
CaBRNet, An Open-Source Library For Developing
And Evaluating Case-Based Reasoning Models
Romain Xu-Darme1,*, Aymeric Varasse1, Alban Grastien1, Julien Girard-Satabin1 and
Zakaria Chihani1

1Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Abstract
In the field of explainable AI, a vibrant effort is dedicated to the design of self-explainable models, as
a more principled alternative to post-hoc methods that attempt to explain the decisions after a model
opaquely makes them. However, this productive line of research suffers from common downsides:
lack of reproducibility, unfeasible comparison, diverging standards. In this paper, we propose CaBR-
Net, an open-source, modular, backward-compatible framework for Case-Based Reasoning Networks:
https://github.com/aiser-team/cabrnet.

Keywords
Explainable AI, Case-based reasoning, Computer vision, Evaluation

1. Introduction

As a reflection of the social and ethical concerns related to the increasing use of AI-based
systems in modern society, the field of explainable AI (XAI) has gained tremendous momentum
in recent years. XAI mainly consists of two complementary avenues of research that aim at
shedding some light into the inner-workings of complex ML models. On the one hand, post-
hoc explanation methods apply to existing models that have often been trained with the sole
purpose of accomplishing a given task as efficiently as possible (e.g., accuracy in a classification
task). On the other hand, self-explainable models are designed and trained to produce their
own explanations along with their decision. The appeal of self-explainable models resides
in the fact that rather than using an approximation (i.e., a post-hoc explanation method) to
understand a complex model, it is better to directly enforce a simpler (and more understandable)
decision-making process during the design and training of the ML model, provided that such a
model would exhibit an acceptable level of performance.

In the case of image classification, works such as ProtoPNet [1] and subsequent improvements
(ProtoTree [2], ProtoPool [3], ProtoPShare [4], TesNet [5], PIP-Net [6]) have shown that self-
explainable models can display accuracy results on par with more opaque state-of-the-art

Late-breaking work, Demos and Doctoral Consortium, colocated with The 2nd World Conference on eXplainable Artificial
Intelligence: July 17–19, 2024, Valletta, Malta
*Corresponding author.
$ romain.xu-darme@cea.fr (R. Xu-Darme); aymeric.varasse@cea.fr (A. Varasse); alban.grastien@cea.fr
(A. Grastien); julien.girard2@cea.fr (J. Girard-Satabin); zakaria.chihani@cea.fr (Z. Chihani)
� 0000-0002-8630-5635 (R. Xu-Darme); 0009-0007-0829-9309 (A. Varasse); 0000-0001-8466-8777 (A. Grastien);
0000-0001-6374-3694 (J. Girard-Satabin); 0009-0004-8915-4774 (Z. Chihani)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://github.com/aiser-team/cabrnet
mailto:romain.xu-darme@cea.fr
mailto:aymeric.varasse@cea.fr
mailto:alban.grastien@cea.fr
mailto:julien.girard2@cea.fr
mailto:zakaria.chihani@cea.fr
https://orcid.org/0000-0002-8630-5635
https://orcid.org/0009-0007-0829-9309
https://orcid.org/0000-0001-8466-8777
https://orcid.org/0000-0001-6374-3694
https://orcid.org/0009-0004-8915-4774
https://creativecommons.org/licenses/by/4.0

architectures. Such models are based on the principle of case-based reasoning (CBR), in which
new instances of a problem (the classification task) are solved using comparisons with an
existing body of knowledge that takes the form of a database of prototypical representations of
class instances. In other words, the classification of an object is explained by the fact that it
looks like [1] another object from the training set for which the class is known. CBR classifiers
undeniably represent a stepping stone towards more understandable models. Yet, several recent
works [7, 8, 9, 10, 11] have questioned the interpretability of such models, proposing several
evaluation metrics to go beyond the mere accuracy of the model and to estimate the quality of
the explanations generated. In practice however, a systematic comparison between different
proposals for CBR models using these different metrics can be difficult to carry out in the
absence of a unified framework that could gather the resources provided by their respective
authors (e.g., source codes made available on GitHub).

