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Abstract 
This study assesses the efficacy of intelligent texts to help students in a computer science class understand 
and process information about computational thinking and programming. The intelligent texts used in this 
study were taken from an introductory programming textbook. The texts were ingested into an intelligent 
text format using the Intelligent Texts for Enhanced Language Learning (iTELL) framework, which converts 
any type of machine-readable text into an interactive, intelligent text. iTELL asks students to complete 
constructed response items and summaries, which are scored automatically by large language models 
(LLMs) specifically trained to generate scores to inform qualitative feedback to students. Survey results 
indicated that students responded positively to the constructed response and summary items and felt both 
items helped them learn. An analysis of delta value gain scores between pre-tests and post-tests for 
students that used iTELL and those that did not use iTELL indicated that iTELL students showed increased 
learning gains. Regression analyses showed that delta scores for the iTELL students were predicted by the 
number of scrolls, word scores on summaries, and pre-test proficiency level (low/high). The results indicate 
that intelligent texts may help computer science students better learn material than traditional texts. 
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1. Introduction 
Computational thinking is a critical 21st century skill that 
can help students navigate an increasingly digital world. It 
describes the ability to express a problem in terms of steps, 
such that they could be written out as an algorithm. 
Teaching computational thinking allows students to 
explore knowledge in concrete ways, and asking students 
to code computational thinking into a computer program 
can provide students with a quick method to check the 
validity of the knowledge [1]. 

However, coding is a complex skill 
that requires sustained effort, a specialized approach, and 
a diverse skill set. Developing these skills is an iterative 
process that requires persistence and knowledge well 
beyond simple syntax [2]. Becoming a proficient 
programmer requires a combination of various abilities, 
and merely knowing programming syntax is just the initial 
step in the challenging process of creating effective 
programs. The complexity of computer programming and 
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the dedication required to succeed as a programmer means 
that computer science classes suffer from high failure and 
dropout rates [3] which has led the computer science 
community, especially those interested in education, to 
develop numerous tools and supports to help facilitate 
student success. The majority of these tools focus on 
assessing the correctness of assignments in object-oriented 
programming languages. Typically, these tools use 
dynamic techniques to provide grades and feedback to 
students. Some tools use static analysis techniques to 
compare a student's submission with a reference solution 
or a set of correct student submissions [4].  

Students in computer science classes are also expected 
to learn about computational thinking and programming 
approaches, using reading materials. However, printed 
books are generally considered ineffective at teaching 
computational thinking and the dynamic nature of 
programming because they are bound by the static 
confines of the text [5]-[6]. Specifically, studies indicate 
that students may fail to comprehend programming 
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dynamics when explained through static pedagogical 
materials [7]. 

The goal of this study is to assess the efficacy of 
interactive intelligent texts in a computer science class to 
help students understand and process information about 
computational thinking and programming. The intelligent 
texts used in this study are taken from an introduction to 
computing textbook. They were ingested into an intelligent 
text format using the Intelligent Texts for Enhanced 
Language Learning (iTELL) framework. iTELL is a 
computational framework that converts any type of 
machine-readable text into an interactive, intelligent text 
within a web-app. iTELL is based on theories of reading 
comprehension and provides opportunities for users to 
generate knowledge about what they read and watch 
using constructed responses and summary writing. The 
constructed responses and summaries are scored 
automatically by large language models (LLMs) specifically 
trained to generate scores which inform qualitative 
feedback to students.  The feedback from these AI 
integrations is used in a number of different ways, 
including to guide learning, correct misconceptions, review 
missed topics, prepare for upcoming materials, make links 
between the texts and the real world, and help elaborate on 
what users have learned. iTELL represents an advanced 
learning technology based on AI which can be used to 
improve student learning outcomes in computer science 
classes. 

1.1. Intelligent Texts  

Intelligent textbooks have become more popular as 
advancements in Natural Language Processing (NLP) have 
made human-machine interaction more accessible [8]. 
Early digital textbooks offer several advantages over 
traditional print textbooks, such as videos and hyperlinks, 
but studies found no significant difference in learning 
outcomes between digital and print textbooks [9]. 
However, a recent meta-analysis indicates that the 
interactive features of intelligent textbooks can moderately 
improve reading performance [10]. Moreover, college 
students tend to prefer digital textbooks due to their lower 
cost and ease of use. 

Digital textbooks have been in production for over 30 
years with initial texts using principles of knowledge 
engineering wherein domain experts designed and 
produced the textbooks [11]. Early work included the 
development of hypertext technology, which allowed 
students to navigate the textbooks more efficiently [12]. 
One of the first web-based interactive textbooks was ELM-
ART, an intelligent and interactive textbook introduced in 
1996 to teach computer programming [13].  

