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Abstract
Advancements in technology have created opportunities to enhance cognitive training through robotic assistance, offering personalized
suggestions. This paper investigates how such robots impact performance and satisfaction in cognitive training. Understanding their
effects holds significance for psychology, human-computer interaction, and education. Through a review of relevant literature and
empirical study, insights into human-robot interaction dynamics and cognitive enhancement are gained. This exploration contributes to
optimizing human cognitive abilities in assistive settings. Our results demonstrate that robot tutors’ competence and periodic help
offerings are insufficient unless human tutees recognize the task’s difficulty.
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1. Introduction
In the realm of cognitive training, advancements in technol-
ogy have ushered in new opportunities to enhance human
performance and satisfaction. Among these advancements,
the integration of robotic assistance stands out as a promis-
ing avenue. Robots equipped with artificial intelligence
(AI) capabilities not only offer practical assistance but also
possess the potential to provide personalized suggestions
tailored to individual needs. This intersection of technol-
ogy and cognitive training prompts an intriguing question:
How does the presence of a suggestion-offering robot influ-
ence individuals’ performance and satisfaction in cognitive
training tasks?

This paper delves into the exploration of this question,
aiming to shed light on the implications of integrating such
robotic systems into cognitive training environments. By
examining the effects of a suggestion-offering robot on
both performance metrics and subjective satisfaction levels,
we seek to uncover valuable insights into the dynamics of
human-robot interaction within the context of cognitive
enhancement. Understanding the impact of a suggestion-
offering robot on cognitive training tasks holds significance
for various fields, including psychology, human-computer
interaction, and education. Insights gleaned from this inves-
tigation could inform the design of future cognitive training
programs and the development of more effective human-
robot collaboration frameworks.

In this paper, we will first review relevant literature on
cognitive training methodologies, human-robot interaction,
and the influence of technology on cognitive performance.
Subsequently, we will outline the methodology employed
in our study, including the experimental design, participant
recruitment, and data collection procedures. We will then
present and analyze the results obtained, discussing impli-
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cations and potential avenues for future research. Through
this exploration, we aim to contribute to the growing body
of knowledge concerning integrating robotics in cognitive
enhancement endeavors, ultimately striving towards opti-
mizing human cognitive abilities in assistive settings.

2. Related Works
The utilization of robots for training and assistance has expe-
rienced a notable surge, spanning various application areas
such as education [1] and cognitive training customized
for individuals with specific requirements, including those
diagnosed with autism and the elderly [2, 3]. The manifold
benefits of these applications are apparent, encompassing ca-
pabilities such as enabling concurrent usage at home under
remote supervision by instructors or healthcare providers
and facilitating personalized and adaptable training pro-
grams tailored to meet individual needs.

Nonetheless, a significant challenge arises in finding the
ideal equilibrium between the robot’s assistance and the
individual’s active participation. This predicament is widely
acknowledged in the field of robotics rehabilitation, where
interventions must carefully balance support to prevent in-
advertently encouraging passivity (or idleness) [4]. Offering
on-demand assistance is a common strategy, but it carries
the risk of improper system usage, leading to suboptimal
utilization of assistance, including aversion or misuse [5].
Even within the context of robot-assisted gaming, there is
considerable variation in individuals’ reliance on technology
for support, influenced by factors such as their comfort with
technology and personality traits [6, 7]. It is imperative to
address instances where individuals overly depend on assis-
tance, as it can hinder the learning process. Therefore, it is
essential to understand the impact of a suggestion-offering
robot on users and to understand if it can be considered a
helpful supporter for clinicians and patients in such tasks.
This study endeavors to explore the quantitative and qualita-
tive impacts of a suggestion-offering robot in the completion
of a cognitive task by aiming to assess how it influences both
the participants’ learning outcomes and their perception of
the robot as a helper, as well as their inclination to use it
again in the future.
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Figure 1: Computerized version of the London Tower test in
Android.

3. Materials and Methods

3.1. Tower of London Test (ToL)
The Tower of London (ToL) test is a cognitive test devel-
oped in the 1980s by Tim Shallice and Rosaleen A. Mc-
Carthy. The test aims to evaluate the capacity for strategic
decision-making and effective planning to solve tasks by
anticipating and considering the consequences of actions on
interconnected elements. The interdependence of elements
in complex problems mirrors situations in daily life. The
ToL test presents a graded difficulty problem where partici-
pants must move perforated balls arranged on a structure
to achieve a new configuration, requiring the adoption of
appropriate strategies.

