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Abstract
This paper analyzes changes in vegetation in areas of Kenya and Tanzania resulting from the reforestation
activities of Justdiggit. These activities involve digging semicircles in the ground, with and without sowing
grass seeds, to retain rainwater and promote soil infiltration for plant uptake. In this study, remote sensing
techniques are employed to calculate variations in the NDVI, SAVI, and NDWI indices. Additionally, supervised
machine learning models, including SVM, Random Forest, and Decision Trees, are trained to quantify changes
in vegetation cover from satellite images. These images, sourced from the LandSat 8 satellite collections, are
processed in Google Earth Engine. The analysis spans three years prior to the reforestation activities up to 2022
to illustrate the changes.

The results analysis considers soil cover, the SAVI index, precipitation, and the climatic seasonality of the
area. On average, the reforestation method with grass seed sowing increased the SAVI index by 0.06 and the
percentage of vegetation cover by 3.39%. Conversely, the reforestation method without sowing decreased the
SAVI index by 0.04 but increased the percentage of vegetation cover by 9.04%. It is concluded that the technique
with grass seed sowing produces better results compared to the semicircle technique without sowing. However,
the prolonged drought in the area significantly impacted the observed results.
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1. Introduction

Global warming and climate change are established facts supported by various studies [1, 2]. All humans
have contributed to the gradual intensification of these phenomena [3, 4, 5]. While global warming
primarily results from increased atmospheric concentrations of greenhouse gases, it also indirectly
impacts plant life. In some regions, soil degradation and loss of productive capacity due to erosion
have been observed [2]. Countries like Tanzania and Kenya in Africa are particularly affected by
droughts [6, 7]. The soil in these regions is arid and compact, causing rainwater to run off the surface
without being absorbed. Consequently, crops and vegetation do not receive adequate water, leading to
low food production and high temperatures that adversely affect the population [8].

Fortunately, some organizations are actively working to counteract global warming. One such
organization is Justdiggit, a foundation that has been re-greening and restoring degraded areas in
Kenya and Tanzania in recent years. This restoration helps lower temperatures locally and globally [8].
Justdiggit employs nature-based techniques to restore ecological balance. One of their methods involves
digging semi-circles in the ground, both with and without planting grass seeds. These semi-circles act as
natural dams, retaining rainwater and allowing it to penetrate the soil, creating a favorable environment
for grassland growth. The roots of these grasslands further retain water and help decompact the soil,
fostering an environment that supports insect life. These insects, in turn, pollinate plants, thus sustaining
natural cycles and revitalizing the soil. These restoration efforts positively impact biodiversity, water
security, and food security for local inhabitants [8].

This work focuses on measuring the outcomes of Justdiggit’s activities in Kenya and Tanzania, initiated
between 2016 and 2021. The study evaluates changes in vegetation according to the reforestation
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techniques applied to identify the most efficient methods. Remote sensing techniques and machine
learning models are employed to identify and classify areas with vegetation from the beginning of these
projects until 2022. The input data consists of multispectral satellite images captured by the Landsat 8
Satellite [9]. These images allow us to analyze changes in the study areas based on reflectance, using
each beam of light to detect variations in the terrain.

This paper builds on previous work [10] to quantify the vegetation changes resulting from Justdiggit’s
activities in Kenya and Tanzania using satellite imagery. It applies supervised machine learning and
remote sensing techniques to analyze data from the beginning of the projects until 2022, aiming to
determine the most effective reforestation techniques. The specific contributions are:

• Collecting a set of multispectral satellite images with less than 20% cloud cover for each study
area where reforestation took place between 2016 and 2021, from the start of each project until
2022.

• Generating spectral indices and manually labeling samples of the area types at the pixel level,
which will be used to train and evaluate the machine learning models.

• Training and evaluating supervised classification models (Decision Trees, Random Forest, and
SVM) to identify the best-performing model for classifying land cover.

• Applying the best-performing model to classify vegetated soils in the study areas.
• Analyzing the information obtained from the classification models and indices.
• Identifying the most effective reforestation techniques applied in the study areas.

