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Abstract
Software Engineering (SE) is critical for developing robust and efficient software systems, particularly on the
Internet of Health Things (IoHT), which leverages interconnected devices for health management. IoHT enables
continuous monitoring and real-time data collection, significantly enhancing patient care and Quality of Life
(QoL). Despite existing research, there is a gap in artifacts explicitly designed for QoL-based IoHT systems. This
paper proposes a reference software architecture and an analytical model for QoL-based Systems. The architecture
is inspired by the MAPE-K (Monitor, Analyze, Plan, Execute - Knowledge) loop framework and follows a layered
approach encompassing the Business, Application, Middleware, Network, and Perception layers. It integrates
multiple data sources, processes information intelligently, and executes adaptive interventions in the user’s
environment to improve QoL. The architecture is divided into four key stages: Monitoring, where data is collected
from various Internet of Things (IoT) devices; Analysis, where data is processed and interpreted; Planning, which
involves creating intervention plans based on the analyzed data; and Execution, where the planned interventions
are carried out. The analytical model generates health interventions aimed at increasing the user’s lifespan by
measuring quality of life through data-based instruments, which infer personal health indicators by analyzing
contextual data produced by IoT devices. The proposed artifacts enhance system reliability and patient outcomes
in smart healthcare environments.
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1. Introduction

The Internet of Things (IoT) refers to the interconnection of physical devices via the Internet to achieve
common goals, thus enabling physical devices to act and sense transparently [1]. These features allow
the IoT to be used in various domains [2], among which it is worth mentioning health, where IoT is
increasingly present in medical devices, software applications, and health services [3].

Furthermore, IoT can be called the Internet of Health Things (IoHT) when applied to health. IoHT
technologies enable continuous monitoring, real-time data collection, and the implementation of imme-
diate interventions, which is vital for effective health management [4]. Consequently, these technologies
provide a better patient experience with cost reduction due to decreased human intervention [5].

In addition, another significant benefit of IoHT is improving Quality of Life (QoL) through, for
example, patient monitoring, allowing them to monitor themselves and thus ensure self-management of
health conditions [6]. Moreover, it is worth noting that the World Health Organization (WHO) defines
QoL as an individual’s perception of their life within a sociocultural context concerning their goals,
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expectations, and personal standards [7]. Besides that, according to the WHO, it is important to assess
QoL because it has a close relationship with the health status [8, 9].

Also, it is crucial to mention that the general elements of IoHT systems include many kinds of
sensors for collecting patient data. There are also applications developed for user terminals, such as
smartphones, smartwatches, or specific embedded devices, which process this data. These terminals
connect to gateways, which transmit the data over the Internet using short-range communication
protocols such as Bluetooth Low Energy (BLE). Gateways usually act as a hub between a sensor layer
and cloud services or clinical servers that store process, and analyze the data. In this way, patient data
stored in Electronic Health Record (EHR) systems can be easily accessed [5].

Therefore, IoHT systems must meet strict requirements for low latency and high reliability, as failures
can directly impact users’ health, and the data are highly sensitive [10]. Furthermore, IoT devices
are often embedded and highly heterogeneous, requiring software that adapts to the different system
characteristics and ensures high availability and resilience [11].

In this context, Software Engineering (SE) plays an essential role in effectively integrating and
managing these devices, ensuring that IoT systems operate reliably and efficiently. Given that SE
applies systematic, disciplined, and measurable approaches to software development, operation, and
maintenance, it provides a solid foundation for creating robust and efficient applications [12].

Additionally, as [13] points out, SE can be understood as a layered technology in which the pro-
cess forms the foundation, methods provide technical guidelines, and tools offer automated or semi-
automated support. This discipline is fundamental for ensuring software systems’ quality, reliability,
and efficiency in various contexts.

However, despite numerous studies on the use of SE in the context of IoT systems, software artifacts
are still required to keep up with the growing demand for monitoring and QoL-based solutions [6, 14, 15].

In light of this context, this study proposes a reference software architecture and an analytical
model for QoL-based Systems. The MAPE-K reference model inspires the proposed architecture [16] to
implement adaptation loops for Self-Adaptive Systems (SAS) [17]; however, its focus is not on creating
SAS but on the adaptation caused in the user’s environment to improve their QoL. The analytical
model uses data from sensors and wearables to infer health indicators and provide personalized health
recommendations through machine learning techniques.

