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Abstract
This study explores the integration of Large Language Models with social robots to facilitate End-User Development through natural
language interactions. The paper presents a prototype system embodied in a Pepper robot that allows non-expert users to customise
robot behaviours by defining personalisation rules via vocal commands. This system employs trigger-action programming, enabling
users to create automations based on specific triggers and actions without requiring in-depth technical knowledge. Through an example
scenario, we show how users can program the robot by employing voice commands to execute actions when an event occurs. The
created automations can also involve available IoT objects. The study investigates the potential of natural language interaction to
improve the usability and flexibility of robot programming, offering new possibilities for personalised interactions in various settings.
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1. Introduction
Over recent years, technological advancements have re-
sulted in the development of increasingly sophisticated
robots that are more closely integrated into human daily ac-
tivities. This evolution is especially noticeable in the realm
of social robots. These robots are designed to interact with
humans in various social contexts, assisting with a range
of tasks, including children’s language education [1], older
adults’ cognitive training [2], and smart device manage-
ment [3]. Moreover, robots could offer advantages over
traditional voice assistants, particularly in routine activity
detection and support for individuals with functional limi-
tations [4][5][6]. Several end-user development tools have
been introduced to facilitate user engagement and customi-
sation of these robots’ behaviour. These tools utilise various
paradigms, such as block-based [7] and natural language
programming [8], enabling users to compose personalisa-
tion rules (for instance, having the robot say something
when a person is in front of it or perform specific actions
based on vocal commands).

Recent advancements in artificial intelligence, particu-
larly with Large Language Models (LLMs), have the po-
tential to enhance robots’ communicative and operational
capabilities. This enables interactions that can resemble
human-like conversations and dynamically adapt to end-
user requests [9]. Within this context, trigger-action pro-
gramming emerges as an effective approach to End-User
Development (EUD) in robotic systems. It allows users to
define robot behaviours in response to specific events or
conditions, offering a user-friendly way to customise robot
functionalities without the need for deep technical knowl-
edge.

This paper presents a prototype of a conversational agent
embodied in a Pepper robot that utilises an LLM to assist
non-expert users in creating personalisation rules in trigger-
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action format. Through vocal conversations, users can natu-
rally express their preferences for how they want the robot
to act when a specific event occurs. These events can be
triggered by interacting with the robot itself (e.g., when the
robot recognises a person), or by the surrounding smart envi-
ronment (e.g., the change of temperature in a room, opening
or closing windows/doors). In the following sections, we
first introduce related work in the field of trigger-action
programming for robot end-user development, and then we
delve into the architecture of this prototype and an appli-
cation scenario. Finally, we discuss the next step for this
work.

2. Related Work
Various research studies have explored the possibilities of
end-user programming of robot behaviour using the trigger-
action paradigm, employing diverse interaction modalities
and approaches. Leonardi et al. [10] exploited a graph-
ical web-based wizard interface to enable users without
programming skills to define personalisation rules by spec-
ifying events and/or conditions (triggers) that, once met,
initiate the execution of defined actions. The tool allows
the user to select triggers and actions related to smart de-
vices (e.g., the motion detected by a sensor, turning on smart
bulbs) and a Pepper robot (e.g., a touch on the robot’s head).
Thus, it was possible to create automations, such as having
Pepper say “Hey, how are you?” when someone entering the
room is detected, by combining Internet of Things devices
with Pepper. In the present study, we propose the devel-
opment of automations through direct interaction with the
robotic system, as opposed to the utilisation of a separate
web-based wizard.

Another contribution by Porfirio et al. [11] presents Tab-
ula, a multimodal end-user development system for pro-
gramming service robots for personal use in domestic and
workplace environments. In this case, the system enables
users without programming skills to script tasks, defining
humanoid robots’ behaviour (a Pepper one) using trigger-
action programming and combining natural language with
sketches on a visual interface to define the automation. In
particular, users can utilise natural language commands (via
voice) to define triggers and actions. The resulting automa-
tion is visualised on a two-dimensional map, displaying the
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current environment (e.g., the user’s house) and the defined
path or actions of the robot. This setup allows users to mod-
ify or refine the automation or to implement more complex
logic that is difficult to express verbally. The implemented
prototype encompasses a set of five actions (e.g., moving to
a position, saying something) and two events (e.g., a person
approaching or speaking to the robot), enabling the cre-
ation of automations like “when the user arrives home, the
robot goes to the entrance”. Although users have consid-
ered the approach promising, the system faces challenges
in processing natural language input due to difficulties in
understanding complex or ambiguous commands, which
leads to errors in automation and user frustration.