This work employs the CRISP-DM methodology, which comprises six stages [11].
This article has the following structure: Section 2 describes the vegetation spectral indices and satellite

image-related techniques used in this work. Section 3 reviews research on similar topics, providing the
foundation for the present study. Section 4 defines the areas under study, the satellite image sources,
and the minimum criteria that must be met. Section 5 defines the training polygons for the models and
generates the indices necessary to capture the training points. Using the images selected in the previous
phase, supervised classification models (Decision Trees, Random Forest, and SVM) are generated and
evaluated to identify the best model for classifying vegetation and non-vegetation areas. Subsequently,
we use the selected model to classify the pixels in the images, determining the vegetation area in each
study area on an annual basis. Section 6 analyzes the classified data along with the indices information
to determine the more effective reforestation method. Finally, Section 7 presents the conclusions.

2. Preliminaries

This project utilizes satellite images captured by remote sensors. These images are multispectral,
containing reflectance data of the surface across different bands. Each band provides numerical values
at the pixel level, and when these bands are combined, they reveal valuable information [12]. In Landsat
8, bands 2, 3, and 4 (Red, Green, and Blue) are combined to produce images close to true or natural color.
However, combining bands 3, 4, and 5 highlights healthy vegetation in red [13].

Spectral vegetation indices are crucial for highlighting phenomena such as changes in vegetation,
achieved by combining specific bands [14]. The normalized difference vegetation index (NDVI) helps
identify the density and health of plant masses [15]. The NDVI is calculated using the following formula,
which employs the near-infrared (NIR) and red (Red) bands [16]:

𝑁𝐷𝑉 𝐼 = (𝑁𝐼𝑅−𝑅𝑒𝑑)/(𝑁𝐼𝑅+𝑅𝐸𝐷) (1)

The Soil Adjusted Vegetation Index (SAVI) allows the identification of plant masses, similar to the
NDVI, but with the advantage of minimizing the influence of bare soil brightness using a correction
factor 𝐿. This makes SAVI ideal for identifying changes in vegetation in the areas under study [17].
The formula uses the near-infrared (NIR) and red (Red) bands [17]:
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𝑆𝐴𝑉 𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑+ 𝐿
* (1 + 𝐿) (2)

The Normalized Difference Water Index (NDWI) is suitable for identifying water bodies [18]. Its
formula uses the NIR and Green bands [19]:

𝑁𝐷𝑊𝐼 = (𝐺𝑟𝑒𝑒𝑛−𝑁𝐼𝑅)/(𝐺𝑟𝑒𝑒𝑛+𝑁𝐼𝑅) (3)

3. Related Work

Several studies have investigated deforestation using satellite images. Early works include Bezanilla et
al. [20], who examined forest degradation and recovery in the Sierra Fría in Mexico, and Armenteras et
al. [21], who analyzed the dynamics and causes of deforestation in Latin American forests, reviewing 283
articles. More recently, Ariza [22] used maximum likelihood models and regression models to determine
which index best highlighted the effects of vegetation burning caused by fires in central Spain, using
remote sensing of soils. García et al. [23] focused on identifying Ecuadorian forests, which experienced
a 15% decrease between 1990 and 2020 due to logging driven by the expansion of agricultural land in
the Zapotal river basins. They used remote sensing techniques and vegetation indices to conduct their
analysis.

Satellite image analysis is also used to identify other trends. For example, Medina et al. [24] analyzed
the loss of glacial volume in the Parón mountain range in the Peruvian Andes using Landsat satellite
images. They used the snow index (NDSI) from 1987 to 2011, identifying an average glacial decrease of
18%. Similarly, Veettil et al. [25] studied the behavior of glaciers in the Tropical Andes using remote
sensing techniques, revealing a rapid retreat of these glaciers since 1970. Sánchez et al. [26] applied
remote sensing techniques to identify and monitor biodiversity patterns and the influence of human
activities on these changes at both local and global levels. Serra et al. [27] utilized remote sensing
techniques and index calculations to characterize the geomorphology and lava pulses of the Aguas
Calientes volcano and its surroundings in the Tinogasta department of Argentina. Valcarce [28] applied
machine learning techniques in remote sensing for crop monitoring, using images obtained from
synthetic aperture radar (SAR) sensors regardless of weather conditions.

