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Abstract
Many research works focus on benchmark datasets and overlook the issues appearing when attempting to
use the methods in real-world applications. The application used in this work is the detection of diseases
and damages in grain kernels from images. This dataset is very different from standard benchmark
datasets and poses an additional challenge of biological variation in the data. The goal is to improve
disease detection and introduce explainability into the process. We explore how knowledge graphs can be
used to improve image classification by using existing metadata and to create collections of data depicting
a specific concept. We identify challenges one faces when applying post-hoc explainability methods on
data with biological variation and propose a workflow for the choice of the most suitable method for
any application. Moreover, we evaluate the robustness of these methods to naturally occurring small
changes in the input images. Finally, we explore the notion of convexity in representations of neural
networks and its implications for the performance of the fine-tuned models and alignment to human
representations.
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1. Introduction

During my PhD, I cooperate with a Danish company FOSS. Their EyeFoss™ instrument is being
used for objective grain quality estimation using image-based classification of grain types and
grain damages. Over the years, they created a large database of images of grains of various
types, mostly healthy kernels, but also a reasonable amount of grains for various diseases or
damages. The images were taken over a couple of years at different geographical locations,
creating an interesting collection for further research work. This application is the overarching
topic for my research.

From all possible research directions, we decided to take two paths: variability of grains
depending on external conditions and explainability. The first one stems from the need to train
a new model for each geographical location, and often each harvest the general look of kernels
differs too much to be handled by the models. A human expert usually looks at the batch of
kernels as a whole (or also has other information regarding the yield at that specific time and
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location) and adjusts their decision according to this accompanying information. The model, on
the other hand, classifies single kernels without knowing anything else. This lack of knowledge
makes the task very challenging. The need for explainability emerged naturally from contact
with customers. The instrument determines the price of grains and also a possible need for the
destruction of the whole yield if a dangerous disease is found, so both farmers and companies
buying the grains have to believe that the decisions are fair and based on good reasons. Next,
we will describe how each of the topics introduced as motivation formed research questions.

2. Motivation and Research Questions

2.1. Knowledge Graphs and Metadata

Knowledge graphs (KGs) might be a good instrument for providing machine learning algorithms
with additional knowledge that is not present in the input images themselves. The information
about the other grains in the same batch would be useful since they were exposed to the same
conditions, and, if, for example, one kernel clearly shows the presence of an infectious disease,
the rest of the batch is more likely to be infected as well and should be inspected more carefully.
Ideally, all possible metadata could be included to eradicate the need for fine-tuning the models
for each customer. The metadata we have in mind can be, for example, information about the
field where it was grown (location, weather, quality of soil), history of the field (what was
grown there before; what fertilizers and pesticides were used; what diseases and damages were
detected in the past, etc.) or how it was transported and stored (because of possibilities for
diseases and damages caused by poor storage conditions, e.g., mold). All of these factors affect
the grains. How could they be used to help with classification? We generalized this special case
into a more general topic concerning any image classification when more information is easily
available – for instance, text that is close to the image on a webpage. Can we use the metadata
to improve image classification?

The second use of KGs connects this motivation with the following one: could we build a
knowledge database about grains and then use it to explain the models using concept-based
explainability? For example, if we could represent the concept of “pink fusarium" (a fungal
infection), we might explore the global functioning of the model concerning this concept and
get insights into the whole process. KGs could be a great source of information about concepts.
This inspired us to explore whether KGs can be used for concept definition and data collection.

2.2. Explainability

Since explaining the decisions on the pixel level for each image separately would be useful for
gaining trust, we decided to explore how post-hoc explainability methods could be applied to
the problem of grain images. One of the first concerns is robustness: during photo collection
and image preprocessing, the grains and the final photos are rotated and centered, and other
changes are applied. Moreover, the light conditions depend on the light bulb inside the machine,
which might slightly differ in each machine. We need to ensure that the explanations are robust
against these small, naturally-occurring changes. Therefore, the first step is to explore how the
explanations change if we change the input image (using standard data-augmentation methods).