Finally, a recent work proposed by Karli et al. [12], de-
veloped a system integrating ChatGPT to enable end-users
to define robot programs (e.g., for defining the movement
of robotic harm) using natural language instructions. The
system interface presents a chat from which the user sends
the inputs, a console showing the generated code and a
view of the robot simulator. Beginning with the description
of the desired robot behaviour, the user engages in a col-
laborative process that iteratively defines and debugs the
specifications with the system to address the request. While
the natural language interaction is effective, the study em-
phasises several critical points regarding the use of LLMs
in this context. It highlights the necessity of enhancing the
reliability of LLM-generated code through accurate code
verification processes, crafting more effective prompts and
adjusting prompts dynamically to better fit the context.

In general, LLM approaches open new possibilities for
applications across a broad range of settings in end-user
development, highlighting the potential to enhance the us-
ability and flexibility of robot programming.

3. Our Approach
In this proposal, we introduce the combined use of Pepper
with an LLM agent, aiming to define the robot’s behaviour
through specific trigger-action personalisation rules (also
called automations) expressed by voice. By integrating an
LLM as a natural language processing module, users can
communicate with Pepper in a more intuitive and conver-
sational way. This enhancement enables Pepper to process
complex commands and questions, significantly improv-
ing its usability and interactive capabilities. Furthermore,
this system design lets users create automations verbally,
eliminating the need for any programming skills. Figure 3
illustrates the architecture of the designed system.

Specifically, this prototype aims to create automations
that include triggers and actions related to both a smart
environment (e.g. a smart home) and the robot. Through
these automations, it is possible to define events, conditions,
and actions related to both sensors and smart objects (e.g.,
motion sensors, smart light bulbs, smart thermostats) and
Pepper (e.g., recognise a person, display something on its
tablet, say something). In this way, the robot becomes part
of a smart ecosystem in which it can perform actions in
response to triggers related to the environment or be itself
the trigger of events for the execution of actions by smart
objects. On a technical level, Pepper can be considered a
system entity at the same level as sensors and smart objects
and can thus be integrated into control systems of smart
environments. The automations created are then executed

Figure 1: System Architecture

through an Automation Manager (we use Home Assistant1

as Automation Manager because it is open-source, robust,
and widely used with an active community). In particular,
we consider the following triggers and actions involving
Pepper:

• Triggers: chest button press, head touch, hand
touch (both right and left hand), face recognition,
emotion recognition, and speech recognition.

• Actions: speak, hand movement, run animation,
position change, video camera activation, LEDs state
change, show something on display.

When the user speaks, the robot utilises the Google
Speech API to identify the spoken sentence. The system
then makes an API call to the Dialogue Manager to process
the user message. The API response, which is delivered
using Pepper’s voice, contains the response message for
the user. Once the automation is complete it is saved in a
database and executed through the automations manager.

More generally, our approach opens the possibility of
creating automations that involve robots and surrounding
connected sensors and objects. Indeed, the created automa-
tions can involve both triggers and actions associated with
the robot (e.g., when Pepper recognises a specific person,
says “Hello [name]” and does a greeting animation), but it is
also possible to have triggers activated by external sensors
or objects and actions executed by the robot. Vice versa,
triggers can be generated by the robot, with actions exe-
cuted by surrounding objects (e.g., When Pepper detects a

1https://www.home-assistant.io/



negative emotion on the user’s face, soft lights turn on, and
relaxing music plays.).

3.1. Interacting with Pepper
The application integrates voice and text messaging func-
tionalities, as well as message display editing. The vocal
interaction approach utilises Google Cloud’s Text-to-Speech
(TTS) and Speech-to-Text (STT) APIs. This approach offers
a comprehensive solution for adding vocal input and out-
put capabilities, thereby enhancing the user experience by
making interactions more natural and engaging.

Users can activate voice recognition in the robot by press-
ing a designated button on the interface or touching a part
of the robot’s body, such as the hand or head. This service
converts vocal input into text. Initially, the service starts
recording audio via the robot’s microphone, visually notify-
ing the user of the recording status with a change in button
colour to indicate when the recording is active. Next, the
service sends the audio stream to the Google STT service.
The speech service promptly notifies the robot application
when receiving the input converted into text format, allow-
ing for almost instantaneous processing of the transcribed
message. The obtained text can be used for various pur-
poses within the robot application, such as displaying it for
the user, sending it to other backend services for further
responses or actions, or triggering specific commands based
on keywords.

The robot application’s audio output is generated by a
TTS functionality that handles authentication to the Google
Cloud service, manages synthesis requests, and ultimately
plays the resulting audio using a media player. The sys-
tem saves the synthesised audio to a local file, readying
it for playback. This conversion occurs after the message
has been processed and sent to the list of displayed mes-
sages, ensuring that the user can both see and hear the bot’s
response. A useful feature introduced is the toggle func-
tionality that allows users to choose between viewing all
messages exchanged in the chat and viewing only the last
two messages (the application’s default view). The toggle
is triggered by a method that flips a Boolean value, based
on which the adapter decides which view to adopt. This
mechanism helps keep the user interface tidy, showing only
a part of the messages during vocal interaction but allow-
ing users to view the entire conversation, if desired. This
decision was made under the assumption that during a real-
time vocal conversation, users do not always need a textual
representation of the entire chat.