In this context, we propose CaBRNet (Case-Based Reasoning Networks), an open-source Py-
Torch library that proposes a generic approach to CBR models. CaBRNet focuses on modularity,
backward compatibility, and reproducibility, allowing us to easily implement existing works
from the state of the art, propose new and innovative architectures, and compare them within a
unified framework using multiple dedicated evaluation metrics.

2. CaBRNet: One framework to rule them all...

In a field of research as wide as XAI, where the proliferation of tools and methods is increasing,
seeking a common framework is a natural temptation that often leads to yet another tool that
evolves besides the rest. To minimize this risk, CaBRNet is designed with three main objectives,
essential for a lasting acceptance: supporting past state-of-the-art methods through backward
compatibility, facilitating present developments by striving for modularity, and ensuring their
reusability in future works through reproducibility.

2.1. Modularity

While each model has its own specific properties (e.g., decision tree in ProtoTree, scoring sheet in
PIP-Net, linear layer in ProtoPNet), CBR image classifiers from the state of the art [1, 2, 3, 4, 5, 6]
share a common architecture, displayed on Figure 1. In CaBRNet, this common architecture can
be parametrized at will using a set of YAML files that are stored in each training directory for
reproducibility (see Sec. 2.3).

More precisely, as shown in Figure 1 and Table 1, the architecture of a CBR image classifier
starts with a backbone – usually the feature extractor of an existing convolutional neural
network (CNN) such as ResNet50 – with optional additional layers to reduce dimensionality
(e.g., the fourth layer of a ResNet50 followed by a convolutional layer with sigmoid activation).

The feature extractor outputs a set of vectors, that form the latent space, and is followed
by a similarity layer whose role is to compute the similarity between the latent vectors of
the input image and a series of reference vectors, called prototypes, each obtained from an
image from the training set. From the similarity scores, the process of locating the prototypes
inside images (attribution) and visualizing the relevant pixels (e.g., bounding box, cropping,
heatmaps) is also parametrized by a configuration file, as described in Table 1. Finally, a decision

https://github.com/aiser-team/cabrnet

resnet50 (torchvision.models)

class ConvExtractor

create_feature_extractor
(torchvision.models.feature_extraction)

prototypes

similarities

decision

<model_arch.yml>
top_arch:
 name: ProtoTree

extractor:
 backbone:
 arch: resnet50
 layer: layer4
 weights: IMAGENET1K_V1
 add_on:
 conv1:
 type: Conv2d
 params:
 out_channels: 256
 kernel_size: 1
 bias: False
 sigmoid1:
 type: Sigmoid

classifier:
 name: ProtoTreeClassifier
 params:
 num_classes: 200
 depth: 9
 ...

la
y
e
r1

la
y
e
r2

la
y
e
r3

la
y
e
r4

a
v
g
_p

o
o
l

fc
 l
a
y
e
rs

backbone

la
y
e
r2

la
y
e
r3

la
y
e
r1

la
y
e
r4 similarity

layer

add_on
layers

co
n
v
1

si
g
m

o
id

1

class PrototreeClassifier

class Prototree

decision tree

Figure 1: Striving for modularity. From a YAML configuration file (left), CaBRNet backend exploits
the common architecture of CBR image classifiers to simplify the instantiation of new models (here, a
ProtoTree).

layer, parametrized by an architecture-dependent python class (e.g., decision tree, linear layer),
assigns a score to each class based on the similarity scores, the highest being the decision (object
classification).

In addition to these architectural choices, CaBRNet also allows specifying the parameters
necessary for the training of the models (e.g., objective functions, number of epochs, optimizer to
use, which parts of the neural network can be updated and when, training dataset, preprocessing).
For more information regarding the training and data configuration, we refer the reader to the
CaBRNet documentation.

In its current version (v0.2), and as shown in Table 1, CaBRNet implements two architectures
(ProtoPNet and ProtoTree) and five attribution methods:

• Upsampling of the similarity map with cubic interpolation, as in [1, 2, 4, 3, 5, 6];
• SmoothGrads[12]/backpropagation[13], as proposed in [10];
• PRP[9], a variant of LRP[14] with a propagation rule for the similarity layer;
• RandGrads, a dummy attribution method returning random gradients (used as a baseline

when comparing attribution methods in [10]).

