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Abstract
Machine learning applications in fields such as financial accounting or the healthcare industry have to
meet high transparency requirements for user acceptance and to meet the growing number of regulatory
standards. Counterfactual explanations as a rather easy to interpret concept of local explanations com-
bined with the generative power of Variational Autoencoder (VAE) and their ability to learn distributions
of latent representations can offer information to fulfill the needs of machine learning experts and
non-expert users at the same time. Most current studies leveraging the power of deep generative models
for counterfactual generation focus on vision data. We focus on anomaly detection applications on
real world tabular data in the two high-risk fields of financial accounting and healthcare. We give an
overview on constructions of counterfactual explanations and a categorization of current approaches
to produce counterfactual explanations. We are investigating supervised extensions of the VAE for
simultaneous classification and counterfactual generation. Therefor we explore the connection between
different approaches of probabilistic modelling and separability properties in latent space. We discuss
their applicability to anomaly detection and evaluation criteria.
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1. Introduction

Generative neural networks as a special form of deep learning have changed the way of data
driven application in many fields, such as computer vision, robotics, and natural language
processing. Specifically medical and financial industries ML-based approaches for decision
support have to meet high requirements of transparency. Explainability methods are constructed
to help the user of ml-methods to interpret the results of black-box models. In this PhD project
we focus on counterfactual explanations as an local explanability approach and investigate, how
this concept can be used to answer the users question: “What Should I have done differently to
change the outcome of the model prediction?” We investigate how counterfactual explanations
can be integrated into the VAE method to generate exogenous counterfactuals in the context of
anomaly detection.
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2. Related work

The VAE was introduced by [1]. It is based on a directed causal model using Bayes statistic to
learn the parameters of the distribution of a latent variable. It can be used to detect anomalies
in an unsupervised setting, by training the model on normal data and using the reconstruction
error as anomaly score [2]. The concept of counterfactual explanations was formulated as an
mathematical optimization problem for ML-models by [3]. There is no consensus in the scientific
literature on the taxonomy of explainability. Based on [4], we will interpret counterfactuals as
local instance explanations as an post hoc approach and a way of improving interpretability of
an ML-model as an ante hoc approach. The VAE as post hoc approach is visualized in figure 1
by the green lines, and as an ante hoc approach by the pink line.
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Figure 1: Flow chart from learning algorithm to human interpretation with post hoc explainer.

An explanation is called interpretable, when it describes the internals of a system in a way
that is understandable to humans. The success of this goal is tied to the cognition, knowledge,
and biases of a decision maker. For an explanation to be interpretable, it must give descriptions
that are simple enough for a decision maker to understand using a vocabulary that is meaningful
to the them. Note, that we will not measure the interpretability of a model. But we measure,
how well the construction goals of the counterfactual are met by the approach used.

An overview over current approaches for calculating counterfactual explanations is given in
[5]. The approaches can be categorized into model agnostic and model specific approaches. We
will look at concepts specific to VAE.

3. Research goals

This project aims to achieve the following goals:

1. get an overview on counterfactual construction objectives (CE-objectives) and categorize,
how they can be integrated into a VAE training procedure,

2. develop metrics to evaluate, how good the CE-objectives can be achieved,
3. develop the best way to integrated the CE-objectives into the VAE-objective specifically

for anomaly detection and
4. apply our method(s) on real world anomaly detection use cases from the healthcare and

financial sector.



4. Methods

4.1. Counterfactual Explanations

Counterfactual explanations (CE) have a long history in philosophy, but [3] first mathematically
formulated the counterfactual explanation as solution of an optimization problem for machine
learning.

Definition 4.1 (Counterfactual explanation). Given a classifier 𝑏 that outputs the decision
𝑦 = 𝑏(𝑥) for an instance 𝑥, a counterfactual explanation consists of an instance 𝑥′ such that the
decision for 𝑏 on 𝑥 is different from 𝑦, i.e., 𝑏(𝑥) ̸= 𝑦 and such that the difference between 𝑥 and 𝑥′

is minimal.

