivariance and non-expansivity.

Equivariance [7] refers to the method’s ability to behave coherently with respect to the action
of specific groups of geometrical transformations of the data. The simplest form of equivariance
is called invariance: for instance, a rotation-invariant method must assign the same label to
an image of an elephant facing upwards as it does to the same image rotated 90 degrees left
independently on the correctness of the label.

Non-expansivity means that the outputs of a GENEO should not be further apart than their
respective inputs with respect to an appropriate distance metric. This property can be read as a
form of theoretical stability, ensuring that small input perturbations result in minimal output
changes.

In this regard, adversarial attacks [8] aim to assess deep learning methods’ robustness against
perturbations, such as rotations and noise perturbations of the inputs, and many others. Regret-
tably, black box models have often been shown to be susceptible to these forms of deception,
which could hardly mislead human observers. Instead, by definition, GENEOs can be made
resilient to the two attacks mentioned above, making them an attractive option when seeking
robust and trustworthy results.



2.2. GENEOnet

GENEOnet, with a representative output displayed in Figure 2a, is broken down into six steps:

1. Data preprocessing: Given an input protein 𝑃 , GENEOnet first computes a voxelization of
the space enclosed within a bounding box surrounding the protein surface. Subsequently,
eight potential functions are computed on the resulting voxel grid, each one model-
ing essential aspects of the protein structure from geometrical, physical and chemical
viewpoints.

2. GENEO layer: A convolutional rigid motion equivariant operator (mostly based on
gaussian kernels), depending on a shape parameter 𝜎, is applied to each potential function.
The resulting function is normalized between 0 and 1.

3. Convex combination: The eight GENEO outputs are combined via convex combination
with weights 𝛼. The resulting combination output, denoted as 𝜓, is normalized between
0 and 1 and encodes the probability that a voxel belongs to a pocket.

4. Thresholding: The final output is obtained by considering the connected components of
the set of voxels where the value of 𝜓 is above a threshold parameter 𝜃.

5. Evaluation: If the ground truth (i.e., the co-crystallized ligand) is accessible, the output
can be compared against it using a volumetric accuracy function.

6. Scoring: Each predicted pocket is assigned a score, computed as a weighted average of
𝜓 within the spatial region identified by a pocket, enabling ranking of pockets from the
most promising to the least promising.
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(a) GENEOnet architecture.

Unit Channel 𝜎 𝛼 𝜃

1 Distance 3.110 0.362 0.756
2 Gravitational 5.197 0.002
3 Electrostatic 2.561 0.054
4 Lipophilic 4.678 0.338
5 Hydrophilic 3.545 0.001
6 Polar 6.166 0.185
7 HB Acceptor 4.186 0.056
8 HB Donor 3.908 0.001

(b) Optimal parameters’ values.

Figure 1: Model architecture and optimal parameters.

2.3. Training, model selection and comparison

Our study employed PDBbind, a publicly accessible database of curated protein-ligand complexes
for binding affinity analysis, as the primary data source (available at http://pdbbind.org.cn/).
We retrieved 12330 complexes from the 2020 version for evaluation and analysis.

Steps 1 through 5 were considered during the training process, with backpropagation used to
optimize parameters to optimize accuracy (introduced in Step 5). GENEOnet was trained on

http://pdbbind.org.cn/


a set of 200 molecules extracted from the retrieved complexes. However, this method did not
address the challenge of identifying true pockets within high-ranked predictions (as per Step 6).

To tackle this issue, we generated multiple models by repeating the optimization process while
maintaining the same initial parameter settings but varying the training sets (each comprising
of 200 complexes). The final model was selected based on maximizing its ability to identify true
pockets at the highest rank using a Validation set consisting of nearly 3000 complexes.

Moreover, we compared GENEOnet’s performance against other state-of-the-art methods
(see [4] for results) in terms of scoring precision, volumetric matching, and shape similarity on a
Test set containing approximately 9000 complexes. In all experiments, GENEOnet outperformed
the others, which was unexpected due to its unique transparency, explainability, and robustness
features not shared by the other methods. We will further explore some of these properties in
the following section.

3. Analysis

In this section, our aim is to provide an additional in-depth analysis that underscores the
explainability and robustness characteristics of GENEOnet, many of which can be attributed to
the adoption of GENEOs as building blocks.

3.1. Prior knowledge

In the context of developing GENEO-based models, the selection and design of an appropriate
pool of operators can be considered as a crucial step of information engineering for the problem
at hand.

In the case of GENEOnet, experts in molecular docking identified lipophilicity, hydrophilicity,
hydrogen bond acceptor or donor atoms, etc. (see Table 1b) as essential features to identify
potential pockets. For example, regarding the lipophilicity potential, it was argued that a
favorable pocket candidate should exhibit an average high value of this quantity. Thus, a
GENEO from the family of convolutional operators with a Gaussian kernel was chosen to
process this potential. The tunable shape parameter in this case is linked to the shape of the
Gaussian. Analogous considerations were used to select the remaining seven GENEOs for the
other potentials.

3.2. Parameters investigation

GENEOnet, as described in Section 2.2, includes a total of seventeen trainable parameters: eight
shape coefficients for operator kernels, eight coefficients for the convex combination, and one
threshold coefficient.

We believe that Equivariance is a primary factor contributing to GENEOnet’s relatively
few trainable parameters versus other CNN-based methods like DeepSite[9] (844529) and
DeepPocket[10] (665122). Indeed the requirement for equivariance necessitated the adoption
of rotation-invariant kernels, limiting the kernel search to radial functions chosen to depend
on only one shape parameter. This leads to a greater understanding and interpretability of
GENEOnet’s kernel parameters as opposed to standard CNNs. Moreover, while not directly



responsible for reducing the number of parameters, the convex constraint promotes sparsity in
the combination coefficients, akin to Lasso regularisation. This may result in some biologically
relevant GENEOs having small coefficients due to their correlation with other operators.

