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Abstract
Educational data used by data mining approaches in the domain of Computer Science education primarily focused on working with
code-based data, such as student homework submissions. However, the increased use of natural language techniques and Large
Language models (LLM) in all domains of learning including Computer Science education is now producing an abundance of natural
language data, such as code explanations generated by students and LLMs as well as feedback and hints produced by instructors, TAs,
and LLMs. These data represent new challenges for CSEDM research and need new creative approaches to leverage. In this paper, we
present a first attempt to analyze one type of these new data, student explanations of worked code examples. The main challenge in
working with these data is to evaluate the correctness of self-explanations. Using a dataset of student explanations collected in our
previous work, we demonstrate the difficulty of this problem and discuss a possible way to solve it.
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1. Introduction
The majority of the work in computer science educational
data mining (CSEDM) relied so far on datasets that col-
lected traces of learner work with various learning content
or datasets with student submissions to programming as-
signments 1 Using these datasets, researchers were able
to explore a range of novel approaches including finding
knowledge components [1], debugging [2, 3], and detecting
cheating [4]. However, as newer types of dataset become
openly available for analysis, new methods need to be de-
veloped to leverage this data 2.

With recent research on student self-explanation of code
fragments [5] as well as the use of LLMs and students to
generate code explanations automatically [6], an increasing
number of datasets contain free–form code explanations. In
this work, we consider one such dataset with code explana-
tions generated by students and instructors [7]. This dataset
was annotated to mark the correctness of each student’s
explanation and to assess the similarity between students
and instructors’ explanations for the same code lines. The
goal we want to achieve by working with this dataset is to
distinguish correct and incorect explanations. This goal has
practical value. An approach that could reliably identify
incorrect explanations could be used to build an intelligent
tutor to support the self-explanation process [5].

Starting with a review of relevant work, the paper dis-
cusses several approaches to distinguish correct and incorect
explanations. Since our dataset contains “ground truth”, i.e.,
human expert annotation of each explanations as as cor-
rect or incorrect (including inter–rater reliability) we are
able to use the dataset to illustrate the feasibility of these
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approaches.
More specifically, the remaining part of the paper focuses

on two groups of approaches:

1. Use surface-level features: this group of approaches
use “surface–level” lexical and readability features
that could be easily extracted from the text of student
or expert explanations. This is discussed further in
Section 3.1.

2. Use expert explanations: this group of approaches
attempts to calculate various similarity metrics be-
tween student explanations and expert explanation
and use the obtained similarity to distinguish correct
and incorect explanations. This is described further
in Section 3.2.

2. Related Work
Corpora for free-form student answers such as reflective es-
says [8] and argumentative writing [9], provide interesting
examples of use cases that are different from traditional log
data. The ability to analyze this data is important to pro-
vide feedbackwhen assessing students’ free–form responses.
Tools, such as COH–METRIX [10] and EDU-Convokit [11],
offer several options to analyze textual educational data;
however, our dataset of free–form code explanations needs
slightly different methods to evaluate correctness.

Some examples in the natural language processing do-
main offer encouraging examples of using surface-level fea-
tures to models for various tasks. Schwartz and colleagues
explore surface features such as the word or character n–
gram and length of sentences to build a classifier to identify
author writing styles in a CLOZE story task [12]. Some
examples in the case of language inference tasks consider
word-level similarity–based approaches [13]. When con-
structing adversarial examples for natural language infer-
ence tasks, another work considers surface–level cues such
as words that contradict or are negative (”not”). Negative
sampling is another approach that uses surface–level fea-
tures to construct synthetic examples that can help build
robust classifiers [14].

Li and colleagues [15] discuss the student perceptions
on the potential errors autograder may provide as feedback
to their submissions. This emphasizes the need to develop
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better automated assessment techniques, for newer kinds
of data such as code explanations discussed in our work.
The earlier work of the same team [16] discuss the use of an
autograding system that evaluates student explanations to
code in plain English. They show the potential limitations
of using finetuned AI models for autograding accuracy by
comparing with TAs at different levels of grading expertise
and do not find statistically significant results – either ow-
ing to sample size or the AI model actually not performing
better than TAs at the task. This necessatitates the possibil-
ities to explore better finetuned AI models that have higher
accuracy, with lower rates of false positives and negatives.
In this work, we consider a context quite similar to their
work, however, we use student self-explanations produced
as a part of the learning process rather then explanations
produced for grading. We also start from scratch by identi-
fying features in student explanations to classify them as
correct or incorrect. Like this work, we are observing that
the use of surface–level linguistic features may not help in
differentiating student explanations by correctness. Possible
extensions would involve the use of contextual emebeddings
and LLMs which we also currently explore as a follow-up
to this current work–in–progress.