Subsequently, when trying to apply the methods to this specific data, we found many open
questions without clear answers in the current research. For example: how to choose good
hyperparameters; how to visualize the resulting explanations; and how to evaluate the quality
with regards to this application? Stimulated by all the ambiguities and unknowns, we explore
this topic in-depth and propose a workflow that could also be used in other applications.

When faced with a classification problem, one has to make decisions about the architecture
and size of the model used for training. One part of this decision is choosing between training
from scratch or fine-tuning an existing pretrained model. Which would give better results? Could
we tell something about the performance of the fine-tuned model based on the representations
created by the pretrained model? We explore the notion of convexity in the context of machine
representations for both models. A better understanding of the inner workings of neural
networks is a prerequisite for ensuring the alignment between AI and human values.

3. Related Work

We provide a general overview of the research relevant to this work. Most references are omitted
because of lack of space and can be found in the corresponding papers.

3.1. Post-hoc Explainability in Image Domain and Quality Evaluation

Although explainability is important for understanding neural networks, the existing methods
differ in the quality of produced explanations and many saliency methods have been criticized.
Therefore, quality evaluation metrics have been developed. They usually measure to what
degree the explanations satisfy certain desiderata. For example, the explanation should reflect
model’s predictive behavior (e.g., pixel-flipping [1], IROF[2]), be stable to slight perturbations of
the input (sensitivity [3]), and use only a few features (complexity [4]). It has been shown that
both image classifiers and explanation methods are fragile and that attackers can manipulate
the explanations arbitrarily. Rieger and Hansen in [5] used an aggregate of a few explanation
methods to defend against attacks on explanations. However, this does not solve the problem
for a single method.

3.2. Learning from Hints

There is a long history of combining separate pieces of information to improve the learning
process and resulting models. We use additional information about a specific image to improve
its classification, not the whole model during training. There is a growing interest in including
knowledge bases or metadata in the learning process for hybrid models combining neural net-
works with symbolic knowledge. There are many approaches to combining multiple modalities,
usually by training a new model jointly with all data. In comparison, our approach uses already
existing large pre-trained models eliminating the need for processing and incorporating the
metadata into a complicated pipeline. Integration can happen at the input level (early fusion),
at the decision level (late fusion), intermediately, or in a combined way (hybrid fusion).



3.3. Concept-Based Explainability Methods

As opposed to per-instance explanations, concept-based methods use higher-level attributes,
usually referred to as concepts. Various theoretical frameworks have been proposed in recent
years, most distinctively post-hoc and inherently interpretable methods. Many methods require
pre-defined concepts with examples, but these data are difficult to get. For example, concept
activation vectors (CAVs) [6] use the data to determine a direction in the hidden space that
represents the concept, and concept activation regions (CARs) [7] generalize this approach to
regions. There are also approaches aiming to discover the concepts that a model has learned
without the need for labeled concept data.

4. Methods

This section presents a general overview of the methods used in all the experiments included in
this work. For all the details, see the respective papers.

Robustness of Explanations to Data-Augmentation Methods [8] We choose six aug-
mentation methods and divide them into two categories: invariant (changes in brightness, hue,
and saturation) and equivariant (rotation, translation, and scale). For the invariant methods,
we want the explanations of the augmented image to be the same as the explanation of the
original image. For the equivariant methods, we compare the explanation of the augmented
image with an augmented version of the original explanation (e.g., a rotated explanation). For
each method, we choose a symmetric interval determining the strength of the augmentation
such that the probability of the correct class drops by at least 10% at one of the end points. We
choose the ResNet50 model architecture and train it in two settings: first using all available
data augmentation, and then using only necessary augmentations (for centering and clipping
the input image). We compare the results for both models to see if the pertaining influences the
robustness. We evaluate the robustness by computing the correlation between the explanations
and compare it to the drop in the probability of the target class (i.e., the robustness of the
classifier). We define a robustness score (see [8]) such that values lower/higher than 1 mean
that the explanations are less/more robust than the classifier.