This paper is organized as follows: in Section 2 and Section 3 core concepts related to this study
and related work are discussed; in Section 4, our QoL-based Systems Analytical Model is presented; in
Section 5, our proposed Software Architecture is presented; in Section 6, a use case scenario is provided;
and in Section 7, we conclude this paper with final remarks.

2. Background

The IoT has brought significant innovations to various domains, especially healthcare, through the
IoHT. The IoHT is a subset of the IoT that allows medical devices and medical information systems to be
connected, thus enabling the continuous, real-time collection of patient data. This connectivity expands
the possibilities for immediate interventions, which can be adaptive responses to certain conditions in
the patient’s environment.

The general IoHT architecture used as the baseline for this paper was presented by [5] and depicted in
Figure 1. As highlighted in [5], IoHT solutions incorporate a network architecture designed to connect
patients to healthcare facilities. These solutions encompass E-Health systems in various uses, such as
electrocardiography, heart rate monitoring, electroencephalography, and diabetes, among other vital
signs, through biomedical sensors that collect user data.

In addition, due to the restrictions of these sensors, the data is processed by applications developed
for a user terminal, such as computers, smartphones, and smartwatches. Moreover, a gateway connects
the user terminal to a clinical server or cloud services for data processing and storage. The connection
is made through short coverage communication protocols, such as BLE or 6LoWPAN (IPv6 over Low
Power Wireless Personal Area Networks) following the IEEE 802.15.4 standard. Alternatively, patient
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data can be stored in a health information system using EHR. This way, when the patient visits a doctor,
the clinical history can be accessed easily.

Figure 1: IoHT-based solution architecture [5]

Furthermore, it is worth mentioning the concept of SAS that is so important to this work. SAS are
designed to automatically adjust their behavior in response to changes in their environment or internal
conditions [17]. These systems are particularly valuable in complex and dynamic domains, such as
the health sector, where the context can change rapidly. Using SAS in the healthcare sector, medical
systems can respond dynamically to real-time data, improving patient care through timely interventions
that adapt to the patient’s current state of health and environmental factors.

In this context, the adaptability of SAS has great potential to be used effectively in QoL maintenance
systems. This is because SAS can be used to continuously monitor patients and make autonomous
decisions that affect treatment plans, and medication dosages, or alert medical professionals to potential
problems before they become critical. For example, a SAS could adjust the monitoring parameters of a
patient with a fluctuating condition, ensuring that the patient receives the appropriate level of care at
all times, without requiring constant manual adjustments from healthcare professionals.

One of the most widely adopted frameworks for implementing SAS is the MAPE-K model [16],
which stands for Monitor, Analyze, Plan, Execute, and Knowledge. The MAPE-K model, shown in
Figure 2, structures the adaptation process into a control loop that continuously monitors the system or
environment, analyzes the data to detect any deviations from expected behavior, plans a response to
these deviations, and executes the necessary actions. The "Knowledge" component represents the data
and policies that guide the system’s behavior throughout this loop.

As mentioned in [18], MAPE-K can be applied in different scenarios. In addition, MAPE-K allows
automatic adaptation, offering greater autonomy and less need for manual intervention, unlike other
frameworks evaluated that rely on human intervention or less autonomous approaches.

In this way, its robust structure and ability to adapt to different scenarios is ideal for technology
applied to health. In this domain, processes are generally based on data collection and analysis, followed
by interventions traditionally carried out externally by the healthcare professional [5]. With the
adaptation proposal, intervention within the loop can also be managed by the system, increasing the
efficiency and autonomy of the process.
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The architecture proposed in this paper uses the MAPE-K model, but the system is adapted not to
itself but to the user’s context, adjusting it to their needs.

Figure 2: MAPE-K reference model for Self-Adaptive Systems [19]

Integrating MAPE-K with the IoHT Architecture can improve the adaptive management of connected
health systems. Here’s how:

• Monitoring: Sensors in an IoHT system provide continuous data on the state of patients and the
healthcare system. MAPE-K uses this data to monitor and evaluate the condition of devices and
the health of patients [20].