Liang et al. [29] compared deep learning techniques with the maximum likelihood algorithm to
satellite image classification methods in China, identifying the most optimal approach. Ramírez et
al. [30] detected land cover changes using the Random Forest algorithm applied to satellite images
combined with drone-captured images. Alvarado et al. [31] studied the change in agricultural extension
in the Yarada de los Palos district in Peru from 2000 to 2020, using multispectral satellite images and
remote sensing techniques, finding a 265.84% increase in agricultural areas. Mejía et al. [32] evaluated
water erosion in an area of Tacna in Peru, training models and calculating indices. Rahal et al. [33]
mapped clayey soils in northwestern Algeria using ASTER satellite images to establish soil mineralogy.
Estrada et al. [34] identified the biomass of grasslands in a high Andean plant community in Peru.
Finally, Ahman et al. [35] discussed the importance of artificial intelligence in teaching plant physiology,
emphasizing its role in complementing remote sensing for disease detection, yield prediction, and
simulation generation, among other applications.

There is previous work investigating Justdiggit’s activities. Steele et al. [36] investigated vegetation
growth in the Kuku area of Kenya using VanderSat remote satellites. Similarly, Villani identified
vegetation changes in Dodoma, Tanzania, where Justdiggit has also been conducting reforestation
activities [37]. On the other hand, van der Vliet et al. [38] applied remote sensing techniques to identify
soil water retention and temperature changes in two areas of Tanzania. These works are different
from our work, as they study vegetation changes prior to 2021. In addition, they do not compare the
efficiency of the two techniques used, i.e., whether spreading grass seeds improves reforestation.
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4. Data Acquisition and Preprocessing

Justdiggit kindly provided via email the type of reforestation, year of start of activities and number of
semicircles in each area, and a KML (Keyhole Markup Language) file with the location and area of the
polygons in which Justdiggit has carried out reforestation activities in Tanzania and Kenya1.

Justdiggit currently operates in Tanzania, Kenya, Uganda, and Ethiopia, with activities initiated
between 2016 and 2022. However, this project focuses solely on activities in Tanzania and Kenya
that began between 2016 and 2021 [8]. Areas where activities started in 2022 are excluded due to the
insufficient time to observe significant changes in vegetation. In Kenya and Tanzania, Justdiggit has
carried out reforestation activities using two methods in different areas, which are described below:

• Semicircles of soil without planting: This method involves digging semicircles into the soil against
the slope of the land. These semicircles act as natural dams, retaining rainwater and allowing it
sufficient time to penetrate the soil, thereby enabling natural vegetation growth [8].

• Semicircles of soil with sowing: This method, like the previous method, consists of digging
semicircles in the soil against the slope and additionally spreading grass seeds [8], of the species
“African Foxtail” and “Maasai Lovegrass”2.

In data exploration, the Normalized Difference Vegetation Index (NDVI) is generated for the images
of each study area to measure the density and health of the vegetation. The images are captured from
three years before the start of reforestation activities until 2022, aiming to identify trends in vegetation
changes during this period. According to the World Bank, Kenya and Tanzania experience seasonal
variations with months of more rain and others being drier [39, 40], which is reflected in the NDVI, as
it increases during months with higher rainfall. This is consistent with observations that wet and dry
seasons in the tropics affect plant growth similarly to how seasons do in temperate regions [41]. To
reduce variability caused by climatic seasonality, images are selected from the consecutive dry months
of June and July, allowing for better annual comparisons while minimizing cloudiness and lost pixels.
Additionally, images from three years before the start of reforestation until 2022 are analyzed to assess
changes in vegetation due to these activities.

4.1. Selection of Satellite Images

Satellite images are obtained from Google Earth Engine (GEE)3, which offers a vast catalog of satellite
images and geospatial data. GEE also provides online data processing on its servers, free for academic
and research purposes [42]. From these satellite images, indices are calculated to highlight land cover
characteristics [16], aiding in the capture of training points that form the training dataset for supervised
machine learning models. These images are also used to apply the selected supervised machine learning
model.

A collection of satellite images is selected in GEE considering several important criteria. Firstly, the
temporal aspect is crucial, as information from 2013 to 2022 is needed to analyze vegetation changes
before and after Justdiggit’s reforestation activities. Additionally, it is ensured that the images include
the spectral bands necessary to calculate indices and capture training points for machine learning
models, as well as to analyze vegetation changes. The images are also verified for rectification to avoid
inconsistencies in the data. Finally, the spatial resolution of the images is considered, with a preference
for high resolution to obtain more precise details in each pixel.