Since the first formulation, the requirements on this concept have evolved to meet practical
considerations. In [5] these CE-objectives are formulated as:

1. Validity: A counterfactual 𝑥′ should actually changes the classification outcome.
2. Proximity: Given a distance function 𝑑 in the domain of 𝑥, the distance between 𝑥 and

𝑥′ should be as small as possible.
3. Minimality: There should not be any other valid counterfactual example 𝑥′′ such that

the number of different attribute value pairs between 𝑥 and 𝑥′ is higher than the number
of different attribute value pairs between 𝑥 and 𝑥′′.

4. Plausibility: The counterfactual 𝑥′ should not be labeled as an outlier with respect to
the instances in 𝑋 .

5. Diversity: Let 𝐶 = {𝑥′1, . . . 𝑥′𝑘} be a set of 𝑘 (valid) CE for the instance 𝑥. The CE 𝐶
should be formed by diverse CE, i.e., while every CE 𝑥′𝑖 ∈ 𝐶 should be minimal and close
to 𝑥, the difference among all the CE in 𝐶 should be maximized.

6. Actionability: A CE 𝑥′ is actionable if all the differences between 𝑥 and 𝑥′ refers only
to actionable (mutable) features. This requirement links the concept of counterfactual
explanation to the concept of algorithmic recourse.

7. Causality: Let 𝐺 be a directed acyclic graph (DAG) where every node models a feature
and there is a directed edge from 𝑖 to 𝑗 if 𝑖 contributes in causing 𝑗. The DAG 𝐺 describes
the known causalities among features. Thus, given a DAG 𝐺, a counterfactual 𝑥′ respects
the causalities in 𝐺 iif ∀𝑥′𝑖 = (𝑎𝑖, 𝑣𝑖) ∈ 𝛿𝑥,𝑥′ such that the node 𝑖 in 𝐺 has at least an
incoming/outcoming edge, the value 𝑣𝑖 maintains any known causal relation between 𝑖
and the values 𝑣𝑗1 , . . . , 𝑣𝑗𝑚 , where the features 𝑗1, . . . , 𝑗𝑚 identifies the nodes connected
with 𝑖 in 𝐺.

4.2. Variational autoencoder

The VAE was introduced in [1] as following. Consider dataset 𝑋 = {𝑥(𝑖)}𝑁𝑖=1 consisting of 𝑁
i.i.d. samples of some continuous or discrete variable 𝑥. We assume, the data is generated by
some random process, involving an unobserved continuous random variable 𝑧. The process
consists of two steps:

• a value 𝑧(𝑖) is generated from some prior distribution 𝑝𝜃*(𝑧).



• a value 𝑥(𝑖) is generated from some conditional distribution 𝑝𝜃*(𝑥|𝑧).

We assume the prior 𝑝𝜃*(𝑧) and likelihood 𝑝𝜃*(𝑥|𝑧) come from parametric families of distribu-
tions 𝑝𝜃(𝑧) and 𝑝𝜃(𝑥|𝑧), and that their probability density functions (PDF(s)) are differentiable
almost everywhere w.r.t. both 𝜃 and 𝑧. The true parameters 𝜃* as well as the values of the
latent variables 𝑧(𝑖) are unknown. Where the integral of the marginal likelihood 𝑝𝜃(𝑥) =∫︀
𝑝𝜃(𝑧)𝑝𝜃(𝑥|𝑧)𝑑𝑧 is intractable, the true posterior density 𝑝𝜃(𝑧|𝑥) = 𝑝𝜃(𝑥|𝑧)𝑝𝜃(𝑧)/𝑝𝜃(𝑥) is

intractable. Let us introduce a surrogate 𝑞𝜑(𝑧|𝑥) ≈ 𝑝𝜃(𝑧|𝑥) to approximate the intractable true
posterior. We refer to 𝑞𝜑(𝑧|𝑥) as probabilistic encoder and 𝑝𝜃(𝑥|𝑧) as probabilistic decoder.

