
Assesing the Interpretability of the Statistical
Radiomic Features via Image Saliency Maps in
Medical Image Classification Tasks
Oleksandr Davydko1,*

1Technological University Dublin

Abstract
The presented research aims to improve the interpretability of medical image classification models
trained with statistical radiomic features. While showing classification results comparable with state-
of-the-art convolutional neural network models, statistical radiomic features’ interpretability is still
understudied. Neural network models use saliency map approaches to provide a human operator with
intuitive visualisation of the model’s attention, but statistical radiomic-based models still have no such
tools developed. This research aims to eliminate this gap and allow the saliency map generation for models
trained with statistical radiomic features. Preliminary results show that the proposed approach may
generate faithful saliency maps for the ResNet-50 classification model trained the first-order statistical
radiomic features.
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1. Context and motivation

1975 Haralik et al. introduced a way to obtain high-order image features from texture. These
features describe the image texture properties using statistics. They allowed the large image to
be compressed into a set of 14 features, which allowed solving the image classification tasks, as
computation capabilities were limited then. Even though those feature-forming methods were
originally developed for aerial photograph and satellite image classification, the most popular
application of those methods is medical image classification.

Even after introducing high-performance GPUs and convolutional neural networks,
some research like [1] still indicate that using statistical radiomic features can show near
state-of-the-art results in medical image classification tasks. However, a lack of classification
result interpretability could be a reason to choose automatically extracted features instead of
statistical radiomic. In the current literature, the interpretability of statistical radiomic features
is mainly addressed by attributing ad-hoc high-order statistical radiomic features, while neural
network solutions utilize saliency map methods, which produce much more understandable
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visual explanations than standard numerical feature importance.

This research aims to introduce a method for generating a saliency map when a classification
model is trained with statistical radiomic features, subsequently improving the explainability of
statistical-radiomic-based classification models for medical images.

2. Related work

The statistical radiomic features were applied to solve many different medical image
classification tasks, showing near state-of-the-art classification performance. Authors of the
research [2] have attempted to fuse grey-level co-occurrence matrix (GLCM), grey-level run
length matrix (GLRLM), and segmentation-based fractal texture analysis (SFTA) features to
detect the COVID-19 lesions presence on the chest X-ray images. The fusion of features
combined with feature selection done by principle components analysis allowed reaching 0.94
F1-score while distinguishing between healthy and COVID pneumonia lung images. Similar
results were observed in the same task when using first-order statistics (FOS), GLCM, GLRLM,
and grey-level size zone matrix (GLSZM) feature extraction methods in the work [1]. Here, the
authors report the F1-score at a 0.98 rate. In research [3] authors report 0.975 accuracy while
performing a classification of brain tumors on magnetic resonance images (MRI)

Current advances in the interpretability of radiomic-based models mostly include interpreting
importances of used high-order radiomic features. Authors of the research in [4] use SHAP [5],
which allowed them to identify the most influential features. In another research work [6],
authors interpret radiomic feature groups importances by analysing logistic regression
coefficients. A study [7] uses SHAP to reveal the most influential features to diagnose
schizophrenia by brain magnetic resonance images (MRI). The authors of the work [8] use the
same technique to find the connection between particular features and panic disorder signs.

At the same time, researchers utilise saliency map methods such as Integrated Gradients [9],
layer-wise propagation [10], DeepLIFT [11], GradCAM [12] for interperting convolutional
neural network predictions. The saliency map is much easier to understand from the point of
view of human perception. For radiomic-based models, a little work discusses some analogs of
saliency maps. In the research [13], authors discuss the interpretability of tumor tissue signature
identification when local statistical radiomic features are used. The problem of interpretability
was tackled by visualizing feature activation maps for a single high-order feature.

It can be stated, that the problem of statistical radiomic features interpretability is definitely
in focus of researchers but requires further investigations. The main problem to investigate is
the generation of understandable image saliency maps for radiomic-based models.

3. Design and methodology

This research describes methods for saliency map generation of the first- and high-order
statistical radiomics features.



3.1. Mapping first-order radiomic features’ attributions

First-order statistical radiomic features are formed by computing the frequency of some texture
substructure appearing in the image. Some examples of such substructures are:

1. Pair of pixels with intensities 𝑖, 𝑗
2. Run-length of pixels with the same intensity 𝑖

3. Cluster of connected pixels with same intensity 𝑖

A proposed method of saliency map generation includes the computation of features’ attributions
and subsequently adding those attribution values to pixels involved in forming particular feature
values (figure 1). Regarding the size of the statistical radiomics features matrices (256x256 at
least), it is proposed to use convolutional neural networks to build the classifiers and gradient-
based methods to obtain attributions (such as Integrated Gradients).