• Analysis: The analysis phase in MAPE-K can use machine learning and artificial intelligence
algorithms to interpret large volumes of health data collected by IoHT devices, identifying patterns
or anomalies that may indicate problems [21].

• Planning: Based on the analysis, the system can plan automated interventions or recommenda-
tions for healthcare professionals or patients, such as medication adjustments or appointment
alerts [22].

• Execution: MAPE-K guides the execution of planned actions, which can include automatic
adjustments to treatment or notifications to caregivers. This can be integrated with IoHT systems
to carry out these actions effectively [23].

• Knowledge: The knowledge accumulated through the MAPE-K cycle can be used to continuously
improve the IoHT system, optimizing health data management and enhancing adaptive responses
[21].

3. Related Work

A literature review was conducted on articles indexed in the Elsevier Scopus database to compose the
related work section. Scopus was chosen based on its relevance and extensive coverage of various
digital libraries. During the search, a limited number of analytical models and software architectures
specifically for Quality of Life (QoL) monitoring systems were found. Therefore, the review also included
the most cited papers discussing system architectures and analytical models in eHealth monitoring
systems.

The terms used in the review were concatenated with logical operators and are described as follows:

• “IoT”, “IOHT”, “Internet of Health Things”, “Internet of Things”: To include studies related
to the Internet of Things and specifically the Internet of Things for Health.
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• “Quality of Life”, “QoL”, “Health Monitoring System”: To capture studies on quality of life
and health monitoring systems.

• “Analytical Model”, “Software architecture”, “System Architecture”: To identify studies
that discuss analytical models and software or system architectures applied to these contexts.

Regarding the selected studies, one notable is [15], which presents a fog computing architecture
to enhance the energy efficiency, mobility, scalability, and reliability in health monitoring systems.
The proposed architecture introduces smart e-Health gateways that provide local data processing,
storage, and analysis, reducing the reliance on cloud servers and improving system responsiveness and
efficiency.

Another significant contribution is presented by [24]. This study integrates edge computing and
Low Power Wide Area Network (LPWAN) technologies to address the limitations of traditional IoT
architectures, such as poor performance in unstable network environments and limited transmission
bandwidth unsuitable for high data rate applications. The proposed system architecture utilizes wearable
sensors and edge Artificial Intelligence (AI) to detect falls with high accuracy and efficiency by offloading
computational tasks to edge gateways, reducing data transmission needs, and improving overall system
responsiveness.

The study of [10] develops a scalable and fault-tolerant IoT architecture designed to maximize
operational uptime and maintain connectivity using 6LoWPAN. This architecture includes backup
routing mechanisms between nodes and continuous monitoring to identify and correct failures, such
as sink node hardware malfunctions and traffic bottlenecks. If a sensor node becomes inactive, the
gateway checks the connection and sends alerts if necessary. The architecture also supports extending
the number of medical sensor nodes at a single gateway, facilitating real-time remote monitoring of
biomedical signals, and ensuring system reliability and continuity.

In [4], the authors propose a three-layered fog computing architecture designed to minimize latency
and network usage in time-sensitive health monitoring applications. Introducing a Load Balancing
Scheme (LBS) effectively distributes the computational load among fog nodes, reducing latency and
improving network efficiency.

The research of [25] presents a software architecture that leverages fog computing to enhance real-
time data transmission and reduce latency. The proposed architecture includes a dynamic load-balancing
approach and an efficient scanning mechanism to optimize the selection of fog nodes for IoT devices.

Lastly, [26] explores an analytical model to optimize alert strategies in health information systems
based on patient trust. The study uses a Partially Observable Markov Decision Process (POMDP) to
design optimal alert strategies considering patient adherence and trust levels. The model describes the
dynamic interaction between patients and the Health Information System (HIS), with states including
asthma control and trust levels. Observations are based on inhaler usage and clinical diagnoses, while
interventions involve system alerts. Similar to our entities, the study addresses health monitoring using
IoT devices and patient adherence, although it places more emphasis on trust dynamics.