The VAE-objective aims to maximize the so called evidence lower bound (ELBO).

ℒ(𝜑, 𝜃;𝑥) = −𝐷𝐾𝐿(𝑞𝜑(𝑧|𝑥)||𝑝𝜃(𝑧)) + E𝑧∼𝑞𝜑(𝑧|𝑥) [log 𝑝𝜃(𝑥|𝑧)] , (1)

where 𝐷𝐾𝐿 is the Kullback-Leibler-divergence (KLD).
By using a neural network architecture for encoding and decoding and neural network

optimization (e.g. adam) [1] use the power of neural network optimization to autoencode
variational bayes.
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Figure 2: Illustration of a minimal example VAE architecture

The VAE can be used in an unsupervised setting to perform anomaly detection (see [2]),
by training the model on normal data. The ability of the model to reconstruct the test data
measured by the reconstruction error can be used as anomaly score.

4.3. Integration of CE-objectives into the VAE training

In the current literature we can see modifications to the VAE architecture, to produce CE. There
are modifications used to increase the interpretability of the network architecture. For example
the use of invertable mappings form feature space to latent space (see [6] or [7]) or to encode
a hierarchical latent sequence (𝑧𝑘) to capture more complex causal structures in latent space
(see [8]). There are modifications to the VAE-objective to include CE-objectives. This can be
included by regularization (see [7] or by conditioning the prior distribution to control the CE
candidate generation(see [9]). If the model is not explicitly trained to generate counterfactuals,
the training objective aims to separate the different classes and use some perturbation (see [10]),



projection (see [6]), interpolation (see [8]) or sampling technique (see [11]) to generate CEs.
Due to reference space limitations, the overview of current literature is not comprehensive, but
all current methods can be categorised into one of the following tree categories:

• Include the CE-objectives in the VAE-objective and train the model to produce a CE.
• Train the VAE to separate the classes. Use perturbation or projection technique to produce

valid candidate(s). Select the candidate optimal under the CE-objectives.
• Train different models on partitioned data. Use interpolation or sampling technique to

produce valid candidates. Select the candidate optimal under the CE-objectives.

Since the methods are designed for different data types, use data specific model modifications
and try to meet different CE-objectives, a comprehensive comparison using the literature so far
is not possible. None of the methods is designed or evaluated for anomaly detection use-cases
with rare anomaly data.

5. Preliminary results

After reviewing and grouping current approaches on counterfactual generation in VAE, we
develop ideas on how to integrate the CE-objectives specifically for the anomaly detection use-
case. Currently we are investigating the complementary supervised VAE approach introduced
in [12]. We want to investigate it’s ability to separate anomalies from normal data and using
it, to generate CE candidates. The concept in [12] is to train the VAE with normal prior and a
loss function with so called standard KLD on a dataset with normal data. For training on seen
anomaly data a complementary prior and corresponding KLD is chosen. The complementary set
VAE approach follows the assumptions, that anomalies are regarded as the complementary set
of the normal set and the normal region and the anomalous region are both mutually exclusive
and collectively exhaustive. With defining 𝑝𝑛(𝑧) to be the PDF for normal data [12] construct
𝑝𝑎(𝑧) to be PDF of the anomalous data. It is constructed to satisfy the relationship

𝑝𝑎(𝑧) =
1

𝑘′
(max

𝑧′
𝑝𝑛(𝑧

′)− 𝑝𝑛(𝑧)) (2)

where 𝑘′ is a norming constant such that 𝑝𝑎(·) is PDF. This construction satisfies the property
of the complementary set, but 𝑘′ is infinity because the mass explodes. To ensure 𝑝𝑎(𝑧) is a
PDF, we multiply 𝑝𝑤(𝑧) that is wide enough for each dimension. Then the density function is