In the coming months, we plan to add support for more architectures (see Sec. 4).

2.2. Backward compatibility

Significant work has already been carried out on CBR classifiers. Therefore, ensuring that any
result obtained with previously existing codebases (e.g., model training) can be reused in the
CaBRNet framework is paramount and has been one of our main and earliest priorities, in an
effort to ensure backward compatibility.

First, any previously trained model can be loaded and imported within the CaBRNet framework,
i.e., models trained using the original code proposed by the authors of ProtoPNet and ProtoTree

https://github.com/aiser-team/cabrnet/blob/master/docs/README.md

Table 1
CaBRNet main configuration parameters (for a complete list, please refer to the documentation).

Parameter Description Supported values

Model configuration

extractor/backbone/arch Backbone of the extractor Any from torchvision.models
extractor/backbone/layer Where to extract features Any layer inside backbone
extractor/add_on Add-on layers of extractor Any from torch.nn
classifier CBR classifier ProtoPNet or ProtoTree

Data configuration

train_set/name Training dataset class Any from torchvision.datasets
train_set/params/transform Data preprocessing Any from torchvision.transforms

Visualization configuration

attribution/type Attribution method
Upsampling, SmoothGrad,
Backprop, PRP, RandGrads

view/type How to visualize patches

can be used by our framework for other purposes (e.g., benchmarks) without having to retrain
the model from scratch.

Second, our implementation of existing architectures (currently, ProtoPNet and ProtoTree)
supports two modes: i) default mode, where all operations have been reimplemented so that
they are as up-to-date as possible with the latest PyTorch versions; ii) compatibility mode,
as a sanity check (i.e., to make sure that our implementation does not deviate from previous
implementations), whose purpose is to be accurate with previous works at the operation level1.

2.3. Reproducibility and transparency

Reproducibility is key for the transparency of research and good software engineering alike.
However, replicating machine learning (ML) results can be particularly tricky2. One reason for
this is the inherent randomness at the core of ML programs (and the lack of documentation
of settings related to that randomness). The rapid update pace of common ML frameworks

1Backward compatibility was rigorously tested using unit tests covering all aspects of the process, from data loading
to model training, to pruning and prototype projection.

2See https://reproducible.cs.princeton.edu/

https://github.com/aiser-team/cabrnet/blob/master/docs/README.md
https://pytorch.org/vision/stable/models.html
https://pytorch.org/docs/stable/nn.html
https://pytorch.org/vision/main/datasets.html
https://pytorch.org/vision/stable/transforms.html
https://reproducible.cs.princeton.edu/

leads to the regular deprecation of APIs and features, which may make a code impossible to run
without directly changing its source, or going through the rabbit hole of dependency hell. As
an example, the mixed-precision training setting, available from PyTorch v1.10, uses different
types for CPU and GPU computations, which may lead to different results. One last part is the
under-specification of the dataset constitution (curation process, classes imbalance, etc.) and
preprocessing pipelines (test/train splits, data transformations).

Reproducibility can cover many notions. In [15], it is defined as the following: “A ML study
is reproducible if readers can fully replicate the exact results reported in the paper.” We strive
to provide a similar definition: “the same set of parameters will always yield the same results”,
with the following limitations:

• reproducibility can be ensured only for a given hardware/software configuration. The
software configuration is specified through the requirements . txt . We are aware that
stricter software environment specifications do exist (for instance, stateless build systems
like Nix3). Integrating such solutions into CaBRNet would be an interesting prospect, but
also comes with an additional engineering cost to keep the library’s ease of use. While not
currently supported, we plan to save information regarding the hardware configuration
that led to a given result;

• hyperparameters that seem innocuous may influence the results. For instance, the size of
the data batches - even during testing - has a small influence on the results. Consequently,
we also save this information inside configuration files.

To address the randomness variation, we initialize the various random number generators
(RNGs) using a fixed seed that is stored along the training parameters. Thus, while loading
a model’s parameters, the seed used for its training will be loaded as well, guaranteeing that
given the same hardware and hyperparameter configuration, the variability induced by the
pseudo-randomness is identical. We also support the possibility to save checkpoints at various
steps of the process, and we include the current state of all RNGs to restore the training process
exactly as it was.

