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Abstract
Multiple recent studies have integrated large language models (LLMs) into diverse educational contexts, including CS1 classrooms. One
common application is integrating a chatbot to serve as a teaching assistant. In this preliminary analysis, we explored four methods
(correlation analysis, Latent Dirichlet Allocation, expert evaluation, LLM labeling, and evaluation) with multiple levels of data to
analyze students’ help requests with a basic chat-based LLM tutor when completing CS1 assignments. This dataset contains 73 initial
help-seeking conversation sessions with corresponding student self-reported survey answers. It also included 18 hallucinating responses
from all the conversation sessions. Our results indicate that students with lower self-efficacy tended to create longer help requests,
while students with higher self-efficacy tended to conduct more concise ones. Other than this, we found that learners shared more
commonalities than differences when conducting help requests, including the length of turn-taking and the struggle to locate LLM
hallucinations. As AI-based chatbots become prevalent in education settings, this preliminary analysis sheds light on what types of
learner data can be collected, and what analytic approaches can be leveraged to unpack students’ help-seeking with these LLM-based
learning systems.
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1. Introduction
The rise of large language models in educational contexts
has marked a significant increase in the use of LLMs for
teaching and learning [1, 2]. These models have been inte-
grated into various educational settings, including introduc-
tory computer science (CS1) education, providing innova-
tive ways to support student learning [3, 4, 5]. As the use of
LLM-powered learning systems became prevalent, taking
a closer look at students’ educational behaviors with these
systems became important. Previous educational data min-
ing work highlights that there are different types of features
in the datasets, such as demographic features, performance
features, and activity/engagement features [6]. In this work,
we collected a comprehensive set of data and conducted a
preliminary analysis of how students interact with a chat-
based LLM tutor to complete a CS1 assignment. Through
a mixed-method analysis of multifactual data, our study
reveals that, while self-efficacy is negatively correlated with
the length of a student’s initial help request, learners exhibit
few differences in other help-seeking behaviors. Instead,
students share common flaws in their help-seeking strate-
gies, such as providing insufficient information in the help
request, or failing to locate errors in the LLM hallucination.
These findings highlight some needs for future research
and development of LLM-based educational systems. For
instance, these systems should not only be more learner-
centered and adaptive, but also capable of automatically rec-
ognizing and scaffolding the context of learners’ questions,
thereby supporting students from diverse backgroundsmore
effectively.

By using multiple methods and data levels to understand
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student help-seeking with a chat-based LLM tutor, this work
aims to contribute to the long line of research on designing
educational tools that are sensitive to learners’ individual
needs and features. By addressing the identified commonal-
ities and differences in help-seeking behaviors, we aimed
to inform the development of a more effective, context-
aware LLM-based educational system that can enhance the
learning experience for all students, regardless of their back-
grounds.

2. Related Work

2.1. LLM-based Programming Tutors
Prior studies showed that LLM can generate code, expla-
nations, and conversations [7]. After uncovering its po-
tential, significant effort has been invested in creating and
evaluating LLM-based intelligent programming tutors with
diverse content focus and granularity. However, as LLM
products have shown enhanced flexibility and are more ac-
cessible to students, there are rising concerns about their
over-utilization in computing education [3]. Therefore, re-
cent developments have emphasized incorporating LLM
with intelligent programming tutors in a more pedagogi-
cal way [8]. One direction is to provide an LLM-powered
middle-stage code puzzle to support students actively in
completing their programming experience [9]. The other
direction is to provide help similar to that of a teaching
assistant to support students in completing programming
exercises but avoid providing direct code [10, 11]. The QA
bot from which we collected data in this paper is from this
direction. In this work, we are mainly interested in un-
derstanding how students interact with the QA bot and
how their help-seeking queries relate to their learning back-
grounds, such as self-efficacy and fluency in English.
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2.2. Granularity of Data in Current
LLM-Based Tutoring Data Analysis

The multilevel nature of data in social sciences is perva-
sive, however, reporting practices for data aggregation lack
standardization, resulting in considerable variability in the
information and statistics included by authors [12]. In the
learning engineering domain, the levels of data have been
categorized based on their granularity from low to high
as: log data (records of students’ usage events, e.g. xAPI
data [13]), inferred data (characteristics or prediction of
behaviors of the data subjects inferred from other data, e.g.
anxiety level [14], student model [15]), aggregate data (the
aggregation of multiple events or student’s data, e.g. learn-
ing curve analysis [16]), program-level data (course or
program-level data used to track or predict the performance
of a group of students during the entire course or program,
e.g. course recommendation data [17]), and profile data
(student’s personal information, such as demographic data
[18], learning preferences, behavioral data, goals and aspi-
rations, socio-emotional data, etc.) [19].