Specifically, three operations are vital: (a) formulating
a general plan, (b) identifying and organizing sub-goals in
a sequence of movements, and (c) storing both sub-goals
and the general plan in working memory [8, 9, 10]. Shallice
challenges the Supervisory Attentional System (SAS) as a
central mechanism in the prefrontal cortex, directing at-
tention towards necessary sub-goals and shifting attention
from sub-goals to the general scheme [10].

In the classic version of Shallice the material consists
of three pegs of different lengths mounted on a wooden
structure and three balls of different colors (red, green, and
blue), which are inserted. The test consists of a series of
twelve tests of increasing gradual difficulty depending on
the number of moves that must be executed to arrive at the
solution. In this work, we propose a computerized version
of the test consisting of a support with three vertical posts
of different heights and three colored balls (green, red, and
blue), as shown in Figure 1. The test was displayed on a
Pepper robot’s tablet as shown in Figure 2.

The objective of the test is to move the balls from an initial
configuration to a diverse target configuration, following
four rules:

1 Only one ball can be moved at a time.
2 Only one ball can be moved from one post to another

to prevent the user from placing the balls on the table
or having more than one in his hand at a time.

3 It is possible to insert only one ball on the smaller
post, two on the intermediate, and three on the larger
one.

4 The maximum number of movements allowed to
solve a problem can not be exceeded

To calculate the patient’s final score at the end of the test,
it is necessary to consider the number of problems solved

Figure 2: Pepper Robot during the administration of the test.

correctly, the number of moves used to solve them, and the
time spent to solve the tasks.

In each trial, the subject is asked to move the balls across
a display to reach the configuration in the upper half of
the screen. Participants dragged the ball with their fingers
from the free position to one of the other rods to move it.
Incorrect movements were recorded on the computer as
non-responses. Subjects are asked to solve the task in the
minimum possible number of moves.

3.2. Stimuli
The characteristics of the task we used allow for several
ways of administration and types of measurements. In this
study, we aim to investigate to what extent the adjustable
social autonomy of a humanoid social robot employed to
administer the London Tower test can impact the users’
performance.

Considering this objective, we examined the effect of
Suggestion-Offering Robot users. Specifically, to prevent
help aversion, the robot proactively asks the users whether
they needed a suggestion every 10 seconds. However, we
instructed both the participants that they could ask the robot
for help in every step of the task.

3.3. Measures
For the evaluation of the test performance, the following
metrics will be considered:

• Time: time to accomplish the task.
• Number of Moves (NMOV: total number of moves

performed to complete the problem.
• Number of Successes (S): the number of completed

problems.
• Number of Suggestions requested (NS): the num-

ber of success w.r.t. the total number of tests.
• Performance Measure (PM): the number of suc-

cess w.r.t. the total number of tests.

Before and after the interaction with the robot, we sub-
mitted questionnaires to participants to collect self-reported
measures about the HRI and the participants themselves.
In the pre-experiment questionnaire, we submitted partici-
pants the Big Five personality traits test [11] and the Sense



of Agency scale [12]. Moreover, we collected some items
about their perception of the robot, such as the Godspeed
questionnaires [13] and the Inclusion of Others in the Self
test (IOS) [14]. We also submitted these latter two during
the post-experiment questionnaire to measure the change
in participants’ perception of the robot.

4. Experimental Procedure

4.1. Procedure
The ToL test is extensively used in the context of cognitive
training for patients with neurodegenerative disorders, such
as Parkinson’s disease [15]. Indeed, cognitive training is
a promising nonpharmacological treatment option for pa-
tients with dementia [16, 17]. Although testing on patients
was our goal, we wanted to test the protocol with healthy
participants to ensure the feasibility of the study. Thus, we
asked 20 computer science students at the University of
Naples Parthenope to participate in the study.