Figure 1: A visualisation of the first-order statistical features’ attributions mapping to saliency map
values

3.2. Mapping high-order radiomic features’ attributions

A mapping of high-order statistical radiomic features could be defined as an extension of
the first-order features mapping procedure. It is a noticeable fact that all high-order feature
formulas are represented with differentiable functions. That allows the usage of gradient-based
methods (such as Integrated Gradients, GradCAM, DeepLIFT) directly to obtain first-order
feature attributions and subsequently map them to medical image pixel attributions by applying
procedure from section 3.1. The graphical representation of this process is displayed in figure 2.
This approach is feasible if the classification model is of a fully-connected neural network type.
Known model-agnostic methods such as SHAP cannot be used to attribute the massive number
(at least 65536 for GLCM and more for other methods) of the first-order features due to slowness
in the calculation process, which leaves the usage of other classification models as an open
question out of this research scope.

3.3. Experiment

The experiment is designed to test the faithfulness of the saliency maps generated by meth-
ods described in 3.2 and 3.2 and compare them with those generated by existing methods in



Figure 2: A visualisation of the high-order statistical features’ attributions mapping to saliency map
values

different classification tasks on X-ray and MRI images. The experiment’s scheme is presented
in the figure 3. The described experiment is run separately with different datasets to test the
generalisability of the proposed approach.

Figure 3: The experiment scheme. High-order radiomic features are computed from first-order statistical
radiomic features (A) with deep learning (B) or ad-hoc formulas (C) and become an input for the
classification of the multi-layer perceptron model (D). Attributions for the features are computed with
GradCAM, DeepLIFT, and Integrated Gradients (E) and mapped to the image saliency map (F). The
same is performed for plain image models (G and H).

3.3.1. Data Preparation

Each image in the dataset is converted into greyscale if needed, as statistical radiomic features
are defined only for greyscale textures in the current literature. Images are left intact for the
baseline pipeline (steps G and H in the figure 3).

3.3.2. Feature extraction

First-order statistical radiomic features are extracted with GLCM, GLRLM, GLSZM, grey-level
dependency matrix (GLDM), and neighboring grey-tone difference matrix (NGTDM) methods



into matrices, as described in works [14, 15, 16, 17, 18]. While calculating statistical radiomics
features, background pixels are not taken into account. The parameters for the mentioned
methods are to be found with a hyperparameter search procedure. High-order statistical
radiomics features are extracted out of matrices containing first-order radiomic features with
formulas defined in [14, 15, 16, 17, 18] and concatenated into a single feature vector. The list of
features calculated is provided in table 1

Table 1
The high-order statistical radiomic features employed in this research

Method Features Total Reference
GLCM Angular Second Moment, Contrast, Correlation, Sum of Squares, Inverse

Difference Moment, Sum Average, Sum Variance, Sum Entropy, Entropy,
Difference Variance, Difference Entropy, Information Measures of Correla-
tion (2x)

13 [14]

GLRLM Short Run Emphasis, Long Run Emphasis, Grey Level Non-Uniformity,
Gray Level Non-Uniformity, Run Length Non-Uniformity, Run Length Non-
Uniformity Normalized, Run Percentage, Grey Level Variance, Run Variance,
Run Entropy, Low Gray Level Run Emphasis, High Gray Level Run Emphasis,
Short Run Low Gray Level Emphasis, Short Run High Gray Level Emphasis,
Long Run Low Gray Level Emphasis, Long Run High Gray Level Emphasis

16 [15]

GLSZM Small Area Emphasis, Large Area Emphasis, Gray Level Non-Uniformity,
Gray Level Non-Uniformity Normalized, Size-Zone Non-Uniformity, Size-
Zone Non-Uniformity Normalized, Zone Percentage, Gray Level Variance,
Zone Variance, Zone Entropy, Low Gray Level Zone Emphasis, High Gray
Level Zone Emphasis, Small Area Low Gray Level Emphasis, Small Area
High Gray Level Emphasis, Large Area Low Gray Level Emphasis, Large
Area High Gray Level Emphasis

16 [16]

GLDM Small Dependence Emphasis, Large Dependence Emphasis, Gray Level Non-
Uniformity, Dependence Non-Uniformity, Dependence Non-Uniformity
Normalized, Gray Level Variance, Dependence Variance, Dependence En-
tropy, Low Gray Level Emphasis, High Gray Level Emphasis, Small De-
pendence Low Gray Level Emphasis, Small Dependence High Gray Level
Emphasis, Large Dependence Low Gray Level Emphasis, Large Dependence
High Gray Level Emphasis

14 [17]

NGTDM Coarseness, Contrast, Busyness, Complexity, Strength 5 [18]

Each of the described features has its unique formula for calculation. For example, a formula
for the Contrast feature of the GLCM matrix is defined as:

Contrast =
𝑁𝑔∑︁
𝑖=1

𝑁𝑔∑︁
𝑗=1

(𝑖− 𝑗)2𝐺𝐿𝐶𝑀(𝑖, 𝑗)

Here 𝑁𝑔 - number of grey shades in the image (usually equals 256), 𝐺𝐿𝐶𝑀 - matrix containing
grey-level co-occurrence first-order radiomic features.

