
XAgent: A Conversational XAI Agent Harnessing the
Power of Large Language Models
Van Bach Nguyen1, Jörg Schlötterer1,2 and Christin Seifert1

1University of Marburg, Germany
2University of Mannheim, Germany

Abstract
For humans, explanations are conversations, while explanations of models are one-directional result
presentations. To make model explanations conversational, previous work presented a framework for
conversational XAI agents. However, this early research prototype heavily relied on template-based
natural language responses and a Jupyter Notebook user interface, limiting its application to a lab
environment. In this work, we present XAgent, a conversational XAI agent addressing these limitations.
We designed XAgent as Web application with a chat interface, harnessing the power of the Llama-2
language model to leverage the template-based design to natural conversations. The inclusion of LLAMA-
2 further extends the scope of the agent to also answer questions beyond XAI, such as for example factual
questions or questions about terminology and supports in prompting the user for additional information
in case of incomplete requests. With these improvements, we lift the previous research prototype to a
deployment-ready conversational XAI agent, bringing us closer to our goal of creating a real-world XAI
agent that explains machine learning models in a conversational style. The source code for XAgent is
available at https://github.com/aix-group/XAGENT/.

Keywords
Conversational XAI, XAI chatbot, Conversational Agent for XAI

1. Introduction

Miller [1] argues that human explanations are inherently conversational. After an initial
explanation, the explainee can ask subsequent questions. An explanation is good and satisfactory,
if all questions of the explainee are answered by the explainer, i.e., the explainee does not have
follow up questions.

In the field of XAI, explanations are almost exclusively one-directional and usually one-shot,
albeit Conversational XAI has gained increasing attention from the research community re-
cently [2, 3, 4, 5]. Among the proposed solutions, our previous work [3] presents a system
capable of answering a wide range of XAI-related questions introduced in the XAI question
bank [6]. However, the system has limitations: (1) it is limited to a template-based Natural
Language Generation (NLG) component, which lacks flexibility and provides a poor user expe-
rience, (2) it cannot answer questions requiring external knowledge, and (3) it is implemented

Late-breaking work, Demos and Doctoral Consortium, colocated with The 2nd World Conference on eXplainable Artificial
Intelligence: July 17–19, 2024, Valletta, Malta
$ vanbach.nguyen@uni-marburg.de (V. B. Nguyen); joerg.schloetterer@uni-marburg.de (J. Schlötterer);
christin.seifer@uni-marburg.de (C. Seifert)
� 0000-0002-4576-9302 (V. B. Nguyen); 0000-0002-3678-0390 (J. Schlötterer); 0000-0002-6776-3868 (C. Seifert)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://github.com/aix-group/XAGENT/
mailto:vanbach.nguyen@uni-marburg.de
mailto:joerg.schloetterer@uni-marburg.de
mailto:christin.seifer@uni-marburg.de
https://orcid.org/0000-0002-4576-9302
https://orcid.org/0000-0002-3678-0390
https://orcid.org/0000-0002-6776-3868
https://creativecommons.org/licenses/by/4.0


in a Jupyter Notebook environment, thereby limiting the installation to a lab environment. To
address these limitations, we introduce XAgent, a conversational agent using Large Language
Models (LLMs) for generating answers. XAgent is based on the previously introduced XAI agent
framework [3], and extends its components. Specifically, we augment the system by integrating
Large Language Models to (1) enhance the NLG component, generating more flexible responses
and (2) enable the system to answer questions about factual knowledge, such as the meaning of
specific terminologies. Additionally, we (3) demonstrate a real-world system with a graphical
user interface (GUI) and hosting capabilities, facilitating the deployment and accessibility of
XAgent1. XAgent is a deployment-ready conversational XAI agent that can explain machine
learning models in a conversational manner.

2. System overview

The general architecture of XAgent is depicted in Figure 1. We built upon the architecture from
our previous work [3] with four components.

Method
Selection

XAI Method
LibaryQX

XAI Method
Output

Answer
Generation

NLG

Reference
Question
Retrieval

XAI question
phrase bank

NLU

QPG

Answer

Reference
QuestionUser Question

Figure 1: Incorporating XAI in conversational agents: An overview architecture, adapted from [3], with
improved components highlighted in bold.