𝑝𝑎(𝑧) =
1

𝑘
𝑝𝑤(𝑧)(max

𝑧′
𝑝𝑛(𝑧

′)− 𝑝𝑛(𝑧))⏟  ⏞  
=:𝑝*𝑎(𝑧)

(3)

where 𝑘 is a finite normalizing constant

𝑘 =

∫︁ ∞

−∞
𝑝*𝑎(𝑧)𝑑𝑧. (4)

Using this as a prior, [12] expand the conventional unsupervised VAE into a supervised one
to distinguish anomalies in the latent space. We choose the Standard Gaussian distribution



as a prior for the representation of normal samples 𝑧𝑛 ∼ 𝒩 (𝑧𝑛; 0, 1) with PDF 𝑝𝑛(𝑧𝑛; 0, 1).
We construct the one-dimensional PDF 𝑝𝑎(𝑧𝑎) of the representation for anormal samples 𝑧𝑎
using the prior for the normal data representation 𝑝𝑛(𝑧𝑎; 0, 1), the bounding Gaussian density
function 𝑝𝑤(𝑧𝑎; 0, 𝑠

2) and equation (3)

𝑝𝑎(𝑧𝑎; 𝑠
2) =

1

𝑘
𝑝𝑤(𝑧𝑎; 0, 𝑠

2) · (max
𝑧′𝑎

𝑝𝑛(𝑧𝑎; 0, 1)− 𝑝𝑛(𝑧𝑎; 0, 1)) (5)

where the constants in this equation are described as

max
𝑧′𝑎

𝑝𝑛(𝑧𝑎; 0, 1) =
1√
2𝜋

=: 𝑎 (6)

and

𝑘 =

∫︁ ∞

−∞
𝑝𝑤(𝑧𝑎; 0, 𝑠

2) · (𝑎− 𝑝𝑛(𝑧𝑎; 0, 1))𝑑𝑧𝑎 = 𝑎

(︃
1−

√︂
1

𝑠2 + 1

)︃
. (7)

The parameter 𝑠2 determines the width of the distribution. The multi-dimensional version
is derived as a product of each dimension composed of the one-dimensional version. The

Figure 3: Visualisation of complementary prior for different 𝑠2 in one dimension.

complementary KLD can be approximately calculated as

𝐾𝐿(𝑞(𝑧|𝑥;𝜑)||𝑝𝑎(𝑧)) ≃
√︂

2𝜋

𝜎2 + 1
exp

(︂
−𝜇2

2(𝜎2 + 1)

)︂
+

𝜇2 + 𝜎2

2𝑠2
− log 𝜎 + log 𝑠+ log(

√︀
𝑠2 + 1− 1)

− log(𝑠2 + 1)

2
+

log(2𝜋)− 1

2
(8)



(a) Standard KLD (b) Complementary KLD for s = 5

Figure 4: Visualization of the KLD for the normal prior and anomaly prior

This VAE is trained alternating on a batch of normal data with standard prior and KLD and a
batch of anormal data with complementary prior and complementary KLD. It is based on the
idea, that both models share parameters. We want to investigate this training setup, because it
can be used to detect also unseen anomalies. We have implemented the training procedure and
want test it on synthetic data with given distributions, to validate this training setup.

6. Next research steps and expected final contribution

We aim to give an overview and discuss different evaluation metrics for current approaches
and for our model extensions. In next research steps we evaluate the training procedure for
complementary set VAE, produce and evaluate CE-candidates and develop and evaluate different
approaches to integrate CE-objectives in the VAE-objective. Specifically we aim to investigate
modifications in conditioning the prior distribution and the causal model of the VAE, investigate
modifications in optimization, e.g multi-criteria optimization, investigate different training
settings and develop and discuss an evaluation scheme for synthetically generated data and for
real world use case data.
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