As we believe that reproducibility is improved by a good documentation, we also provide
detailed installation instructions, a tutorial, the API reference and the CaBRNet backend refer-
ence. The major part of this documentation is automatically generated from the source code,
ensuring consistency between the code and the documentation at all times.

3. ... and in the light evaluate them

In this section, we describe our design choices for the CaBRNet benchmark, with the purpose
of proposing a framework for the systematic evaluation of CBR models.

3.1. Going beyond accuracy

Current CBR models rely on two assumptions: i) proximity in the latent space (w.r.t. a given
distance metric) is equivalent to similarity in the visual space; ii) there exists a simple mapping

3https://nixos.org/

https://nixos.org/

Figure 2: Improvement over the perturbation metric used in [7]. Rather than studying the drop in
similarity score following a global perturbation of the image (e.g., shift in the hue of the image), we
apply a local perturbation using the heatmap produced by the chosen attribution technique. Hence, we
not only measure the sensitivity of the similarity score to a given perturbation, but also the ability of the
attribution method to locate the most relevant pixels. Additionally, we measure the drop in similarity
when applying the perturbation to anything but the most important pixels (dual perturbation).

between a latent vector and a localized region in the original image, due to the architecture of
the feature extractor (CNN). These assumptions have recently been put to the test by various
metrics4, that are already implemented or that we aim to implement in CaBRNet to streamline
the evaluation of CBR models. In particular, CaBRNet currently integrates:

• the perturbation-based explanation of [7], with improvements: perturbations are no
longer applied to the entire image, but to the identified patch of image corresponding to
the prototypical part, as shown in Figure 2;

• the pointing game (relevance metric) of [10], with improvements: the metric now also
supports the energy-based pointing game introduced in [16].

In the coming months, we plan to add support for more evaluation metrics (see Sec. 4).

3.2. Stop wasting time retraining state-of-the-art models

In our opinion, reproducing results from the state of the art (i.e., re-training models) – to serve as
points of comparison with a new approach – can waste valuable time and computing resources
4Regarding the relevance and/or effectiveness of these metrics, we refer the reader to the original papers.

from AI researchers, when that time could be dedicated to improving that new approach. This
issue mostly arises when proposing new evaluation metrics5 that must be applied to a wide
range of state-of-the-art models. Thus, one of the objectives for CaBRNet is to publish pre-trained
state-of-the-art CBR models, so that they can be used readily by the XAI research community.
For the sake of transparency, and as stated in Sec. 2.3, each published model is also associated
with information ensuring a level of reproducibility, should a researcher wish to re-train these
models. Moreover, in an effort to improve the statistical significance of all related experiments,
we plan to publish at least three models per model configuration and dataset. As an example, we
have already published 6 models6 trained on the Caltech-UCSD Birds 200 (CUB200 [17]) using
our implementation of ProtoTree with trees with depth 9 and 10.

4. Conclusion and future works

CaBRNet is open-source and welcomes any external contribution. We also strongly encour-
age the research community to publish trained models that can be reused within our eval-
uation framework. On our side, future developments include: i) support for ProtoPool[3],
ProtoPShare[4], PIP-Net[6] and TesNet[5]; ii) support for the metric measuring the stability
to JPEG compression [8] and the stability to adversarial attacks[11]; iii) hands-on tutorials for
gently introducing users to the various aspects of the framework.

Ideally, the modularity of CaBRNet design will appeal to both AI researchers wanting to exper-
iment with CBR approaches, and industrial actors interested in deploying those approaches in a
principled and traceable way. Our goal is for CaBRNet to become the development framework
for new and innovative CBR approaches by the community.

Acknowledgments

The authors wish to thank Bartek Jura (Poznań Institute of Technology) and Meike Nauta
(Datacation) for their kind feedback on this paper, and Jules Soria (CEA-List) for carrying out
some of the training experiments that have been published.