Question-Phrase-Generation (QPG): This component employs a paraphrase generation
model on questions sourced from the XAI question bank [6]. The generated candidates are
scored by multiple annotators and ranked, resulting in the XAI question phrase bank. This
question phrase bank is used to train the NLU component. In this work, we adopt the question
phrase bank for NLU without making any modifications.
Natural Language Understanding (NLU): This component is responsible for identifying the
user’s actual intent from a wide range of XAI utterances. The NLU model is trained on the
question phrase bank from QPG. We extend this component by adding a feature that suggests
alternative questions to choose in case NLU fails to identify the intent.
Question-XAI (QX): This component takes the intent from NLU, maps it to a corresponding
XAI method that can address the intent and then returns the resulting explanation of the chosen
method (XAI method output). In this work, we incorporate factual questions requiring external
knowledge and employ a Large Language Model (LLM) to provide explanations.

1https://github.com/aix-group/XAGENT/



(a) Introduction (b) Information Collection

Figure 2: Input Phase: The phase begins with the introduction of the conversation alongside an example
instance of the dataset, as depicted in Figure (a). Figure (b) illustrates the process to specify a desired
input instance, different from the provide examples.

Natural Language Generation (NLG): This component converts the output of the XAI method
(e.g., a table, graph, or number) to a natural language answer. We integrate LLMs in the final
step of the textual answer generation in the NLG component to improve the answer’s text quality
from a pure template-driven answer to natural language.

3. Implementation

A conversation in XAgent consists of multiple conversation steps and each conversation step
consists of two phases: the Input Phase and the Explanation Phase. The Input Phase refers
to the process of data collection from the user. Once all relevant data has been successfully
gathered, the system transitions to the Explanation Phase, wherein the agent explains the model
and its prediction to the user.

3.1. Input Phase

Before users can inquire about the model and request explanations for the predictions, they
must first provide the necessary information about the instance to be predicted. We refer to
this as the Input Phase. In this phase, we introduce the agent to the user with an example
instance, but also provide the option for the user to change the instance by using the command
/change instance. The introduction is illustrated in Figure 2a. For this demonstration, we



use the German-credit dataset2 as a fixed dataset for interaction. However, technically, we
can change the dataset by typing /change dataset. We also provide a pre-trained Random
Forest classifier with the accuracy of 85% on this dataset. If the user chooses to provide their
own instance, we implement a series of questions to gather the required information. Each
question is accompanied by a constraint to ensure that the user provides valid input, such as
selecting from predefined categories for categorical features or entering a numeric value for
numerical features. If the user provides unexpected input, they are prompted to repeat the
entry until it meets the specified requirements. Once all the necessary information has been
collected, the system uses a pre-trained classifier to generate the prediction results, which are
then presented to the user. All of the information of the instance and the prediction for it is
stored in the memory. Importantly, the questions and answers provided by the agent during
this input phase are enhanced using a LLAMA-2 [7] to ensure more flexible responses instead of
fixed templates. Further details can be found in Section 3.2.4. An example of the Input Process
is illustrated in Figure 2b.

3.2. Explanation Phase

Once the prediction of an instance has been presented to the user, in the subsequent phase,
users may ask questions about the prediction, the model and the instance. This marks the
initiation of the Explanation Phase, which is illustrated in Figure 3. Specifically, a user’s question
is processed by the NLU component. Here, a sentence embedding model matches the user’s
question to a corresponding question within the system’s question phrase bank. The selected
question, along with the information extracted from the user’s question, is then processed by
the Dialog Manager. Concurrently, the extracted information is stored in memory, and the
preprocessed question is passed to the QX component. This component retrieves information
from a corresponding XAI method capable of answering the question. The stored information
is requested and received through the Dialog Manager. Once the Dialog Manager obtains the
XAI method’s information from the QX, it delegates the task of plugging this information into
predefined templates to the NLG component. The templated answers are then returned to the
LLM (LLAMA-2) for language improvement before being presented to the user. An example of
explanation observed can be seen in Figure 4a. This section provides detailed descriptions of
each mentioned component.

Instance
InformationNLUNatural Language

Question
Selected
Question

Dialog Manager

LLM
Improved
Answer NLG

Templated
Answer

Method
Output

QX
Method
Output

Question

Information

Figure 3: Illustration of the explanation phase process flow. New components are highlighted in bold.

2https://www.kaggle.com/datasets/uciml/german-credit

https://www.kaggle.com/datasets/uciml/german-credit


(a) Explanation Process (b) Questions Suggestion

Figure 4: Explanation Phase: The phase starts after the agent gathers all necessary information from
the instance, and the user transitions to seeking clarification or interpretation of the prediction results
(Figure a). In scenarios where the Natural Language Understanding (NLU) component exhibits low
confidence in comprehending the user’s questions, it proactively suggests a list of potential clarifying
questions for the user to select (Figure b).