Denny and colleagues [17] explore student code explana-
tions in plain English in a different context. In this work,
code explanations are used to encourage students to think
deeply about the problem so that using their code expla-
nations LLM can generate a code equivalent to the code
the student is trying to explain. Additionally, they evaluate
the student explanations progress up the classifications of
SOLO taxonomy. They also conduct a user study to evalu-
ate students’ perceptions on traditional approaches such as
code–writing in comparison to approahces like code expla-
nations.

Haller and colleagues [18] survey automated assessments
tools that are used to evaluate short answer essays. They
discuss hand–engineered appraoches in combination SVM
or KNN based classifiers. In our case, the goal is not to build
best classifiers for the task, but to evaluate if the features
themselves reveal differences between correct and incorrect
student explanations.

Lin and colleagues [19] explore the use of a finet–tuned
GPT model that can be used to provide personalized, adap-
tive feedback to students. They use new metric that is an
extension to the precision / recall –based Intersection-Over-
Union metric to evluate the LLM–based feedback and com-
pare with human feedback in a user study. For current
work–in–progress this idea is the next target to achieve in
the context to code explanations of worked examples in
programming.

Leinonen and colleagues [6] compare ChatGPT-generated
explanations with student explanations. In our work, we
are interested in classifying student explanations as correct
or incorrect. In an ongoing extension to this work, we also
focus on using ChatGPT–based interventions to solve this
challenging problem.

3. Method
Inspired by previous work [20], we extract surface-level
features from student and expert explanations alone and
generate pairwise similarity scores between student and
expert explanations for the same code lines. This data is ap-
plied to evaluate the correctness of the student’s explanation

for a given line of code.

3.1. Surface Features
We try to assess the correctness of student explanations
using the following easily extracted features.

1. Explanation Length is calculated as the number of
words to check that longer student explanations are
correct. This is a useful metric for tasks such as
persuasive essay evaluation [9] and we expect this
could work for assessing code explanations also.

2. Lexical Density is calculated by the ratio of the num-
ber of nouns, adjectives, verbs, and adverbs (tagged
in the sentence using a Spacy POS Tagger 3) over the
overall number of words in the sentence (Ure LD for-
mula 4). We expect that correct student explanations
are lexically denser.

3. Gunning Fog Readability is the metric to evaluate
the grade level to understand a text. We hypothesise
that the correct student explanations might have
higher scores (require more technical knowledge to
understand) than incorrect explanations.

3.2. Expert–Student Similarity Features
We consider the pairwise similarity between expert and
student explanations to assess correctness of student expla-
nations. Following our previous work [20], METEOR [21],
BERTScore [22] and chrF [23] are considered to evaluate
the pairwise similarity between student and expert expla-
nations for a given line of code. We expect correct student
explanations to be more similar to expert explanations than
incorrect explanations. We choose this combination of met-
rics because METEOR and chrF scores measure character
and token level similarities, while BERTScore estimates se-
mantic similarity by using cosine similarities between the
contextual word embeddings of the two explanations. The
similarity scores are between 0 and 1.

4. Dataset
We use a dataset of line–by–line explanations provided by
students in an study in which they were asked to explain
worked examples [24, 7]. The study included four Java
worked code examples: some basic examples focused on ar-
ray search and print statements and more difficult examples
focused on object-oriented principles. Among about all ex-
pert explanations in the dataset, we considered upto 2 expert
explanations for every line of code. In the original dataset,
the majority of the student explanations were provided in
a single sentence; however, a fraction of explanations in-
cluded two or more sentences. For the purpose of this study,
we excluded these multi-sentence explanations retaining
between 23 and 26 single-sentence student explanations per
line of code. The key datset parameters are shown in Table 1
and sample explanations are provided in Figure 1 (metadata
columns are omitted). There is a known imbalance in the
dataset between correct and incorrect examples (1234 in-
stances of single sentence student explanations annotated
as correct and 70 instances of single sentence student expla-
nations annotated as incorrect). We calculated the average