These related works collectively illustrate advances in fog computing, IoT, and health monitoring
systems. They provide a comprehensive basis for developing efficient, scalable, and reliable architectures
and analytical models that improve quality of life through continuous health monitoring. However, they
differ from our work in that they focus on infrastructure and are not aimed directly at QoL monitoring.
Furthermore, few studies focus on software modeling and architecture. Most are concerned with
infrastructure and network issues, highlighting a gap that needs to be filled.

4. Analytical Model

A model is a construct capable of describing observable phenomena [27, 28], which can be used to
understand complex real-world situations and provide a basis for effective problem-solving [29]. In this
way, analytical models use logical reasoning to model entities of a system and specify their relationships
[30].
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The analytical model proposed in this work was inspired by a previous study that brings a structured
description for mobile Health (mHealth) applications [31] and can be seen in Figure 3. The entities
(highlighted in the text using the underline) are represented by rectangles and their relationships by
labeled arrows.
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Figure 3: Proposed Analytical Model

At the center of this model is the User entity, which can interact with the Smart Environment. In
this scenario, Smart Environments are characterized by Sensors and Actuators used to enhance users’
lives [32]. A sensor produces Contextual Data from user and Environment sensing. With these data, it
is possible to represent many Personal Health Indicators.

Every user has a Quality of Life index. QoL has several Domains, such as physical, psychological,
social, and environmental [7]. The physical domain assesses motor facets such as daily living activities,
medicine dependence, mobility, and sleep quality. The psychological domain relates to body image,
negative and positive feelings, self-esteem, and other mental aspects. The social domain observes social
relationships, and the environment domain aims to evaluate the environmental facets.

However, the usage scenarios presented in this work focus on physical and psychological domains.
These two domains were selected due to their strong influence on the patients’ Health and the availability
of data to characterize each of them.

Based on the choice of domains, QoL scores can be measured using instruments such as
Self-reported Instrument (e.g., WHOQOL-BREF1 [7]). This score is helpful for medical practice
as it represents the patient’s quality of life [33]. The proposed model also predicts the use of
Data-based Instrument to infer users’ QoL from contextual data as an alternative strategy.

These data-based instruments, for example, can leverage machine learning algorithms to learn
and adapt from contextual data. This enables more dynamic and context-sensitive QoL assessments.
Examples of such data-based instruments include the system presented in [14], which applies Self-
Organizing Maps (SOM) to cluster data and detect health patterns, and the platforms QoL Smart Lab
[34], which integrate data from smartphones and wearable devices with information from health
questionnaires, allowing the collection and analysis of data for advanced QoL studies; and Healful [35],

1The WHOQOL-BREF was evaluated in 23 countries and is available in 19 different languages. It has 26 questions distributed
into four domains: physical, psychological, social, and environmental
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which combines IoHT data collection with machine learning algorithms and adaptation rules to infer
users’ quality of life.

Supported by the QoL scores, healthcare professionals can define Health Interventions such as
adaptations to the user environment (when it is provided with smart actuators), periodic health rec-
ommendations (to promote changes in users’ habits), or medical treatments (in critical cases). Such
interventions can enhance user well-being and increase life span.

In addition, the proposed analytical model is flexible regarding personal health indicators, and its
variety is essential for improving QoL predictions. This is evidenced by the study [36], which showed
that the best fit of the structural equation model used to predict mental and physical health factors was
achieved by integrating a wide range of subjective and objective indicators. This work considers five
indicators in usage scenarios: daily mobility, physical activity level, sleep quality, loneliness level, and
social mobility level.

The five health indicators – daily mobility, physical activity level, loneliness, social mobility, and
sleep quality – were chosen based on the knowledge present in the literature that correlates each of
them to physical and psychological Health (target usage scenarios for this work 6). For example, [37]
presents an investigation correlating pedometer-based interventions with lower anxiety/depression and
higher health-related QoL. Similarly, many other authors discuss the correlation between daily mobility
and physical activity level with the patient’s Quality of Life [38, 39, 40].

Regarding loneliness and social mobility levels, there is evidence that the social component strongly
influences psychological health [41, 42]. [43] state that “satisfying social relationships are essential for
mental and physical well-being”. Therefore, these two indicators complement each other to observe the
interaction of users and their daily commute.