3.2.1. Natural Language Understanding (NLU)

We use the NLU component from our previous work [3]. In summary, we use the XAI question
phrase bank within the QPG component to train the NLU by framing the task of matching user
questions to reference questions as multi-class classification. Sentence embeddings are generated
for user and reference questions using SimCSE [8] and RoBERTa-large pre-trained model [9].
Then, a feed-forward neural network classifies user questions into reference questions. The
output identifies the reference question that best fits the user’s intent. If the probability falls
below a threshold, 𝜃, the question is considered an unknown variation or paraphrase.

In such scenarios, our preceding system declines to provide an answer or a suggestion to
the question and the conversation halts. In this work, we enhance the NLU components by
presenting the user with a curated list of questions for selection. The order of questions in this
list is based on their cosine similarity values within the question bank. Initially, the list presents



the top 5 questions with the highest similarity, with subsequent options provided if the desired
question is not among the initial selection. Moreover, users are provided with the opportunity
to rephrase their questions. An example of this question selection case is depicted in Figure 4b.

3.2.2. Dialog Manager

The Dialog Manager (DM) component serves as the central processing unit, orchestrating
information processing and decision-making within the system. Specifically, within the DM, we
define four states corresponding to four situations that the agent might encounter: the Input
state, Explanation state, Suggestion state, and Missing Data state. The Input and Explanation
states correspond to the Input and Explanation phases, while the Suggestion and Missing Data
states represent two situations that may arise during the Explanation Phase. The dialog begins
with the Input state. Once all information has been collected, the DM transitions the state to
Explanation and maintains this state until another event occurs, such as missing data or failing
to comprehend the user’s question. In cases of missing data, the DM sets the state to Missing
Data and sends a question to the user to request the necessary information. For instance, if a
user asks How does this feature impact its prediction? without explicitly specifying the feature,
the DM will ask the user to provide the name of the feature. For situations where the question
is unclear, the DM sets the current state to the Suggestion stage, in which the NLU returns a list
of suggested questions.

The DM also functions as a component for information extraction and storage within the sys-
tem’s memory. This facilitates the retrieval and utilization of information as needed. Specifically,
during the input phase, the DM stores each user response to a question in a format compatible
with the predefined classifier. Subsequently, it returns the classifier’s results.

3.2.3. Question-XAI (QX)

For the QX component, we employ the mapping established in the original work [3]. When
encountering factual questions, such as What does {ML terminology} mean?, we use LLAMA-2
to generate the answer. Other types of questions can be integrated into the framework by
providing either an answer template and/or an XAI method (alongside with an answer template)
to answer that question. Each question type is handled through a distinct implementation. For
questions necessitating specification of a class or instance, a fill-in template is employed. Once
the template is completed, the system can further process the question. The filling process
is facilitated by the Dialog Manager component, operating in the Missing Data state, which
iteratively prompts the user until the necessary information is obtained to complete the template.
Moreover, for factual questions about terminology, the system utilizes LLAMA-2 to provide the
answer by prompting the following question to the Large Language Model (LLM):
Question: {Question}. Explain it in 100 tokens.

It should be noted that the identification of factual questions is performed by the NLU component,
as there exists a general question, What does [ML terminology] mean? If the NLU matches the
user’s question to this query, the QX will activate LLAMA-2 to respond to the user’s inquiry.
Actually, the terminology in question is not limited to ML terminology but can encompass any
term. We acknowledge the well-known issue of hallucinations, but favor conversation flow



over precision in such questions. That is, we favor an inaccurate answer over getting no answer
at all.

3.2.4. Natural Language Generation (NLG)

In the context of the NLG component, each dataset possesses its own set of templates, which
are defined within a JSON file. To accommodate a new dataset, a corresponding new template
is required. This template encapsulates information about the features, as well as the responses
for each question and case. The final response, derived from the template, is subsequently
processed through the LLAMA-2 model using the specific prompt below:
Improve the language of the text but keep the original intent of the below
text. Do not add or omit any information, only adapt the language. Please keep
the information in square brackets unchanged. Only return the text without the
double quotes. Do not ask for anything else. Do not add any comments.
{Text}.
Improved text:

3.3. User Interface

We use Streamlit3 as the framework for both the user interface (UI) and server deployment.
To address scenarios involving concurrent interactions from multiple users with the agent,
we implement session handling. Specifically, we initialize all components only once except
for the Dialog Manager. For each user session, a new agent object is created, equipped with
its own Dialog Manager initialized with default states. This approach ensures that each user
interacts with their respective agent object, leveraging the shared NLU, LLAMA-2, QX, and
NLG components.

