
Democratizing Advanced Attribution Analyses of
Generative Language Models with the Inseq Toolkit
Gabriele Sarti1,*, Nils Feldhus2, Jirui Qi1, Malvina Nissim1 and Arianna Bisazza1

1Center for Language and Cognition (CLCG), University of Groningen, Oude Kijk in ’t Jatstraat 26
Groningen, 9712EK, The Netherlands

2German Research Center for Artificial Intelligence (DFKI), Alt-Moabit 91c, Berlin, 10559, Germany

Abstract
Inseq1 is a recent toolkit providing an intuitive and optimized interface to conduct feature attribution
analyses of generative language models. In this work, we present the latest improvements to the library,
including efforts to simplify the attribution of large language models on consumer hardware, additional
attribution approaches, and a new client command to detect and attribute context usage in language model
generations. We showcase an online demo using Inseq as an attribution backbone for context reliance
analysis, and we highlight interesting contextual patterns in language model generations. Ultimately,
this release furthers Inseq’s mission of centralizing good interpretability practices and enabling fair and
reproducible model evaluations.
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1. Introduction

Feature attribution methods have been widely adopted in NLP to quantify the importance
of input tokens in driving language models’ (LMs) predictions [1]. While some works used
feature attribution to analyze generative NLP models, focusing mainly on machine translation
[2, 3, 4, i.a.], most analyses in this area focused on classification due to the initial popularity
of BERT-based encoders [5] and the challenges of autoregressive generation [6]. Although
several post-hoc interpretability tools are available, few support generative LMs [7, 8, 9], often
requiring ad-hoc wrappers to enable interoperability with the popular Transformers library [10]
commonly used by NLP practitioners.

Inseq [11] is a Python library offering native compatibility with Transformers and supporting
advanced methods and customizations. Inseq centralizes access to a broad set of feature attri-
bution methods, sourced in part from the Captum [12] framework, enabling fair comparisons

1Library: https://github.com/inseq-team/inseq, Docs: https://inseq.org. This paper refers to release v0.6.0.
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Figure 1: Example of Inseq usage with a generative LM. Given a prompt, attribution scores and next-step
probabilities are extracted from the model at every generation step, with a final visualization aggregating
values at the token level. Highlighted areas in the output show that the model relies on the keyword
“innovate” to begin the idiomatic expression “think outside the box” at relatively low confidence (p =
0.5). However, importance shifts to previous tokens in the idiom throughout the generation.

across various techniques for all encoder-decoder and decoder-only models supported by the
Transformers library. The toolkit aims to democratize access to interpretability analyses of
generative LMs with minimal setup, enabling reproducible evaluations. An example is provided
in Figure 1. Thanks to its intuitive interface, users can easily integrate interpretability analyses
into their text generation pipelines with just a few lines of code. Moreover, a command-line
interface (CLI) and various utility methods to visualize, serialize, and reload attribution outcomes
are provided to facilitate analysis at scale. Inseq is also highly flexible, including cutting-edge
attribution methods with built-in post-processing features (Section 2), supporting customizable
attribution targets and enabling the attribution of arbitrary sequences produced via forced
decoding (Section 2.1).

In this paper, we summarize recent efforts in the development of the Inseq toolkit, focusing
specifically on newly added usability features to support the attribution of large LMs (LLMs)
(Section 2.2), and a new command to contrastively attribute context usage in LMs generations
(Section 3). Finally, we present various applications of Inseq in recent research (Section 4).

2. The Inseq Toolkit

Inseq provides an easy-to-use interface to apply feature attribution methods, extending Cap-
tum [12] as attribution back-end to generative models from the Transformers library [10].

Table 1 (left) presents an updated list of supported attribution methods, categorized into three
groups, gradient-based, internals-based and perturbation-based, depending on their underlying
approach to importance quantification. Aside from popular model-agnostic methods, Inseq
notably provides built-in support for attention weight attribution and a range of cutting-edge
methods not supported in any other toolkit, such as Discretized Integrated Gradients [17],
Sequential Integrated Gradients [18], Value Zeroing [22], and ReAGent [23], with many of those
allowing for the importance attribution of custom intermediate model layers.

Among its notable features, Inseq offers flexible source and target-side attribution for



Method Source 𝑓(𝑙)

G

(Input ×) Gradient Simonyan et al. yes
DeepLIFT Shrikumar et al. yes
GradientSHAP Lundberg and Lee no
Integrated Gradients Sundararajan et al. yes
Discretized IG Sanyal and Ren no
Sequential IG Enguehard no

I Attention Weights Bahdanau et al. yes

P
Occlusion (Blank-out) Zeiler and Fergus no
LIME Ribeiro et al. no
Value Zeroing Mohebbi et al. yes
ReAGent Zhao and Shan no

Method Source

S

(Log) Probability -
Softmax Entropy -
Target Cross-entropy -
Perplexity -
Contrastive logits Δ

Yin and Neubig
Contrastive prob. Δ
𝜇 MC Dropout Prob. Gal and Ghahramani
P-CXMI Fernandes et al.
KL divergence -
In-context P𝒱I Lu et al.
Top-𝑝 tokens -

Table 1
Gradient (G), internals (I) and perturbation-based (P) attribution methods and built-in step functions
(S) in Inseq. 𝑓(𝑙): supports intermediate layers attribution. New methods are bolded.

encoder-decoder systems, alongside several Aggregator classes to aggregate attribution scores
across various dimensions (e.g. at the token level), and AggregatorPipeline for chaining various
aggregation steps (e.g. extract the weight of the i-th attention head at the n-th layer).