Indeed, GENEOnet’s limited trainable parameters facilitate precise interpretation of each
of them: shape parameters influence operator kernels; convex combination coefficients serve
as feature importances for potentials (Table 1b); and the threshold coefficient determines
the significance of voxel activation. The convex combination coefficients warrant further
exploration. The lipophilic potential, essential for pockets due to their need to exhibit lipophilic
properties, receives the highest score. Surprisingly, potentials linked to hydrogen bonds, despite
being biologically significant, have very low scores. As already noticed, this may be a result of
the convex constraint: indeed, these potentials tend to be more concentrated in small regions
surrounding acceptor or donor atoms, and thus other potentials, such as the polar potential,
which might be strongly correlated with hydrogen bonds, are preferred. This could be the case
with the selected model where the polar operator has a convex combination weight which is
the third highest.

During the model selection process, parameter sensitivity analyses were performed as byprod-
ucts when generating 200 models from different training sets (Figure 2b shows boxplots of the
convex combination coefficients). The findings largely confirm the conclusions of the previous
paragraphs: on average, hydrogen bonds play a role but are outweighed by other operators,
such as lipophilicity, which exhibit a coefficients distribution with a box containing higher
values (𝛼4). If this analysis confirms the importance of potentials like those related to hydrogen
bonds, it also reveals that the Gravitational and Hydrophilic potentials are given very little
importance, a result that was somewhat anticipated given the nature of these potentials in
connection to pocket detection.

  

(a) The input protein is depicted in white, while
predicted pockets with colors. A zoom shows
the true pocket containing the ligand.

(b) Sensitivity analysis of convex combination
coefficients. Lines indicate median values,
whereas stars represent means. The order is
the same as in Table 1b.

Figure 2: GENEOnet example (Protein ID 6WIY) and sensitivity analysis.

3.3. Robustness test

Here we tested robustness to perturbations. In our context, robustness is strictly related to
the Non-Expansivity property of GENEOs, and it is very important for pocket identification



since proteins may exhibit extremely dynamic shapes, while in the data, they are frozen until
crystallizing to capture an image of the structure. To test robustness, six proteins were selected:
two belonging to the set of those whose true pocket was matched by the top-ranked prediction
(proteins 2IGV, 4B0C), another two from the set of pockets matched by the second-ranked
prediction (proteins 1L83, 3PCB), and the remaining two from those matched by the third-
ranked predicted pocket (proteins 1IIH, 4TIM). White noise was introduced by summing i.i.d.
Gaussian r.v. 𝒩 (0, 𝑠2) with zero mean and variance 𝑠2 to every voxel. Although i.i.d. noise is
not realistic, as perturbations in the protein conformation are likely correlated because of atom
interactions, it serves as a global test for robustness. We conducted multiple experiments by
varying the standard deviation 𝑠 in the set {0.01, 0.03, 0.05}, each time generating 200 different
perturbations. Figure 3 shows that overlaps and scores distributions of perturbations exhibit
great robustness for all values of standard deviation 𝑠. Figure 4 indicates greater robustness for
rankings of top and second-ranked pockets while a mildly lower degree of stability is showed
for third-ranked pockets.

(a) 𝑠 = 0.01 (b) 𝑠 = 0.03 (c) 𝑠 = 0.05

Figure 3: Box Plots of Overlaps and Scores: For each protein, the upper boxplot illustrates the
distribution of overlaps between the predicted pocket having the highest overlap to the true pocket and
the true pocket itself, while the lower boxplot depicts the corresponding distribution of scores.

4. Discussion

The analysis presented in the preceding section provides an initial understanding of GENEOnet’s
explainability and trustworthiness, summarised as follows:

• GENEOnet can incorporate prior knowledge not only during feature selection but also
in operator pool selection. Although feature selection is common in machine learning



(a) 𝑠 = 0.01 (b) 𝑠 = 0.03 (c) 𝑠 = 0.05

Figure 4: Bar Plots of Rank Positions: Each bar chart depicts the distribution of rankings assigned to
the predicted pockets that correspond to the true ones across the perturbed sample set.

algorithms, this second step is less frequently considered, making the choice of operators
more complex and less stable for methods like Convolutional Neural Networks.

• GENEOnet has a smaller number of parameters than other protein pocket detection
methods based on deep learning architectures. This attribute allows us to perform
sensitivity analysis and provides interpretability by design rather than using post hoc
explanation techniques.

• GENEOnet’s equivariance with respect to rigid motions allows us to overlook the input
protein’s spatial pose and helps to reduce the number of parameters.

• GENEOnet’s non-expansivity provides the model with a reasonable degree of robustness
against small physiological modifications in the input protein’s spatial conformation.
The model shows great robustness for lower noise standard deviations when analysing
the identifications made by the first or second predicted pockets. However, larger input
changes may influence the final prediction. We leave this study to subsequent work.

• The reduced data requirements for training GENEOnet (200 complexes) compared to deep
learning methods help decrease computational costs and processing times. This attribute
is not directly related to explainability but makes the model more accessible as fewer
resources are needed to reproduce its results or delve deeper into its analysis.

In conclusion, GENEOs hold promise for building explainable and robust models such as
GENEOnet. Future work includes creating more instances of GENEO-based models [11] and
further evaluation of GENEOnet. A promising advancement could be the use of GENEOnet
for analyzing molecular dynamics data. In molecular dynamics simulations, tracking the
progression of GENEOnet scores for pockets jointly with techniques that identify breakpoints
(see e.g. [12]) may help pinpoint optimal frames for bond formation.
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