The last indicator is sleep quality. Sleep is essential to restore the physical and psychological aspects
of the human body [44, 45, 46]. According to [47], deep sleep restores muscles and removes waste from
the brain, while the e Rapid Eye Movement (REM) re-energizes the mind.

Finally, it is essential to mention that the health indicators complement the QoL score and aid in
understanding the results. Although helpful in medical practice, the score is not self-explanatory, thus
requiring additional information for the patient to comprehend the results.

5. QoL-based Systems Architecture

Software architecture delineates the system’s components and their interrelations [13]. Hence, an
architecture should illustrate the system’s structure and the collaboration of its components to fulfill
the software’s objectives. This section provides an overview of the architectural structure, addressing
subsystems and modules, aligned with the analytical model described in section 4.

The proposed architecture is inspired by the MAPE-K (Monitor, Analyze, Plan, Execute - Knowledge)
loop framework [16], which provides a robust and flexible model for QoL-based systems. This is due to
its ability to integrate multiple data sources, process information intelligently, and adapt, allowing for
smart interventions in the user’s environment.

Furthermore, the proposed architecture consists of four main stages (see Figure 4), each responsible
for a crucial monitoring and intervention cycle function.

Additionally, it is worth mentioning that MAPE-K loops generate a vast amount of data, representing
the knowledge acquired in that context. These stored data enable continuous analysis and improvement
of intervention models. Therefore, it is essential to mention that these data need to be stored in a way
that can handle their high volume, scalability, and diversity.

Following, each stage is detailed, highlighting its responsibilities and the technologies that can be
integrated.

5.1. Monitoring stage

The first state – Monitor – is responsible for collecting, aggregating, and filtering raw data from
various sources in the environment. Data can be collected from various technologies, includ-
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Figure 4: Proposed Analytical Model

ing Biometric Sensors capturing data such as heart rate, blood oxygen levels, blood pressure, and
glucose; Activity Sensors including accelerometers, gyroscopes, pedometers, and sleep monitors;
Context Sensors encompassing GPS, surveillance cameras, microphones, and proximity sensors to
understand the user’s environment; Environmental Sensors monitoring temperature, humidity, air
quality, light, and noise; Wearable Devices such as smartwatches, fitness bands, smart clothing, and
smart; and Mobile Devices smartphones and tablets running health applications to collect additional
data. Given that, it is clear that different implementations of data extraction are required for each
technology. Therefore, the Strategy behavioral pattern [48] was incorporated using a generic interface
(referred to as Data Extractor). In this way, different implementations can be added easily for each new
data source.

5.2. Analysis Stage

The Analysis state is responsible for processing and interpreting the data collected in the monitoring
stage. This stage comprises four main modules, each performing a specific processing and data evaluation
function. The first module is Data Polish: This module is responsible for refining and cleaning the raw
data collected, which removes noise and inconsistencies, ensuring that the data is in a format suitable
for analysis.

Next, Data Enrichment where the data is enriched with additional or derived information. This
process can include combining different data sources, adding relevant context, or deriving new attributes
from existing data. Self-Service Machine Learning follows this module, allowing the building of QoL
indicators using machine learning algorithms. It enables users and professionals to create personalized
models to predict and evaluate QoL.

At last, Data Quality ensures that the data used in the analysis is complete, correct, and accurate. It
implements continuous checks and validations to maintain high data quality throughout the analysis
process. The result of the analysis module is the QoL inference report. This report includes QoL scores
for the domains worked on. With this QoL report, healthcare professionals can describe risk contexts
that should be monitored.

In conclusion, the Pipe-and-Filter [49, 50] architectural pattern can be effectively utilized to implement
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these modules. This pattern allows for the sequential processing of data, where each module (filter)
performs a specific transformation or analysis step and passes the data to the next module through a
pipe. The pipeline structure facilitates the integration of additional modules or modifications without
disrupting the overall flow, enhancing the system’s adaptability to changing requirements. In this way,
by adopting this approach, the system can achieve modularity, reusability, and flexibility, making it
easier to maintain and extend.

5.3. Plan Stage

In the Planning stage, intervention plans are created based on the analysis reports. This stage involves
two main modules: Risk Analyzer and Intervention Planner.