In our experimental procedure, the ToL Test is adminis-
tered by the Pepper robot. After an initial phase in which
the robot provides participants with an explanation of the
rules, the robot shows a test configuration to be used to
verify understanding of the structure of the test by admin-
istering it subsequently. At this point, the user views the
configuration to be replicated on Pepper’s tablet (Figure
2), reproduces the one included, and continues in this way
until all the configurations provided by the humanoid are
exhausted (12 configurations for each participant). During
the ToL test execution, the social robot occasionally offers
move suggestions to users.

Namely, participants underwent three experimental
phases:

• Baseline: a practice phase where requesting sugges-
tions is not allowed, aiming to help the user become
familiar with the test.

• Training: an intermediate phase in which partici-
pants train to complete the test where it is allowed
to request suggestions.

• Assessment: a final phase where requesting sug-
gestions is not allowed, and the user, with the expe-
rience gained from the previous two phases, should
demonstrate greater proficiency in completing the
test.

4.2. Robot’s Suggestions
We needed an expert robot to provide useful and correct
on-demand suggestions for our training phase. For this pur-
pose, we designed a graph-based representation of the ToL
test. Subsequently, we implemented a solving algorithm
that used a breadth-first search (BFS) strategy to find the
optimal solution for each ToL test. Starting from the initial
ToL configuration representation, the BFS algorithm could
find the optimal path to the representation of the final one.
Although a BFS-based resolution of the ToL test has a lin-
ear time complexity on the number of the graph’s edges
and nodes, it was completely solvable since we considered
a small input space with only three balls and three spots.
Hence, when participants press the button to ask for a sug-
gestion, the robot queries the algorithm to retrieve the first
action to optimally reach the final game configuration (the
goal) from the current one. The robot suggestion involved

Measure Phase AVG STD
Time Assessment 14.35 10.46

Baseline 17.35 13.19
Training 11.38 9.87

Moves Assessment 7.24 3.25
Baseline 7.14 3.58
Training 5.49 3.76

Suggestions Assessment 0.00 0.00
Baseline 0.00 0.00
Training 0.11 0.44

Score Assessment 2.55 0.65
Baseline 2.48 0.72
Training 2.72 0.57

Table 1
Descriptive Statistics of the Metrics.

the description of such an action. There was no limit about
the number of suggestions that participants could ask; ba-
sically, they could ask for suggestions at each step of the
tests.

4.3. Hypotheses
Our hypothesis regarded both participants’ performance
and satisfaction. We aim to examine the degree of assis-
tance participants require in completing the task. This holds
paramount significance because, while we acknowledge that
support might facilitate an immediate understanding of how
to solve the test, we are cautious about the potential long-
term impact on participants’ performance. We want to avoid
the risk of participants continually relying on suggestions,
which may not lead to sustained improvement and even
exacerbate their overall performance.

5. Results and Discussion
We found that the minority of participants asked the robot
for help during training (45% on average), with an average
number of suggestions asked of 1.53 (with 𝜎 = .717) among
those who asked, and a maximum number of 3 suggestions
asked per test. Hence, to investigate the difference between
the tests in which participants asked the robot for help
and those in which they never asked, we introduced in our
analysis a binary categorical variable representing whether
participants asked for help at least once during each test
(the single configuration to solve) of the training.

To measure participants’ improvements, we defined the
delta between the number of moves needed to solve a ToL
test and those performed by participants to solve it as their
difference in absolute value. Considering this metric, par-
ticipants’ performance showed an improvement from the
Baseline and Training phases (𝜇 = 1.89 with 𝜎 = 2.85 re-
garding the Baseline phase, and 𝜇 = 0.988 with 𝜎 = 2.73
regarding the Training phase). Through a two-way ANOVA
test, we found an effect of the experimental phase on such
measure of learning (𝐹 (2) = 3.57 with 𝑝 = .029). With a
post-hoc Tukey correction, we found that such an improve-
ment was statistically significant (𝑡 = 2.548 with 𝑝 = .03),
while there was no statistical difference between perfor-
mance in Baseline/Training and Assessment. Hence, we
did not find significant improvements in Assessment on
average.