4. Discussion and Conclusion

Figure 2 and Figure 4 show screenshots of a conversation from the web application of XAgent.
In Figure 4a, LLAMA-2 enhances all answers, thereby increasing their flexibility with each
user-agent interaction. Additionally, LLAMA-2 generates the answer to the question what is
the definition of ’accuracy’?. Generally, LLAMA-2 demonstrates benefits in terms of language
improvement and answering factual knowledge questions. However, it also has its own short-
comings. For example, in Figure 2b, LLAMA-2 generates “Give me your Sex [male, female].
Please choose one of the following values,” which is unnatural as the list of values should appear
after the request, not before. Additionally, in the same figure, we observe inconsistencies in the
presentation of the list of values, as they sometimes appear in square brackets and sometimes
in parentheses.

In summary, by integrating LLAMA-2 and replacing the Juyter Notebook environment by
the Streamlit framework, we lift the previous strongly constrained research prototype to a
deployment-ready conversational XAI agent. Future work will involve tuning the prompts for
LLAMA-2 and fine-tuning the conversation model based on collected log data. Furthermore,

3https://streamlit.io/, accessed April 2024

https://streamlit.io/


a promising direction for future exploration involves extending the application to other data
types, particularly visual data, and utilizing multimodal architectures like Vision-Language
models for explanation.

References

[1] T. Miller, Explanation in artificial intelligence: Insights from the social sciences, Artifi-
cial Intelligence 267 (2019) 1–38. URL: https://www.sciencedirect.com/science/article/pii/
S0004370218305988. doi:10.1016/j.artint.2018.07.007.

[2] D. Slack, S. Krishna, H. Lakkaraju, S. Singh, Explaining machine learning models with
interactive natural language conversations using talktomodel, Nature Machine Intelligence
5 (2023) 873–883.

[3] V. B. Nguyen, J. Schlötterer, C. Seifert, From Black Boxes to Conversations: Incorporating
XAI in a Conversational Agent, in: L. Longo (Ed.), Explainable Artificial Intelligence,
Springer Nature Switzerland, Cham, 2023, pp. 71–96.

[4] C. Werner, Explainable AI through Rule-based Interactive Conversation, in: EDBT/ICDT
Workshops, 2020.

[5] M. Kuźba, P. Biecek, What would you ask the machine learning model? identification of
user needs for model explanations based on human-model conversations, in: ECML PKDD
2020, Springer, 2020.

[6] Q. V. Liao, D. Gruen, S. Miller, Questioning the AI: Informing Design Practices for Explainable
AI User Experiences, in: Proc. CHI Conference on Human Factors in Computing Systems,
ACM, New York, NY, USA, 2020, p. 1–15. doi:10.1145/3313831.3376590.

[7] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu,
J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura,
M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov,
P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten,
R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X.
Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez,
R. Stojnic, S. Edunov, T. Scialom, Llama 2: Open foundation and fine-tuned chat models,
2023. arXiv:2307.09288.

[8] T. Gao, X. Yao, D. Chen, SimCSE: Simple Contrastive Learning of Sentence Embeddings,
in: EMNLP, ACL, 2021, pp. 6894–6910. URL: https://aclanthology.org/2021.emnlp-main.552.
doi:10.18653/v1/2021.emnlp-main.552.

[9] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, V. Stoy-
anov, RoBERTa: A Robustly Optimized BERT Pretraining Approach, 2019. arXiv:1907.11692
[cs].

https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://www.sciencedirect.com/science/article/pii/S0004370218305988
http://dx.doi.org/10.1016/j.artint.2018.07.007
http://dx.doi.org/10.1145/3313831.3376590
http://arxiv.org/abs/2307.09288
https://aclanthology.org/2021.emnlp-main.552
http://dx.doi.org/10.18653/v1/2021.emnlp-main.552
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

	1 Introduction
	2 System overview
	3 Implementation
	3.1 Input Phase
	3.2 Explanation Phase
	3.2.1 Natural Language Understanding (NLU)
	3.2.2 Dialog Manager
	3.2.3 Question-XAI (QX)
	3.2.4 Natural Language Generation (NLG)

	3.3 User Interface

	4 Discussion and Conclusion