This work was supported by French government grants managed by the Agence Nationale
de la Recherche under the France 2030 program with the references ”ANR-23-DEGR-0001” and
”ANR-23-PEIA-0006”, as well as a Research and Innovation Action under the Horizon Europe
Framework with grant agreement Nr.101070038. Views and opinions expressed are those of the
author(s) only and do not necessarily reflect those of the European Union. Neither the European
Union nor the granting authority can be held responsible for them.

5When using common metrics (e.g., model accuracy), it is possible to avoid retraining models by simply referring to
the results provided by the original authors.

6Available at https://zenodo.org/records/10894996.

https://zenodo.org/records/10894996

References

[1] C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, C. Rudin, This looks like That: Deep learning for
interpretable image recognition, NeurIPS (2019) 8930–8941.

[2] M. Nauta, R. van Bree, C. Seifert, Neural prototype trees for interpretable fine-grained
image recognition, CVPR (2021) 14928–14938.

[3] D. Rymarczyk, L. Struski, M. Górszczak, K. Lewandowska, J. Tabor, B. Zieliński, Inter-
pretable image classification with differentiable prototypes assignment, in: ECCV, 2021.

[4] D. Rymarczyk, L. Struski, J. Tabor, B. Zieliński, ProtoPShare: Prototypical parts sharing
for similarity discovery in interpretable image classification, SIGKDD (2021).

[5] J. Wang, H. Liu, X. Wang, L. Jing, Interpretable image recognition by constructing trans-
parent embedding space, ICCV (2021) 875–884.

[6] M. Nauta, J. Schlötterer, M. van Keulen, C. Seifert, PIP-Net: Patch-based intuitive prototypes
for interpretable image classification, in: CVPR, 2023, pp. 2744–2753.

[7] M. Nauta, A. Jutte, J. C. Provoost, C. Seifert, This looks like that, because ... explaining
prototypes for interpretable image recognition, in: PKDD/ECML Workshops, 2020.

[8] A. Hoffmann, C. Fanconi, R. Rade, J. Kohler, This looks like that... does it? shortcomings
of latent space prototype interpretability in deep networks, ICML Workshop on Theoretic
Foundation, Criticism, and Application Trend of XAI (2021).

[9] S. Gautam, M. M.-C. Höhne, S. Hansen, R. Jenssen, M. Kampffmeyer, This looks more like
that: Enhancing self-explaining models by prototypical relevance propagation, Pattern
Recognition (2022) 109172.

[10] R. Xu-Darme, G. Quénot, Z. Chihani, M.-C. Rousset, Sanity checks for patch visualisation
in prototype-based image classification, XAI4CV at CVPR (2023).

[11] M. Sacha, B. Jura, D. Rymarczyk, L. Struski, J. Tabor, B. Zieliński, Interpretability bench-
mark for evaluating spatial misalignment of prototypical parts explanations, ArXiv
abs/2308.08162 (2023).

[12] D. Smilkov, N. Thorat, B. Kim, F. B. Viégas, M. Wattenberg, Smoothgrad: removing noise
by adding noise, ICML Workshop on Visualization for Deep Learning (2017).

[13] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: Visualising
image classification models and saliency maps, Workshop at ICLR (2014).

[14] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, W. Samek, On pixel-wise
explanations for non-linear classifier decisions by layer-wise relevance propagation, PLoS
ONE 10 (2015).

[15] M. B. A. McDermott, S. Wang, N. Marinsek, R. Ranganath, L. Foschini, M. Ghassemi,
Reproducibility in Machine Learning for health research: Still a ways to go, Science
Translational Medicine 13 (2021).

[16] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. P. Mardziel, X. Hu, Score-CAM:
Score-weighted visual explanations for convolutional neural networks, CVPRW (2019)
111–119.

[17] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, P. Perona, Caltech-UCSD
Birds 200, Technical Report CNS-TR-2010-001, CalTech, 2010.

	1 Introduction
	2 CaBRNet: One framework to rule them all...
	2.1 Modularity
	2.2 Backward compatibility
	2.3 Reproducibility and transparency

	3 ... and in the light evaluate them
	3.1 Going beyond accuracy
	3.2 Stop wasting time retraining state-of-the-art models

	4 Conclusion and future works