It is observed that the collections from the Landsat 7 and 8 satellites meet the defined conditions.
However, the Landsat 7 satellite sensor experienced a scan line corrector failure in May 2003, resulting
in images with gaps that correspond to a loss of approximately 25% of the data [43]. Therefore, the
collection of images captured by the Landsat 8 satellite, which does not present this issue, is selected
for the development of this project.

1T. Zaan [Personal communication]. September 22, 2023.
2T. Zaan [Personal Communication]. September 22, 2023.
3https://earthengine.google.com/
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4.2. Preparation of Satellite Images

For the development of this project, the Landsat 8 Collection 2 available on GEE is used. Several
preprocessing steps are performed on these images as suggested by GEE [44]. First, value scaling is
applied, as the original images are in integers, with a scale factor of 2.75e-05 and an offset of -0.2 for
Landsat 8 [9, 44]. Next, the images are cropped to include only the information relevant to each study
area. Cloud masking is applied using the QA_PIXEL band to remove pixels affected by clouds or cloud
shadows, which could distort the data [9, 44, 45]. Finally, to address the issue of missing pixels after
cloud masking, a composite of images from the same weather station is created. This is achieved by
applying the ‘reducer’ aggregation function on the median of images from each year within the same
season, minimizing changes in the ground surface [45].

Images undergo value scaling, cropping, and cloud masking processes. Additionally, a median
shrinking function is used to create composite images from June 1 to July 31 of each year, resulting in
one composite image per year for each study area. The full satellite images, covering approximately
170 km x 183 km, may have scene overlap and varying percentages of cloud cover [9]. However, this
percentage refers to the entire image and not to the specific study area. Therefore, the percentage
of cloud cover in each study area is determined by the number of missing pixels after applying the
preparation processes. Images with more than 20% cloud cover are discarded, as this level of cloud
cover significantly interferes with the investigation due to the considerable loss of information [46].

5. Model Training and Evaluation for Land Cover Classification

Two training iterations of the soil classification models are performed. In the first iteration, detailed
in [10], a polygon covering most of the Chyulu (Kuku) National Park in southern Kenya is defined for
model training. This area was chosen because it includes a variety of land covers: vegetation, agriculture,
urbanization, and water bodies. Training points are obtained from indices applied to the area, and tests
are conducted for the categories vegetation, soil, water, urban, and agriculture. Three supervised machine
learning models are used to classify the coverage of the study areas: Support Vector Machines (SVM),
Decision Trees, and Random Forest. The SVM model, using default hyperparameters, exhibited errors
in classifying urban areas and water bodies, and failed to correctly identify the agriculture category.
Decision Trees, also with default hyperparameters, showed similar issues but managed to identify
some agricultural pixels incorrectly. The Random Forest model, trained with 100 trees, provided a
more accurate classification of vegetation and soil compared to the SAVI index, but also made errors in
classifying urban areas, water bodies, and agricultural areas.

In the second iteration, a larger training polygon is chosen, covering more areas where Justdiggit
has carried out reforestation activities in southern Kenya. This polygon is shown in Figure 1. The
months of June and July 2020, corresponding to the dry season, are selected for this capture. Only
vegetation and soil cover points are captured, considering that the areas where Justdiggit conducted
reforestation activities do not correspond to urban or agricultural areas, and water bodies are excluded
from the training polygon. To capture these points, the SAVI index with a correction factor of 0.5 is
used, resulting in the visualization shown in Figure 2(a), generated from the composite image of Landsat
8. The values are displayed in a color range from brown to green, where brown represents soil and
green represents vegetation. A total of 2253 points are captured, comprising 1124 vegetation points and
1129 soil points.

After capturing the points, the training image data is extracted, using the band values corresponding
to the pixels of these points in the composite image of June and July 2020. The data is then partitioned,
with 70% for training and 30% for testing. Figure 2 shows the classification obtained for the three
classification models used.

For the Support Vector Machine (SVM) model, shown in Figure 2(b), the “Margin” decision procedure
is applied to set a margin between the target classes, and the “Linear Kernel” is selected so that the
model uses a linear function for classification. The other hyperparameters are left at their default
settings. To train the decision tree model, the hyperparameters were set to a minimum population of 40
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Figure 1: Training polygon, plotted using Google Earth Engine [47].