3https://spacy.io/usage/linguistic-features
4https://en.wikipedia.org/wiki/Lexical_density



Dataset Property Value
# Single Sentence Student–Expert (All Experts) Pairs 1854
# All Sentence Student–Expert (All Experts) Pairs 3019
# All Sentence Student–Expert (All Experts) Pairs Annotation Agreement 88.24%
# Worked code examples 4
# Lines per example ≈ 8
# Single Sentence Student–Expert (Expert 1 & 2) Pairs 1304
# Student–Expert (1 & 2) Explanation Pairs with Student Correct 1234
# Student–Expert (1 & 2) Explanation Pairs with Student Incorrect 70

Table 1
A summary of the properties our dataset.

percentage agreement for the annotation of correctness all
sentence all experts student pairs of explanations (see Ta-
ble 1). More details on the dataset is available in our past
work [7].

Program: PointTester.java Line number: 14 Line code:
x += dx;
Expert1: To shift the x-coordinate of the point, we need
to add dx to the value of the x-coordinate of the point.
Student1: move the x coord the amount that the argument
specified
Student2: Adds the first inputted value to X.
Student3: increases the value of x by the amount of the
first parameter in the function.
...
Student23: The value of dx is added to variable x.

Figure 1: A slice of the dataset showing a subset of expert and
student explanations for the same line of code.

5. Results
In this section, we group the results by the surface–level
metrics used to evaluate the correctness of student explana-
tions and similarity–based metrics where pairs of student
and expert explanations were used. While extensive statis-
tical results could be performed (such as t-tests to compare
means), we preferred to perform exploratory analysis before
digging deeper with our analysis.

5.1. Lexical Based Surface Metrics
5.1.1. Explanation Length

Using the length of the explanation, we observe if the expert
and student explanations can be distinguished, we observe
that the explanations marked correct have lengths of dif-
ferent words. Some lengths for correct explanations are
the same as those for incorrect explanations (see Figure 2a).
This may be because the student explanations are generally
similar in length, regardless of whether they are annotated
as correct or incorrect.

5.1.2. Readability Metrics

We observe that it is impossible to differentiate correct from
incorrect student explanations using lexical surface met-
rics(see Figure 2b). This may be because the student ex-
planations are not technically different in their explanation
levels but the concepts in computing that are used to explain
the line of code, which we observed when annotating the
dataset.

5.1.3. Lexical Density

We observe that the lexical density also may not differen-
tiate good and bad student explanations. (see Figure 2c).
The lexical density measures a more linguistic aspect of the
explanations by the parts of speech, which may not neces-
sarily evaluate the conceptual aspects of the explanations.
This is because the concepts may not be associated with a
particular kind of speech and are more connected with the
ontology of concepts in computing.

5.1.4. Vocabulary

Correctness also does not seem to depend on the vocabulary
of the student explanations (see Figure 2d). The vocabulary
in the sentence is more of a linguistic measure. Hence, this
may not necessarily capture the conceptual ontology in
computing such as those discussed in an earlier work of
JAVA Parser [25].

5.2. Expert–Student Explanation Similarity
5.2.1. ChrF score

We observe that the differences considering the class imbal-
ance between the correct and incorrect explanations could
create an issue with the threshold to differentiate the expla-
nations using this score (see Figure 3a). Further inspection
of similarity scores at a line–by–line level shows that irre-
spective of the expert explanation that is used to calculate
the similarity, the correct and incorrect student explana-
tions cannot be separated easily by their ChrF score (see
Figure 4a).

5.2.2. METEOR Metric

There is a more noticeable difference in the METEOR sim-
ilarity scores between the correct and incorrect student
explanations. This could be due to n-gram level word align-
ment. The density plots of the METEOR similarity scores
distribution show that most incorrect explanations have a
METEOR score below 0.3, as shown in Figure 3b. However,
more than 50% of the correct explanations also have a ME-
TEOR similarity score below 0.3. Thus, irrespective of the
expert explanation that is used to calculate the similarity,
the correct and incorrect student explanations cannot be
easily separated using the METEOR score (see Figure 4b).