2.1. Customizing generation and attribution

At every generation step, in addition to computing attribution scores, Inseq can also use models’
information to compute functions of the output distributions or intermediate representations,
which we collectively refer to as step functions (Table 1, S). For example, the resulting scores
can provide additional insights into the generation process for uncertainty quantification or
outlier detection. Inseq provides access to several built-in step functions and allows users to
create and register custom ones. Step scores are computed alongside attribution and visualized
in the same matrix of attribution scores (e.g. 𝑝(𝑦𝑡|𝑦<𝑡) in Figure 1).

Various attribution methods rely on model outputs to predict input importance, using func-
tions of the model’s output logits or token probabilities [27]. Yin and Neubig [6] propose
contrastive metrics to help disentangle how various factors contribute to the prediction. For
example, the gradient ∇(𝑝(barking)− 𝑝(crying)) given the prompt “Can you stop the dog from
___” will highlight the role of the entity dog in selecting barking, disentangling the semantic
component from grammatical correctness by providing a crying as grammatically valid choice.
Figure 2 illustrates an example. Inseq users can leverage any built-in or custom-defined step
function as an attribution target, enabling advanced use cases like contrastive comparisons.

The new version of Inseq supports customizable word alignments, i.e. indices aligning
tokens in the original and contrastive generated texts, to support contrastive comparisons
between texts of different lengths, including automatic alignments using the multilingual LaBSE
encoder [28] to streamline their application.
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Figure 2: Left: Code using Inseq to compute contrastive attributions for an English-to-Italian machine
translation model using raw gradient attribution. Right: Source-to-target attributions aggregated at
token-level, indicating the importance of the stereotypical noun “manager” to generate the Italian
masculine pronoun “il” (original) over the feminine “la” (contrastive case).

2.2. Usability Features

Inseq supports batching to simplify analysis at scale and customizable start/end positions to
accelerate the attribution process for studies on localized phenomena (e.g., pronoun coreference).
Moreover, it offers a CLI to attribute single examples or entire Datasets from the command line,
storing resulting outputs and visualizations. Attributions can be saved in JSON format with
metadata to identify their provenance, allowing for easy reloading and visualization.

Quantization and distributed attribution All models allowing for quantization using
bitsandbytes [29] can be loaded in 4-bit or 8-bit precision directly from Transformers, and their
attributions can be computed normally using Inseq at a fraction of the cost. Similarly, Inseq is
compatible with the Petals library [30], supporting gradient-based attribution across language
models whose computation is distributed across several machines. This can alleviate the need
for high-end GPUs to run LLMs, enabling the distributed computation of attribution scores.1

3. Case study: Attributing Context Influence using PECoRe

The PECoRe framework [31] was proposed to identify and attribute context usage in language
models, and further adapted by Qi et al. [32] to produce model internals-based citations for LLM
generations. First, contrastive functions such as KL divergence select generated tokens sensitive
to context ablation. Then, contrastive feature attribution is used to identify context tokens
driving the contextual prediction. Inseq provides an ad-hoc CLI command (attribute-context)
for PECoRe usage, supporting all contrastive step functions and attribution methods. Figure 3
provides an example output in a GUI built on top of the Inseq API.2 In the example, an LLM3 is

1A tutorial for distributed attribution is available here: https://inseq.org/en/latest/examples/petals.html
2The presented demo is available here: https://huggingface.co/spaces/gsarti/pecore
3We used StableLM 2 Zephyr 1.6B: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b

https://inseq.org/en/latest/examples/petals.html
https://huggingface.co/spaces/gsarti/pecore
https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
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Figure 3: Context attribution for retrieval-augmented long-form QA using the Inseq-powered demo.

prompted with contexts retrieved from Wikipedia to provide a long-form answer to a query (1).
When referring to context information (2), PECoRe shows that the indices of the two documents
containing relevant information are salient. On the other hand, the names of other Hawaiian
islands are important when the model produces an additional remark on their population (3).
We observe that the context is not salient for answering the question, suggesting the model
might have memorized the answer. We test this by prompting the model in a closed-book
setting, finding that the model can indeed respond correctly without context (4).

4. Related Work using Inseq

Since its first release, Inseq was adopted to conduct several feature attribution analyses of
generative LMs. In the conversational domain, its Integrated Gradients implementation was
used to study longitudinal dialogues with conversational models for Italian [33]. Inseq was
also used to measure agreement between attribution scores and a new metric of LLMs’ factual
reliability [34], and to analyze the context repetition in dialogues [35]. In machine translation,
Inseq attribution methods were used to select salient in-context examples with the aim to
mitigate gender bias in translated sentences [36] and to evaluate the usage of source and target-
side information in character-level machine translation systems across several languages [37].

Inseq was integrated into several tools and methods, including the LLMCheckup interface [38],
using Inseq for producing attributions for fact-checking and conversational question answering
(QA), and the PECoRe framework [31] for detecting and attributing context usage in language
models. Finally, Inseq methods were also used as baselines to compare proposed new feature
attribution approaches [23], and to probe the contextual influence in affixal negation [39].
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