Challenges in Explaining Models for Data with Biological Variation [9] The grain
image data used in this paper was obtained from the FOSS’s EyeFoss™ image database. We
selected two well-known and well-described barley defects that are important for the malting
process: pink fusarium infection and skinned barley. We treat them as a binary classification
and train a simple convolutional network for each of them. Since one of the goals is to measure
how similar to human perception the explanations are, we collected manual annotations of the
defects (as binary masks) made by an expert on grain quality evaluation. In [9], we identify
and discuss many challenges faced when applying explainability methods in general and on
a particular dataset. These include insufficient evaluation methods, subjectivity of annotated
explanations, many hyperparameters to define, and many ways of visualization. Even slight
changes in the choices make a big difference on the explanation. We first evaluate the quality
without ground truth using sensitivity [3], pixel-flipping [1], IROF[2], complexity [4], and



we replicate the experiments from [8] (described in the previous paragraph) to compare the
results of the two different datasets. Next, we evaluate the similarity to the ground truth masks
using two metrics: the area under the Receiver Operating Characteristic Curve (ROC-AUC) and
Relevance Mass Accuracy [10]. To determine the best method, we combine all the results into
one final ranking using mean reciprocal rank (MRR). All details can be found in [9].

Using Metadata for Classification Improvement [11] The idea of this approach is quite
simple: we need pretrained classifiers for each of the data types available (one main + any
number of metadata) with the same target classes. In this work, we use one for images and one
for text. We gather logits from both models and combine them just before applying the softmax
activation. Jørgensen et al. derive a theorem in [11] that implies (under certain assumptions)
that 𝑃 (𝑐𝑖|𝑥1, . . . ,𝑥𝑁 ) = softmax𝑖

(︁∑︀𝑁
𝑗=1 𝑧𝑥𝑗 − (𝑁 − 1) ln𝜋

)︁
, where 𝑁 is the number of

combined models, 𝑐𝑖, 𝑖 ∈ {1, . . . , 𝐶} a class, 𝑥1, . . . ,𝑥𝑁 input data, 𝑧𝑥1 , . . . , 𝑧𝑥𝑁 are logits
such that for all relevant 𝑖, 𝑗: softmax𝑖(𝑧𝑥𝑗 ) = 𝑃 (𝑐𝑖|𝑥𝑗), and 𝜋 is a vector of probabilities
𝜋𝑖 = 𝑃 (𝑐𝑖). It is discussed in the paper that the assumptions may not be satisfied in general but
when using this formula empirically for combining two classifiers, it improved the accuracy.
Moreover, we evaluate the influence of calibrating each classifier before combining them. We
compare these results to a linear SVM classifier trained on the concatenated logits.

Concept Definition Using Knowledge Graphs [12] We propose a pipeline for collecting
personalized concept data. We use knowledge graphs to get structural knowledge for a concept
we are interested in. We propose a simple interactive tool to “go up" or “go down" on the level
of generality of a concept in KGs, and disambiguate among different meanings. In this way,
the end-user decides what concepts are relevant for a specific application and assures their
correctness. In the next step, we use Wikipedia (for text) and Wikimedia Commons (for images)
to collect data linked to each concept in Wikidata. We evaluate the quality of the collected
data using CAVs [6] and CARs [7]: accuracy of the classifiers, the role of the number of data
available, comparison to human-defined concepts, and alignment between the concepts and
their subconcepts (if the CAVs and CARs of concepts that are close in the knowledge graph, i.e.,
human cognition, are also similar in machine representations). For more details, see [12].

Convexity of Decision Regions [13] The goal is to evaluate to what degree is convexity
of decision regions present in the representations throughout the whole model. Convexity in
general is a yes/no property but we define it as a proportion from 0 to 1. We define two types
of convexity: Euclidean and graph. Euclidean builds on the “standard" definition of convexity,
where we sample points on the segment (in Euclidean geometry) between two points from the
same class and compute how many of those are classified as belonging to the same class. The
graph convexity is motivated by the observation that the representational geometries are often
better described as general manifolds. The shortest paths between two points are then geodesics
instead of segments. Geodesics are hard to compute, so we approximate them by the shortest
paths in a graph, where vertices are available datapoints and edges are Euclidean distances
between the closest points (we keep only 10 nearest neighbors). The graph convexity score is
then defined as a proportion of the “well-classified" vertices on the shortest paths between each



two points from the same class. Each score captures different properties of the representations.
An extensive definition and illustration of both scores can be found in [13]. We evaluate both
convexity scores on five modalities (images, text, audio, human activity recognition, and medical
images), multiple models, and all hidden layers. We compare the results for corresponding
pretrained and fine-tuned models.