The risk analyzer consists of predictive risk analysis methods. It aims to predict factors that can
affect QoL. This prediction can be carried out using methods that explore the simulation of scenarios
based on specific factors and thus identify risks associated with certain contexts.

After the risk report, the intervention planner stage defines specific response actions using rules that
evaluate contexts with associated risks and the appropriate interventions. These intervention actions
compose the intervention plan that will be used in the next stage to address the risks encountered.

5.4. Execute Stage

The Execute stage performs the planned interventions (actions). These actions are executed by the
Worker module, which uses specific modules for each action, such as the Health Recommendations
module for sending notifications about the user’s health; Environmental adaptations module adjusting
the user’s physical environment, such as lighting and temperature control, when actuators are available;
and Emergency Services Activation module notifying emergency services or those responsible in critical
cases that require immediate intervention. Furthermore, other modules can be added to enhance
intervention coverage, such as managing medication, supporting physical activity, and monitoring
emotional states.

6. Usage Scenarios

The proposed model and software architecture were designed to enable continuous and less intrusive
monitoring of Quality of Life. This section uses some scenarios to exemplify their applicability. The
aim is to demonstrate the adherence of them to applications known in the literature and the industry.

Two applications were selected to illustrate the use cases. The criteria for selection were representa-
tiveness and suitability for the proposed artifacts. The first one is Google Fit2, a commercial application
with high market relevance and well-established. The other application was an application proposed by
the literature: QoLES [14].

Google Fit is a health and fitness tracking platform developed by Google that monitors users’ general
health and physical activities using built-in activity trackers in mobile devices and wearables, such
as walking, running, and cycling. It also allows integration with many other health applications and
devices.

Through the implementation based on the proposed model and architecture, Google Fit could be
enhanced with advanced QoL monitoring functionalities. While maintaining its existing features, such
as tracking physical activity and monitoring sleep patterns, the platform could be expanded in the
Monitor stage to capture more comprehensive indicators like daily mobility, physical activity levels,
sleep quality, and others.

The data extraction would be done through various sensors integrated into the platform, capturing
information via smartwatches, fitness bands, heart rate monitors, and smartphones. These devices,
capable of integrating with Google Fit, would provide a wide range of contextual data, such as heart
rate, sleep patterns, and physical activity levels.
2Google Fit: google.com.br/fit

310

https://www.google.com.br/fit/


Pedro A. M. Oliveira et al. CEUR Workshop Proceedings 302–315

Even so, it’s important to highlight the limitations of Google Fit. In its current form, it already collects
a significant amount of data through embedded sensors, but the platform was not originally designed
to make complex inferences about users’ mental or emotional health status.

However, implementing clustering algorithms such as Self-Organizing Maps (SOM) could group
the data into different contexts and, after this clustering stage, professionals analyzing the data would
label the groups. Subsequently, the health status data, grouped using these clusters, would be used to
train machine learning algorithms. In this way, it would be possible to develop an instrument based on
contextual data capable of inferring users’ health status.

SOM can be viewed as a nonlinear extension of classical Principal Component Analysis (PCA)
and Multidimensional Scaling (MDS) is frequently used for pattern clustering [14]. Compared to
other techniques, such as PCA, SOM detects behavioral changes quickly and efficiently, allowing the
identification of abnormal patterns [14]. The choice of SOM over other techniques is based on its ability
to generate visual results that are easy to interpret and because it is an unsupervised learning technique
that allows continuous monitoring and pattern detection over time, an essential function in the context
of healthcare.

In addition, after the Data Polish stage in the analysis, the data can be enriched with external
information, such as meteorological or environmental data, during the Data Enrichment phase. This
integration improves subsequent processing by machine learning algorithms, allowing for more accurate
inference of QoL indicators in the Self-Service Machine Learning stage.

Furthermore, by using other meta-attributes from data enrichment, it would be possible to establish
rules that validate the quality of the data acquired for Knowledge. Moreover, the risk analyzer could be
used as a simplified version of the method proposed by [51], which explores what-if analysis to predict
factors affecting adolescent obesity.