5.2.3. BERTScore

While we expected better performance of BERTScore in
separation of correct and incorrect explanations, the den-
sity plots of the BERTScore distribution for correct and
incorrect explanations show very little differences. We may
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(a) Student and Expert Explanation Length (b) Student and Expert Explanation Gunning-Fog

(c) Student and Expert Explanation Lexical Diversity (d) Student and Expert Explanation Vocabulary

Figure 2: Scatter plots of various text linguistic (“surface”) metrics. The x and y represent the student and expert sentence
values, respectively. The colors, shapes, and sizes represent the annotation of the students’ explanations for their correctness
or incorrectness. Correct and incorrect student explanations are not differentiable by the lexical surface metrics.

Similarity Metric Incorrect Correct
(Mean,SD) (Mean,SD)

chrF 0.305, 0.114 0.361, 0.140
METEOR 0.140, 0.091 0.283, 0.170
BERTScore 0.874, 0.028 0.894, 0.024

Table 2
The mean similarity scores between expert and student explana-
tions are not different for the student explanations annotated as
correct from incorrect. The most difference is observable with
the METEOR metric, also observed with the plots

observe differences if we pre-trained a RoBERTa model over
instances from the dataset. (See Figure 3c). As before, the
inspection of the similarity scores at a line–by-line level
shows that regardless of the expert explanation that is used
to calculate similarity, the correct and incorrect student
explanations cannot be separated easily (see Figure 4c).

5.2.4. Similarity Correlations

When drawing similarity scores between the student and
expert explanations, we can take the average similarity of

the student explanation per line of code per solution with
the two expert explanations. This, we can calculate this
for all the lines of all the programs and observe that the
while the range of values of the three similarity scoring
metrics are different, they are highly correlated (𝑝 < 1𝑒 − 6,
0.5 ≤ 𝑐𝑜𝑟𝑟 ≤ 0.6), as shown in Figures 5a and 5b.

6. Conclusion
In this work, we present the challenges of analyzing new
kinds of datasets such as the code explanations dataset in
this paper. We observe that we need more sophisticated met-
rics to evaluate student explanations as “good” or “bad” and
surface-level metrics are mostly ineffective in evaluating stu-
dent explanation correctness. We present similarity-based
metrics also not performing well in separating the “good”
from the “bad” student explanations.

Our work has several limitations. We did not consider
the use of combinations of lexical and similarity-based fea-
tures to classify student explanation correctness. The goal
of this paper is not to present the best possible classifier,
rather to show the difficulty in identifying useful features
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(a) Character F Similarity (b) Meteor Similarity (c) BERTScore Similarity

Figure 3: In the Figures 3a, 3b, 3c, we observe that student and expert explanations are similar irrespective of whether the
student explanations are annotated as correct or incorrect.

—

(a) Character F Similarity (b) Meteor Similarity (c) BERTScore Similarity

Figure 4: The scatter plots for the 3 similarity metrics used between expert and student explanations for a given line of code
in a given program separated by correct vs incorrect presents some differences in scale across the different similarity metrics
(refer Figures 4a, 4b, 4c)

.

to differentiate correct from incorrect student explanations.
We are addressing this in our ongoing work, with the use of
LLMs to assess the correctness and provide feedback to stu-
dent explanations. Our expert explanations may not have
sufficient and diverse correct (positive) and incorrect (nega-
tive) examples to build robust classifiers. We are developing
cross–validation techniques to build better classifiers that
are exposed to various synthetic and real–world examples
to evaluate student explanation correctness. In this work,
we did not present similar results by considering multiple
sentences for both student and expert explanations. While
this is important, we chose to present in this work a proto-
type for single sentence evaluation which is scalable with
aggregation techniques, which we will be presenting in an
upcoming future work. This dataset does not cover the
cases where students improve over time with providing cor-
rect explanations to lines of code as they progress through
harder programming solutions. We will explore this in a
longitudinal study as we build a system which will have the
option to present harder examples for students to explain as
they are evaluted correct with a better classifier that utilizes
several of the current analyses presented in this work as
evidence.
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