To analyze the usage of LLM-based programming tutors,
most of the existingworks conducted analysis using log data,
inferred data from surveys, and aggregate data of LLM-tutor
usage; few of them have analysis on profile data on person-
alized learning experiences and program-level inferences.
To bridge the gap, we use our system, QuickTA [20], to
collect the data levels mentioned above, and explore exten-
sive approaches and aspects of analysis on help-seeking
requests with emphasis on profile data to understand to
what extent learners’ differences would influence the usage
of LLM-tutors.

2.3. Self-Efficacy and Help-Seeking
Self-efficacy refers to individuals’ subjective evaluations of
their abilities to successfully perform an activity [21]. In
computer science education, students’ self-efficacy refers to
their perception of competence to complete CS courses and
finish programming tasks [22, 23]. Prior research looked
into how specific learning supports might impact student
self-efficacy in CS learning [24] and whether the advantages
of support mechanisms could benefit students with varying
levels of self-efficacy [22, 25]. According to the relationship
between students’ self-efficacy and help-seeking behaviors,
results from previous work are mixed [26]. Some scholars
found that students with high self-efficacy tend to show high
help-seeking behavior [27, 28]. However, others reported
the opposite direction and found that students with a high
sense of self-efficacy avoid seeking help even in times of
need [29].

As such, the student’s self-efficacy might affect their use
and interaction with an LLM tutor. We collected this type
of data by asking students to self-report their self-efficacy
regarding the assignment topic each time before interacting
with the LLM tutor.

2.4. Impact of English Fluency on
Help-Seeking

Previous research has examined user behavior in searching
for information in English as a foreign language [30]. When
using English to search, non-native speakers identified the
query formulation as the most challenging task. Due to

their relatively low English language proficiency level, iden-
tifying keywords to build a query in a non-native language
is their main difficulty [30]. Similarly to online search, an
important step in using an LLM-based QA bot is also for-
mulating an appropriate query [31]. However, limited work
has been done to investigate the impact of English fluency
on Learner-LLM interactions in the context of a CS course.

Given that our context involved a significant number of
non-English native speakers, this provided us a chance to
investigate the relationship between students’ self-reported
level of English fluency and their interactions with the LLM
tutors.

3. Methods
We deployed QuickTA, an LLM-powered chat-based tutor-
ing system, in a large introduction to computer program-
ming course. Students were given access to QuickTA when
solving weekly lab assignments. This section describes the
context of the deployment, the design of QuickTA, and the
dataset we used in this analysis.

3.1. Classroom Context and QuickTA
This study was conducted within an “Introduction to Com-
puter Programming” course (CS1), offered at a prominent
research-intensive post-secondary institution in Canada dur-
ing the Fall 2023 semester. The course is interdisciplinary,
with the majority of students (typically over 75%) in their
first year of post-secondary study intending to major in
computer science. The 12-week course utilized a flipped
classroom model and included ten assignments (starting in
week 2 and ending in week 11), pre-and post-homework
due weekly, two-term tests (in weeks 6 and 11, respectively),
and a final exam held two weeks after the conclusion of the
regular semester.

The specific lab assignment we selected for this analysis
focused on the topics of if statements and for loops. At the
end of the assignment introduction, students were given a
link to access QuickTA Figure 1. Students were informed
that QuickTA was designed to help them with the assign-
ment and that they could access it as often as needed. The
students were also told that this was an experimental tool,
so they should be careful about relying on its responses and
should proactively report any issues.

We used GPT-4 (the most advanced model back in Fall
2023) to power QuickTA in helping students with the assign-
ment. As shown in previous research, a system-prompted
LLM might be more effective as a tutor [32]. Therefore,
we designed a system prompt based on Hattie’s feedback
model [33]. The prompt was tested internally through mul-
tiple iterations with the teaching team before being used
for deployment. The detailed configuration of the model is
described in Appendix A.

3.2. Dataset
At the time of the assignment, there were 1,068 students
enrolled in the class. While QuickTA is available for ev-
ery lab activity and exam preparation, the interaction with
QuickTA is optional. In this analysis, we selected student
data for only one lab activity (Lab 4).