5. Results

In all the described papers, the methods section (briefly recapitulated in this work) defines a
new notion, a score, or a workflow. These should be seen as results themselves. Moreover, we
present an overview of the results of the experiments. The reader is referred to the individual
papers for detailed results.

Post-hoc Explainability We found out that LRP composites [14, 15] and Guided Backprop-
agation [16] created the most stable explanations (with respect to data augmentations) and
Gradients [17] and Input x Gradients [17] were the least stable ones. When perturbing with the
invariant methods, the explanations were more stable (almost as stable as the classifier itself)
than when perturbing with equivariant methods. Training with data augmentation did not
increase robustness. The results of robustness to data augmentations on grain images were very
similar to the results on ImageNet, suggesting that this metric is quite stable to the distribution
shifts in the input data.

The experiments on the images of grains showed that it is hard to evaluate explainability
methods even with the evaluation metrics (some methods were better in some aspects and worse
in others). After aggregating all the metrics, the three best methods were LRP (EpsilonPlusFlat),
SHAP [18], and Deconvolution [19]. However, the presented analysis should be taken predomi-
nantly as a framework for evaluating explainability methods on non-standard data because the
results are likely to be different when applied to other images with different properties.

Using Metadata for Classification Improvement The proposed fusion scheme improved
the performance by combining preexisting unimodal classifiers. Compared to a linear SVM
classifier, it achieved comparable accuracy with much fewer computational resources. However,
calibration of the unimodal classifiers was crucial for the performance of the fusion model.

Concept Definition Using Knowledge Graphs By using the proposed pipeline and publicly
available resources, we can create larger concept databases than the available labeled databases.
Importantly, databases defined like this lead to comparable or even better accuracies for CAVs
and CARs. We observed lower accuracy and agreement of CAVs and CARs in the early layers
of the networks, indicating that explanations derived from the early layers should be viewed
critically. We showed that explanations based on the retrieved concept databases are robust to
in-distribution shifts (e.g., variations in the negative set) and even, to a certain degree in the
later layers, to out-of-distribution shifts (i.e., using a different dataset). However, it is still critical
to align the concept definition and database with the user’s intention, as the explanation can
strongly depend on the context of the concept. Finally, we showed that networks learn a similar



relation of concepts to sub-concepts as in human-generated knowledge graphs, suggesting some
inherent alignment. This human-machine alignment is essential for successful communication
and underscores the promising future of concept-based explainability.

Convexity of Decision Regions We carried out extensive experiments in multiple domains
and on networks trained by self-supervised learning and next fine-tuned on domain-specific
labels. We found evidence that both Euclidean and graph convexity were pervasive in pretrained
and fine-tuned models. We found that decision region convexity generally increased after fine-
tuning. Importantly, we found evidence that the higher convexity of a class decision region after
pretraining was associated with the higher recall of the given class after fine-tuning. This is in
line with observations made in cognitive systems, that convexity supports few-shot learning.

6. Conclusions and Next Steps

Real-world data is a great source of research questions and challenges that need to be solved.
We presented a couple of research questions stemming from images of grains, namely using
metadata to enhance classification, and explaining the models. Despite the motivation coming
from a specific application, many of the presented results concern general setup and benchmark
datasets. A natural next step is to utilize these findings in the application – on images of grains.
Specifically, use the grain metadata to improve classification and collect concept data for concepts
relevant to grain disease detection. We also developed methods for evaluating certain properties
of the explanations (robustness against data augmentation) and representations (convexity).
The next step is to develop training methods that would improve on these properties.
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