In this way, the platform could monitor more than just physical activity; it would be possible to
display reports, graphs, and statistics and, at the same time, generate changes and notifications on the
devices integrated into Google Fit and other interventions integrated into a smart environment via the
worker modules with a more robust intervention plan.

Regarding QoLES, it assesses the QoL of elderly and disabled individuals using a smart environment
equipped with sensors and connected appliances. It analyzes contextual data to provide QoL reports to
caregivers, but it also has its limitations. This platform relies heavily on environmental sensors and
advanced technological infrastructure, which may restrict its applicability in environments where such
infrastructure is unavailable or difficult to maintain.

The proposed model and architecture address these limitations by enabling more flexible data
collection and processing. By utilizing the suggested data extraction interface in the monitoring phase,
the system allows for the scalable and flexible implementation of various data capture methods across
multiple devices. Additionally, the analysis phase modules can be extended and adapted, further
reducing the dependency on advanced infrastructure.

During the QoLES analysis stage, similar to Google Fit, SOM is already used for pattern recognition
and analysis of large data sets. However, unlike the current version of QoLES, the proposed model for
inferring QoL would not rely on domain experts to interpret the results in the Self-Service Machine
Learning module. This could be achieved by enriching data and context and establishing quality
assessment rules with periodic evaluation.

Additionally, using the same strategy mentioned earlier in Google Fit, in the plan stage, it would be
possible to develop an intervention plan that could, during the Execution phase, assist in medical care
decision-making, such as recommending noise-canceling headphones or creating quiet zones.

From what has been discussed, it can be seen that the proposed analytical model and software
architecture are suitable for the context of continuous and less intrusive QoL monitoring. The scenarios
presented show the flexibility and applicability of these artifacts in different usage scenarios, thus
demonstrating their capacity to integrate with various devices and systems for collecting and analyzing
contextual data. In addition, the scenarios emphasize that the model and architecture can be extended
and adapted to suit different contexts of use.

311



Pedro A. M. Oliveira et al. CEUR Workshop Proceedings 302–315

7. Final Remarks

This paper proposed an analytical model and a software architecture for Quality of Life (QoL) based
systems in the context of IoHT.

The proposed analytical model uses logical reasoning to model system entities and specify their
relationships. It outlines the interactions between the user, the environment, and system elements. The
model uses IoT devices to sense the environment and the user, capturing data that is then passed on to
other entities within the model. These entities can use the data to generate interventions in specific
contexts to enhance the QoL. The entities can be instantiated in various solutions to meet different
needs, and the flows can be extended to further improve the responsiveness of QoL-based systems.

The proposed architecture was inspired by the MAPE-K reference model used to implement loops
for Self-Adaptive Systems; however, its focus is not on creating SAS but on the adaptation caused in the
user’s environment to improve their QoL. The architecture consists of four modules: Monitor, Analyze,
Plan, and Execute. The flow begins with the extraction of user data by the Monitor, followed by the
analysis and processing of the data, which is used to generate a QoL report, used in the planning phase
to assess risks and create an intervention plan, which is then executed by the work module that triggers
the necessary interventions in the user environment.

Moreover, this study includes practical use cases to demonstrate the model’s alignment with the
architecture and its applicability to real-world applications. To achieve this, two well-suited and
representative applications were selected: Google Fit and QoLES.

To conclude, we argue that this study can significantly benefit both professionals and researchers.
For professionals, the proposed analytical model and architecture offer a practical, ready-to-use solution
encompassing overall management within QoL-based systems. Additionally, the adaptability of these
artifacts allows for customization and extension to suit various applications, enhancing their utility
across diverse real-world scenarios. For researchers, this work serves as a foundational contribution,
providing a starting point for future research on QoL-based systems. The proposed artifacts address the
existing gap and pave the way for developing more sophisticated and integrated systems. Subsequent
studies can build upon this work, using the analytical model and architecture as essential tools to
explore new dimensions and innovations at the intersection of IoHT and QoL.

Looking ahead, another research opportunity would be developing a system capable of automating
the foundational construction of IoHT QoL-based systems. Leveraging the needs provided, such as
entities defined, this system could automatically generate the core structure of a QoL monitoring
system. This would streamline the initial setup process and ensure consistency and alignment with
best practices.
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