Finally, the interface also features a reset function, allow-
ing users to activate a series of actions through a dedicated
button to stop any ongoing activity, such as vocal recording
or the playback of animations and vocal synthesis. More-
over, this functionality serves to clear the user interface
by deleting the message history and returning any input
fields or selections to their original state. This reset feature
ensures a smooth and intuitive user experience by allowing
users to easily reset the application without the need to
navigate through complex menus or restart the app entirely.

3.2. Dialogue Manager
The Dialogue Manager serves as the core component for
processing natural language inputs and managing conver-
sational flow. When a user engages with the robot, Pepper
transcribes the user’s speech into text and then sends it to

the Dialogue Manager via an HTTP request. Upon receiv-
ing the text, the Dialogue Manager (a Flask Python server)
forwards the message to the GPT-4 model through the Ope-
nAI API. Guided by the instructions in the defined prompt,
the model determines the next step in the conversation. It
can either execute a function to perform a specific task or
directly generate a textual response to the user’s query.

The constructed prompt begins with a description of
the role the model is expected to adopt (e.g., ”You are
Pepper, a humanoid robot...”), which is succeeded by an
explanation of the task (e.g., ”Your task is to help users create
automations...”) and some general guidelines to be adhered
to when interacting with the user (e.g., ”call the user by
the name” or “keep the response short and simple…” ). Then,
the prompt introduces the functions the model can use,
along with instructions on when and how to use these
(e.g., “always use the verify_automation function before
saving the automation” ). The function calling functionality,
provided by the OpenAI API, enables the LLM to interface
with external resources and tools. This is possible by
supplying the model with a set of function descriptions and
the required parameters for their execution. In particular,
we include a function for retrieving the list of possible
triggers and actions for defining an automation, a function
to verify the correctness of the defined automation, and a
function for saving the created automation in a database.
When a function is invoked, its output is fed back into the
model. This becomes the basis for GPT-4 to generate an
appropriate response. For example, the ”save automation”
functions provide an output message containing the unique
automation ID as well as a confirmation message if the
operation was successful or an error message otherwise.
The model utilises this output to generate the user’s
response. This response is then dispatched to Pepper,
closing the loop of the initial HTTP request. Pepper then
verbalises the response, providing the user with an audible
answer.

Example Scenario. Let’s consider a usage scenario
in which the user talks with Pepper and defines one
automation by saying something like: ”When I come back
home if I’m in a bad mood, say something comforting”.
Consequently, Pepper will send this sentence to the
Dialogue Manager that retrieves the list of possible triggers
and actions and proposes the users an initial automation:
“We can detect when you are home using the location of
your smartphone, and I can detect your mood by your facial
expressions. If you are sad or angry, I can put on relaxing
music and say something comforting like...”.

At this point, the user can continue talking with Pepper
to refine the proposed automation. Once the user is satisfied
with the defined triggers and actions, the Dialogue Manager
uses the “verify automation” function to check that the
automation contains only available triggers and actions. If
an automation is correctly verified, Pepper asks the user
if the created automation can be saved. After saving, a
confirmationmessage resumes the created automation along
with the assigned ID in the database. Once automation
is saved, the Automation Manager module executes the
defined actions when the chosen event is triggered, and the
defined conditions are eventually met.



4. Conclusions and Future Work
This research explores the integration of Large Language
Models into the domain of End-User Development for so-
cial robots, focusing on enabling users to customise robot
behaviours through intuitive, natural language vocal inter-
actions. By implementing a prototype conversational agent
embodied in a Pepper robot, we facilitate non-expert users in
creating automation for personalising the robot behaviour
based on events in a smart environment (e.g., presence de-
tection in a room), or on events on the robot itself (e.g.,
human face recognition). This approach leverages trigger-
action programming, presenting a user-friendly method for
customising robot functionalities without requiring tech-
nical knowledge. Our proposal contributes to the field by
illustrating the practical application of LLMs in enhancing
robot usability and flexibility, suggesting a promising av-
enue for future research and development in social robotics
and user-centric automation. For future work, we plan to
initially conduct user tests in a controlled environment (e.g.,
laboratory setting) to evaluate the strengths and weaknesses
of our solution in comparison with existing tools based on
visual interfaces. User tests in real-world scenarios will fol-
low, addressing the need for realistic, extended evaluations
in robotics. Given the focus on the End-User Development
approach, it is important to test with users without pro-
gramming skills and home automation experience.
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