For each lab activity, students were asked to complete
three questions every time before starting a QuickTA con-



Figure 1: An Example Interface of QuickTA

versation. The definition and average score of each ques-
tion are as follows: 1) self-efficacy (M=4.74, SD=1.38): a
self-reported question from a scale of 1 to 7, representing
the student’s confidence on the topic before using QuickTA
(1-not confident at all, 7-the most confident); 2) English
fluency: (M=4.15, SD=0.88) a self-reported question from a
scale of 1 to 7, representing the student’s English fluency
(1-not fluent at all, 7-the most fluent); and 3) conceptual
knowledge (M=0.60, SD=0.49): a score of a multiple choice
question that tests student’s conceptual knowledge on this
task, indicating how well the student mastered on the topic
before using QuickTA.

A total of 73 students used QuickTA when completing lab
4 homework, and completed all the required sections. When
using QuickTA, 23 students conducted multiple conversa-
tion sessions (closed and then reopened) with QuickTA. As
we focused on students’ initial help requests with QuickTA,
when answering RQ1 and RQ2, we only kept their 73 initial
help requests and follow-up turn-takings in these initial con-
versation sessions. We also noticed that QuickTA sometimes
expressed errors when answering students’ help requests.
Therefore, in RQ3, we looked into how students dealt with
these erroneous answers. A total of 18 hallucinating re-
sponses emerged from all the conversation sessions.

4. Results
We applied a mixed analysis approach to analyze our multi-
ple levels of data. More specifically, we adopted statistical
analysis in 4.1 and 4.2, we applied an LLM model for the-
matic coding and content extraction unsupervised learning
models for topic extraction in 4.2, and qualitative expert
evaluation in 4.2 and 4.3.

4.1. RQ1: QuickTA usage with learner
feature data

To understand the relationship between learner-level fea-
tures and students’ usage of QuickTA, we investigated the
correlations between learner features with the number of
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Figure 2: LDA Result of Students’ Requests

turn-takings (one turn is considered as initiated by the stu-
dent and then QuickTA answered) in each conversation
session and the number of words in each initial help request
using correlation analyses. We applied Pearson correlation
when the two variables were continuous and Point-Biserial
Correlation when one of them was dichotomous.

Table 1
Correlation Between Number of Turn-Taking and Learner Fea-
tures

Variable r p-value

Self-Efficacy .05 .648

English Fluency .14 .222

Conceptual Knowledge .12 .314

Table 2
Correlation Between Number of Words in Initial Help Request
and Learner Features

Variable r p-value

Self-Efficacy .25 .029
English Fluency .04 .721

Conceptual Knowledge .06 .618

As a result, we found that students’ self-efficacy is nega-
tively correlated to the number of words in each initial help
request. No significant differences have been found in any
other variables with times of turn-taking and initial help
request length.

4.2. RQ2: Information coverage in learners’
help requests

Amajor aspect that influences the length of the help request
would be the number of different types of information cov-
ered in the content. For instance, the help requests with
learner’s code or execution messages (normally above 50
words) would be longer than requests with learners’ ques-
tions only (usually within 20 words). Therefore, we explored
the similarities and differences between learners in their
queries’ information coverage.

We first applied Latent Dirichlet Allocation (LDA) in Fig-
ure 2 to explore differences in frequent topics that learners
are interested in while finding more commonality than dif-
ferences in help query content related to learner traits. With-
out significant differences between most-frequent words in
prompts for different learners, students often include words
related to lab name (e.g., lab4), programming problem name
or description (e.g., ispalindrome, lowercase), and some pro-
gramming syntax (e.g., return, true).



Table 3
Table of Help Request Types

Help Request Type Number of Queries Definition
Debug Output 5 The code can be executed, but the outputs of the test cases are wrong
Debug Syntax 2 The code contains syntax error(s)

Next-Step 30 The student does not know what to do next
Create Testcase 3 The student asks for help in creating new test cases to examine the code

Capability 4 The student is curious about what this bot can do
Conceptual Knowledge 3 The student needs an explanation of the definition of certain concepts
Procedure Knowledge 1 The student asks about how to use a certain structure

Clarification 8 The student asks for clarification on certain questions or homework requirements
Unclear 17 The student only copies the current code or types greeting words such as ”hello”