3.3.3. Classification models and their training

Three types of classification models are trained. A first type receives first-order statistical
radiomic feature matrices. Models of the first type are represented with convolutional neural



networks. In this particular experiment, ResNet-50, VGG-16, and EfficientNet architectures are
used. Models of the second type are represented with special architecture, which implements
high-order statistical formulas from [14, 15, 16, 17, 18]. A multi-layer perceptron follows the
implementation of the block with formulas along with a sigmoid or softmax layer. The baseline
models receive plain images as input and are represented by ResNet-50, VGG-16, and EfficientNet
architectures. Each classification model of every type is trained from scratch. The training is
held until the F1-score on the development set stops to improve for ten subsequent epochs.
Adam algorithm is used as an optimizer with a 1𝑒− 4 learning rate.

3.3.4. Statistical radiomic feature attribution and saliency maps

As all classification models described in 3.3.3 are represented by neural networks, is is possible
to use gradient-based methods for feature attributing. In this research, it is proposed to use
Integrated Gradients, GradCAM, and DeepLIFT without any modifications. Subsequently, for
radiomic-based models, an additional mapping, which is described in section 3.1, is conducted
to obtain the saliency map. For plain images, attributions may be used as ready saliency map
without additional transformations.

3.3.5. Evaluation

The classification models’ performance are measured with accuracy and F1-score metrics.
The faithfulness of the saliency maps is measured numerically by Increase-In-Confidence and
Average Drop metrics [19] and compared to the same metrics for plain statistical radiomic
features attributions. Additionally, the same evaluation is conducted with Insertion Correlation
(IC) and Deletion Correlation (DC) metrics [20] as they also taking into account magnitudes of
saliency values. However, for IC and DC some iterations in the computation procedure will be
merged to drastically reduce the number of iterations, as the 256x256 saliency map requires
more than 3000 predictions to compute these metrics.

3.3.6. Datasets for experiment

Schenzen tuberculosis open-access dataset [21] contains 662 x-ray scans. The dataset is balanced;
there are 326 images of the healthy lungs and 336 images of the lung with the signs of tuberculosis.
No additional transformations are applied to this dataset, except those described in 3.3.1. During
the experiment, the task of distinguishing between healthy and tuberculosis lungs was assessed
with this dataset.COVIDx CXR-4 dataset [22] contains 84,818 chest X-ray scans. There are
65,681 scans containing COVID-19 lesions, and 19,137 are healthy lungs. Test and validation
sets for this dataset were formed balanced while leaving the train set unbalanced to ensure
faithful classification metrics. No additional transformations are applied to this dataset, except
those described in 3.3.1. During the experiment, the task of distinguishing between healthy and
COVID-19-damaged lungs was solved with this dataset. Cancer-Net BCa contains 253 breast
MRI scans with evidence of breast cancer. During the experiment, the task of full remission
prediction is considered.



4. Research question and hypothesis

This research aims to answer the next question: how a medical image saliency map could
be generated to explain a classification result when a classification model is trained with the
statistical radiomic features? According to this, the research hypothesis may be defined as
follows:

Research hypothesis IF neural network trained with first- or high-order statistical radiomic
features to perform the medical image classification AND aforementioned features attributed
with Integrated Gradients, GradCAM, DeepLIFT AND image saliency map generated with
proposed mapping method THEN Increase-In-Confidence, Average Drop, Insertion Correlation,
and Deletion Correlation metrics for generated image saliency maps will be at least the same or
statistically significantly higher as for direct feature attributions.

5. Preliminary results

The preliminary results, described in the author’s previous work [23], indicate that the saliency
maps generated method described in 3.1 could be considered faithful in terms of a numerical
evaluation, maintaining Increase-In-Confidence metric at 50%− 80% level and Average Drop
at 10%− 38%. Also, results indicate that the ResNet-50 classification model trained with only
first-order statistical radiomic features yields the same classification quality as the ResNet-50
model with raw image input, indicating that results are eligible for practical usage.

6. Expected final contribution to knowledge

The final contribution of the described research is expected to be a method for visually explaining
a classification result via saliency maps when the classification model is trained with first- or
high-order statistical radiomic features. The newly proposed method should allow for the
explanation and validation of the results of the previous work which uses statistical radiomic
features to solve medical image classification problems.
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