(a) SAVI reference image (b) Support Vector Machine

(c) Decision tree (d) Random Forest

Figure 2: Reference Image vs. Classification obtained from the trained models

points per node and a maximum of 80 nodes. This configuration was used for data classification, and
the results are presented in Figure 2(c). Finally, the classification performed by the random forest model
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is shown in Figure 2(d).
To determine whether the models are generalizing well, and to identify if they are overfitting or

underfitting [48], the cross-validation method is used with five folds and iterations for each model.
Additionally, the average and variance of their accuracies are calculated. The results are presented
in Table 1. The SVM model shows the best performance, as it has the highest average accuracy and
the smallest variance. This indicates that the accuracies of the iterations do not differ significantly,
suggesting that the SVM model is generalizing better compared to the other two models.

Table 1
Classification accuracy results obtained using cross-validation (𝑘 = 5)

Fold SVM Decision tree Random Forest
1 0.9869 0.9475 0.9540
2 0.9803 0.9694 0.9301
3 0.9868 0.9430 0.9605
4 0.9861 0.9769 0.9446
5 0.9821 0.9576 0.9420

Mean 0.9845 0.9589 0.9462
Variance 0.000009147 0.000205135 0.000136407

6. Comparative Analysis

In this phase, firstly, the SVM model, which has demonstrated superior performance, is applied to
identify the soil and vegetation cover in the areas under study. The detailed results for each polygon
are presented in [10].

For the analysis of the results, the following factors are taken into account:

• Areas with vegetation: The application of the model determines the percentage of vegetation and
soil cover in the study areas.

• The SAVI index: This index allows the identification of vegetation density and health by minimizing
the influence of bare soil brightness. The scale ranges from -1 to 1, where negative values or values
close to zero represent surfaces without vegetation, and positive values represent vegetation
cover. The closer the value is to 1, the denser the vegetation [17].

• Precipitation: This factor is included in the analysis, considering that vegetation in this part of
Africa is affected by climatic seasonality and the amount of precipitation in the study areas [41].
Since 2019, East Africa has been experiencing water shortages due to lack of rain, even during
seasons that typically see higher rainfall [49, 50]. This drought, classified by the UNHCR as the
worst in the last 40 years [50], significantly affects the results of Justdiggit’s reforestation efforts,
making it an important part of the analysis. Information on monthly accumulated rainfall is
obtained from the dataset published by the University of Idaho, measured in millimeters (mm),
indicating liters of rain per square meter [51]. For this study, the average accumulated rainfall for
June and July of each year is used.

It is worth noting that all polygons have experienced a significant and prolonged decrease in rainfall
since 2019, as shown in Figure 3. Considering this and the fact that the polygons were reforested in
different years, which can cause variations in the results, a comparison is made between the results of
polygons reforested in the same year but with different techniques.

6.1. Polygons Reforested in 2018

In 2018, reforestation activities were conducted in the Pembamoto and Nasipa polygons. Pembamoto
was reforested with grass seed sowing, while Nasipa was reforested without sowing grass seeds. Figure 4
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Figure 3: Average rainfall for all polygons

contrasts the rainfall results. Despite missing information for two years, it is generally observed that
Nasipa received more rainfall than Pembamoto.

Figure 4: Comparison of rainfall in polygons reforested in 2018

Figure 5 compares the vegetation cover percentages. Despite missing data for one year after refor-
estation, it is generally observed that Pembamoto had a higher percentage of vegetation cover than
Nasipa from 2018 onwards.

Figure 6 compares the SAVI index results. Despite missing data for one year after reforestation, it is
generally observed that Pembamoto had a higher SAVI index than Nasipa from 2018 onwards.