Then we used GPT-4 to label the types of information cov-
ered in each help request to further investigate whether cer-
tain types of learners are more skillful prompt writers. The
information coverage rate can provide another perspective
on users’ prompting behavior. In this analysis, we focused
on whether learners include sufficient context information
in their help requests to increase the help-seeking responses’
quality of accuracy and concreteness. We acknowledged
that ”sufficient context” can be different given different re-
quest types. Thus we first defined the types of requests
adopting from the help-seeking model [34] as requests with
clear motivation: debug-output, debug-syntax, next-step,
create test cases, knowledge-concept, knowledge-procedure,
capability, clarification; and requests with unclear motiva-
tion (Table 3). Two domain experts coded learners’ initial
help request data. These experts identified the potential
components that can be included in each help request and
labeled what are essential components for different types
of requests.

After the definition of request types and information
types, we applied a multi-shot prompt engineering strat-
egy with examples to make GPT-4 label each user request
using the rubric in Table 4. Lastly, each student’s request
is grouped into one help-seeking type, and its information
coverage is visualized as shown in Figure 3.

Table 4
Table of Information Components Definition

Information Type Definition (Yes-1, No-0)
Question Does the student ask a specific question to

elaborate the purpose of the prompt?
Statement Does the prompt include the coding problem

statement?
Code Does the prompt include the student’s code?

Output Does the prompt include the output of the
code after running the code?

Testcase Does the prompt include the test case of this
problem?

The result of different learners’ information coverage in-
dicates no significant difference between learners (Table 5).
A common pattern of all learners is that they tend to miss
essential context for multiple types of help requests. Overall
speaking, only 24.7% of students included all information
components identified as important by researchers, with
particularly low coverage on queries related to debug output
(20%), debug syntax (0%), and next-step (3%). More specifi-
cally, when asking for the next step to do, 63.3% of students
only include a question (e.g., “how do I do the function re-

verse sentence”) without mentioning their current code or
problem description.

Table 5
Correlation Between Information Coverage and Learner Features

Variable r p-value

Self-Efficacy .07 .365

English Fluency .05 .540

Conceptual Knowledge <.01 .963

4.3. RQ3: Learner differences when reacting
to LLM hallucinations

The previous section reveals the improvement needed in
learners’ help-initiating behaviors, and in this section,
we closely looked at learners’ reactions to hallucinating
QuickTA-generated responses.

Wemanually coded all the conversation sessions and iden-
tified 18 hallucinating responses in 8 conversation sessions
from 6 unique students. Of these 8 conversation sessions, 5
were in the initial conversation session, and 3 were in later
conversation sessions. Due to the nature of programming
tasks, students can run the code with tests to validate the
responses. Therefore, in most cases(94%), students are able
to identify the answer that is wrong from the test result.
However, only one student successfully debugged with the
system and reached the correct code state, while other stu-
dents failed to identify the source of errors before quitting
the conversation. According to the conversation log, the
successful student already completed the lab assignment
and only wanted to test the capability of our system, thus
this student can accurately identify the cause of error in
LLMś incorrect responses within one round of turn-taking
(e.g., “Why would sorted_string be initialized with the first
character of the string? We would not be sure of its position
until during the sorting process rather than prior”). Other
students who had no access to the correct answer are often
trapped in the same hallucinating answer for an average of
15 rounds of turn-taking with the problem unsolved, which
can potentially cause low learning efficiency and frustration.

5. Discussion
In this work, we appliedmultiple analysis methods withmul-
tifactual data to understand how learners used a chat-based
LLM tutor when completing a CS1 lab assignment. In gen-
eral, we found more commonalities than differences among



Information coverage by learners’ request type

Figure 3: Information coverage by learners’ request type. Red: the information students included; gray: essential information to provide
to LLMs for higher response quality

different learners regarding their usage, information cover-
age, and responses to possible hallucinations. These com-
monalities suggest future directions for learner feature data
collection and highlight shared challenges among novices
in both programmers and AI tool users.