Regarding the Training phase, the number of suggestions



Figure 3: Delta (in absolute values) between participants’ actions
and those needed to solve the relative ToL configurations during
the Training phase, considered as a measure of performance. The
closer the delta values are to zero, the higher the participants’
performance since it reflects the number of moves they performed
to solve the configuration in addition to those required. The 𝑥-
axis represents the trials in which participants asked for help at
least once, or they never asked for help.

asked significantly impacted as a covariate on the number
of moves they performed to solve the configurations (AN-
COVA test 𝐹 (1) = 13.9 with 𝑝 < .001) and completion
time (ANCOVA test 𝐹 (1) = 44.4 with 𝑝 < .001). We
found significantly worse performance in participants who
asked the robot for help compared to those who never re-
quested (Independent Samples t-test, 𝑡(238) = −2.16 with
𝑝 = .032), as shown in Figure 3. Moreover, we observed
that the number of suggestions asked positively correlated
with participants completion time (Pearsons’ 𝜌 = .406 with
𝑝 < .001), number of moves to solve the configurations
(Pearsons’ 𝜌 = .226 with 𝑝 < .001), and the configura-
tions’ difficulty (Pearsons’ 𝜌 = .238 with 𝑝 < .001).

Since the robot suggestions were optimal, these latter cor-
relations explain the worse performance of those who asked
for help. We hypothesize that the participants who asked
for the robot’s suggestions also did not know the game or
obtained worse performance. Thus, only bad players needed
to ask the robot for help. This hypothesis is supported by
the latter correlations, which highlight how the number of
suggestions asked grew with the difficulty of the game (and
vice versa) and that participants who asked the robot for
help more were those who obtained worse performance in
solving the game.

As a further measure of performance, we collected par-
ticipants’ completion times, which were defined as the time
taken to complete each ToL test. We performed an Inde-
pendent Samples t-test to compare participants’ completion
times depending on whether they asked the robot for help
at least once during the tests or never asked. We found
that assisted participants took more time to complete the
ToL configurations than the other (𝑡(398) = −4.79 with
𝑝 < .001), as shown in Figure 4.

We found similar results regarding the number of moves
participants performed to solve the ToL tests. We conducted
an Independent Samples t-test on the number of moves par-
ticipants performed to solve the configurations and found
a significant effect on whether they asked for help at least
once (𝑡(398) = −2.7 with 𝑝 = .008) with the assisted par-

Figure 4: Participants’ completion times (in seconds) in both
the experimental groups, divided depending on whether they
asked the robot for help at least once, or they never asked it for
suggestions.

ticipants performing more moves than the others, as shown
in Figure 5.

Participants who asked the robot for help are those who
perceived its suggestions more useful as the correlation
between the perceived usefulness of suggestions and the
number of suggestions asked (Pearsons’ 𝜌 = .492 with 𝑝 =
.028). Moreover, by comparing participants’ answers to the
IOS test, we found that participants felt closer to the robot
after having interacted with it, regardless of whether they
asked it for help (Repeated Measures ANOVA, 𝐹 (1) = 5.716
with 𝑝 = .028). A post-hoc Tukey correction highlighted a
significant difference between the pre- and post-experiment
test answers (𝑡 = −2.39 with 𝑝 = .028).

Finally, we found that participants’ personality dimen-
sions (Big 5 and Sense of Agency tests) did not affect their
behavior during the training and assessment phases. The
two robot modalities did not elicit differences in participants
perception of it (Godspeed test). We neither found differ-
ences between the groups regarding the perceived closeness
to the robot (IOS test).

Figure 5: Number of moves participants performed to solve
the ToL configurations in both the experimental groups divided
depending on whether they asked the robot for help at least once
or they never asked it for suggestions.



6. Conclusions
Despite the robot’s availability to provide suggestions and
its correct and complete knowledge of the task, a large num-
ber of participants (55%) never asked for help during the
game. However, they could have gained from the robot’s
support, as their performance during the training was sub-
optimal. Interestingly, participants who asked for help had
more difficulty with the task (as highlighted by an aver-
age longer completion time and a larger number of moves).
Furthermore, they also recognized the usefulness of the
suggestions at the end of the game. Nonetheless, the vast
majority did not take advantage of the robot’s help but pre-
ferred to play autonomously. This was probably due to the
perception that the task was sufficiently easy to be addressed
and by the desire to challenge themselves. Although this
is certainly positive, it also raises the question of how to
best provide robot support to maximize its utility. Our re-
sults demonstrate that perfect competence and periodic help
offerings are insufficient unless the participants recognize
their difficulty. Future work should focus on identifying
novel strategies to counteract help aversion.
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