The averages of the results before and after reforestation for each polygon, shown in Tables 2 and 3,
are compared to identify whether the changes were positive or negative. It is observed that the polygon
with grass seed sowing had better results in the annual comparison of the variables’ percentage of
vegetation and SAVI, despite experiencing less rainfall. When comparing the difference in average results
before and after reforestation, it is noted that although Pembamoto had a decrease in the percentage
of vegetation cover, it showed a greater increase in the SAVI index with less rainfall compared to
Nasipa. Based on these observations, it is concluded that in 2018, the technique of reforesting with soil
semicircles and grass seed sowing yielded better results.
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Figure 5: Comparison of vegetation percentage of polygons reforested in 2018

Figure 6: Comparison of the SAVI index of polygons reforested in 2018

6.2. Polygons Reforested in 2019

In 2019, reforestation activities were carried out in the Enkii, KukuA, and Risa polygons. Enkii was
reforested with sowing, while KukuA and Risa were reforested without sowing grass seeds. Figure 7
contrasts the rainfall results. Despite missing information for one year, it is generally observed that
Enkii received more rainfall than Risa and KukuA.

Figure 8 compares the results of vegetation cover percentage. Despite missing data in the years
following 2019, it is generally observed that Risa had a higher percentage of vegetation cover than Enkii
and KukuA after reforestation. Additionally, Enkii had greater vegetation coverage than KukuA.

Figure 9 compares the results of the SAVI index. Despite missing data in the years following 2019, it
is generally observed that Enkii had a higher SAVI index than KukuA and Risa after reforestation.

However, when comparing the difference in average results before and after reforestation for each
polygon, it is evident that Enkii had an increase in the percentage of vegetation cover and SAVI index
despite receiving less rainfall compared to Risa and KukuA. Based on these observations, it is concluded
that in 2019, the technique of reforesting with soil semicircles and grass seed sowing yielded better
results.
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Figure 7: Comparison of rainfall in polygons reforested in 2019

Figure 8: Comparison of vegetation percentage of polygons reforested in 2019

6.3. Discussion

The averages of the results before and after reforestation for each polygon, as shown in Tables 2 for
2018, and Table 3 for 2019, are compared to determine the nature of the changes, whether positive or
negative. Table 4 summarizes the difference in results according to the sowing technique. The tables
show that the polygons that underwent reforestation with grass seed sowing showed better results in
the annual comparison of the three variables: percentage of vegetation cover and SAVI, although it
experienced higher rainfall.

7. Conclusion

The objective of this work is to determine which of the reforestation techniques implemented by
Justdiggit in areas of Kenya and Tanzania is most effective. These techniques involve digging semicircles
in the ground, with and without sowing seeds, in study areas where reforestation began between
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Figure 9: Comparison of the SAVI index of polygons reforested in 2019

Table 2
Difference in Average Results of Reforestation of Semicircles planted in 2018

Polygon Technique Percentage vegetation SAVI Rainfall
Nasipa without sowing 22.96 0.0085 -1.833

Pembamoto with sowing -2.56 0.1057 -5.13
Mean 10.2 0.06 -3.48

Table 3
Difference in Average Results of Reforestation of Semicircles planted in 2019

Polygon Technique Percentage vegetation SAVI Rainfall
Enkii with sowing 9.34 0.0142 -11.70
Risa without sowing 1.11 -0.1418 -6.5

KukuA without sowing 3.04 0.0120 -3.583
Mean 4.50 -0.04 -7.26

Table 4
Difference in Average Results of Reforestation of Semicircles by Technique

Technique Percentage vegetation SAVI Rainfall
without sowing 9.03667 -0.04043 -3.971

with sowing 3.39 0.05995 -8.415
Difference -5.64667 0.100383 -4.444

2016 and 2021. To conduct this analysis, remote sensing, and supervised machine learning techniques
are applied to quantify the change in vegetation caused by Justdiggit’s activities from the start of
the reforestation projects until 2022. It is determined that for the polygons reforested in 2018 and
2019, the method with grass seed sowing increased the SAVI index by an average of 0.06 and the
percentage of vegetation cover by 3.39%. In contrast, the method without sowing decreased the SAVI
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index by 0.04 but increased the percentage of vegetation cover by 9.04%. This demonstrates that both
methods are effective, but the technique with grass seed sowing yields better results compared to the
semicircle technique without sowing. It is also concluded that rainfall is a critical factor in the success
of reforestation, as both methods’ outcomes were influenced by the prolonged drought in the Horn of
Africa.

Future work would benefit from using images with higher spatial resolution and less cloud cover,
as well as conducting on-site verification of land cover at the training points. Additionally, it would
be beneficial to extend the study period to include more years, so as to include polygons reforested
en 2021-2022, allowing for a more comprehensive demonstration of the vegetation evolution in the
reforested areas.
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