By addressing the three research questions, we found
help requests written by learners with lower self-efficacy
are significantly longer than those from higher self-efficacy
learners. When looking at their actual help requests, learn-
ers with higher self-efficacy were more capable of describing
the problem (e.g., “I want to write a code where it checks the
letter after the separator”), while lower self-efficacy students
tended to ask more general questions (e.g. “I am trying to
solve is_palindrome_
string”) or no specific questions but mainly provided infor-
mation such as the problem statement and their current code.
Aside from the difference between learners with different
self-efficacy on the help request formulation, we found no
other differences in behavior and usage of QuickTA among
learners with varying self-efficacy, language ability, and con-
ceptual knowledge. This suggests that representing learners
with a more comprehensive set of features may be neces-
sary to uncover the differences in their help-seeking. Ad-
ditionally, factors beyond learners’ features, such as tool
accessibility to the intended audience, could also influence
system usage. Follow-up surveys or interviews with stu-
dents can help identify these blockers and provide insights
into increasing the use rates and improving the efficiency
of help requests.

Secondly, since many learners could not effectively ini-
tiate a help-seeking request, more design considerations
should be given to this process. Currently, there are two
main approaches to reducing learners’ cognitive load dur-
ing help-seeking: 1) Proactive, Context-Aware Systems:
These systems automatically incorporate all relevant infor-
mation into the prompt and regulate learners’ help-seeking
behaviors. This allows learners to focus on their tasks with-
out worrying about the help-seeking process, thereby re-
ducing the likelihood of errors and time wasted. 2) Scaf-
folded Query Formation System: This approach uses
menu-based selections or templates to assist learners in
forming their queries. By providing structured support,
learners can gradually develop meta-cognitive skills and
become more adept at the help-seeking process through
practice. A potential next step to facilitate the initiation of
help-seeking requests could involve conducting controlled
experiments to evaluate the advantages and disadvantages
of these two systems in terms of their impact on learning

and help-seeking behaviors.
In response to LLM hallucinations, most learners were

able to differentiate incorrect responses from correct ones
by running the code and comparing the outputs. Although
there is a lean chance in our setting that learners submit the
incorrect answer without awareness, they did not know how
to proceed either. Only one student successfully located and
corrected the error in the responses. The conversation log
indicates that this student had already completed the lab
assignment before querying the LLM. Despite the relatively
small sample size, this finding suggests that hallucinations
can impact a wide range of learners, and a higher level of
prior knowledge or more advanced debugging skills may
be necessary to identify and resolve hallucinations at the
programming problem level.

6. Conclusion
This analysis explored the use of multiple methods and data
levels to understand student help-seeking with a chat-based
LLM tutor. Our findings indicated that students with lower
self-efficacy tend to write longer help requests compared to
those with higher self-efficacy. Beyond this, learners gener-
ally exhibited more similarities than differences in their help
requests, such as providing insufficient context information
when asking for assistance, or not being able to identify the
exact error when dealing with LLM hallucination. These in-
sights highlight the need for future LLM-powered learning
systems to better support learners with learners’ features
from more dimensions and better scaffolding on the help
request initiation and hallucination handling process. By
addressing these, we can enhance the effectiveness of LLM
tutors and improve the overall learning experience for stu-
dents from various backgrounds.
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A. LLM Tutor Specification
• model version: OpenAI GPT-4 model
• dates of use: Sept-Dec 2023

Configuration Settings:

• temperature: 0
• max tokens: 300
• top-p: 1
• frequency penalty: 0
• presence penalty: 0.6

Prompt Design : Figure 4.

Under no circumstances should you provide direct code
snippets. You are an AI tutor, called QuickTA, for CSC-X Lab
4, focused on assisting with programming tasks on loops,
conditional statements, and string manipulations without
providing direct solutions. Your role is to clarify doubts,
provide hints, and offer feedback based on the lab guidelines.

Here are the details of Lab 4:

Lab 4: CSC-X - if statements & for loops

Objective: Apply for loops and if statements to manipulate
strings.

Lab Tasks:

• Implement two functions in lab4.py as per the doc-
strings.

• Reuse or modify the ”is_palindrome” function
from Lab 3 to write is_palindrome_string and
reverse_sentence.

• Test your code with 3-5 test cases per function.

Lab Restrictions:

• No lists or list methods.
• No try-except statements.

Your responses should be structured as follows:

1. Understand the student’s strategy for tackling the
functions in lab4.py.

2. Provide hints or clarifications without giving direct
answers.

3. Encourage testing and understanding of the code, and
celebrate their moments of clarity.

Note: Use simple words avoiding technical jargons, and utilize
real-world examples to illustrate concepts. Do not provide
direct answers or the exact code to solve the lab tasks. Engage
only in programming and assignment-related discussions. No
role-playing or off-topic engagements are allowed.

Figure 4: The system prompt for the LLM tutor.
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