Research on intelligent textbooks has increased in the 
past decade as computational tools have become more 
advanced and accessible [8]. Studies have focused on 
analyzing student behaviors in intelligent textbooks to 
provide personalized learning experiences. For instance, 
researchers have developed algorithms that use previous 
assessment results to recommend optimal learning 
activities for each student in textbooks [14]. Student 
behaviors, such as struggling to answer comprehension 
questions, can also be used to adaptively modify intelligent 
textbook content and provide remedial materials [15]. 
Furthermore, experts can extract concepts from intelligent 

texts that can train machine learning algorithms to 
personalize learning [16] or part-of-speech taggers can be 
used to automatically generate comprehension questions 
[17].   

The advent of large language models (LLMs) will 
further change the developmental landscape for intelligent 
textbooks. LLMs allow intelligent textbooks to be more 
interactive and afford more accurate, real-time feedback on 
student generated responses used to assess text 
understanding. Additionally, LLMs allow for the 
integration of AI chatbots that can guide readers through 
the text and potentially help with any misunderstandings 
or difficulties the readers may encounter. In short, LLMs 
enable the creation of intelligent textbooks that can 
automatically generate content as well as prompt and 
evaluate reader responses allowing for the automation of 
scoring and feedback generation. 

1.2. iTELL  

iTELL is a framework that simplifies the creation and 
deployment of intelligent texts with integrated 
interactive features. iTELL includes automated pipelines 
that leverage Large Language Models (LLMs) with human 
oversight to generate participatory content like 
constructed response items and summaries. Additionally, it 
includes scoring APIs for constructed responses and 
summaries. iTELL is a domain-agnostic framework that 
utilizes multiple highly transferable generative LLMs to 
transform static texts into interactive, intelligent textbooks. 

iTELL generates rich clickstream data, allowing for the 
analysis of user behaviors, particularly related to reading. 
It uses JavaScript's intersection observer API to determine 
whether a specific text section is within the user's viewport 
and logs the observation time for different parts of the text. 
iTELL also log events within the systems include scrolling 
and page clicks.  

Most importantly, iTELL includes read-to-write tasks 
that engage the reader in learning. Read-to-write tasks 
require readers to extract and integrate information from 
the text into their writing allowing them to construct 
knowledge as they read [18]-[21]. Read-to-write task have 
been shown to be effective learning tools. For example, 
asking readers to summarize what they have written 
results in strong learning gains [22]-[23]. Additionally, 
constructed responses, where students provide short 
written answers, can improve learning comprehension [24]. 
In iTELL, readers are required to complete at least one 
constructed response item and write one summary per 
page. iTELL utilizes multiple fine-tuned and out-of-the-box 
Large Language Models (LLMs) to support these tasks. 
Specifically, iTELL uses LLMs to generate short 
questions and to evaluate readers’ constructed responses 
to those questions. Additionally, iTELL requires readers to 
submit a summary of each page and uses LLMs to score 
those summaries and provide feedback to readers to use 
when revising summaries. 

1.3. Current Study  

The current study examines an iTELL volume deployed in 
an Introduction to Computing class. A single volume of 
iTELL was developed that covered a textbook chapter on 
control structures (Chapter 3). Students within the 



classroom were given extra credit to use the iTELL volume 
of which about 25% did. The remaining students depended 
on a static, digital version of the textbook. At the end of 
each chapter, the students were given a test to assess their 
knowledge. The research questions that guide this study 
are the following:  

1. Do students think that iTELL is easy to interact 
with, is understandable, helps them learn, and 
provides accurate feedback? 

2. Do students that completed the iTELL volume 
show gains from the test on chapter two (no 
iTELL volume) to the test on chapter 3 (iTELL 
volume) compared to students who did not 
complete the iTELL volume? 

3. Are data points collected from the iTELL volume 
related to click-stream data, focus time, and 
summary scores related to differences in test 
scores from chapter two to chapter three? 

2. Method 

2.1. Course 

Data for this research is based on an Introduction to 
Computing class that was taught in the spring of 2024 at a 
large technology university in the southeastern United 
States. The course is one of three courses that can fulfill the 
computer science requirement for all students at the 
university and is taken by over a couple of thousand 
students every academic year in one of two variations: in-
person and online. The course covers the basics of 
computing, presupposing no prior programming ability: it 
begins with the basics of procedural programming, moves 
through control structures and data structures, and 
concludes with brief units on object-oriented programming 
and algorithms. Throughout the course, students complete 
several hundred small programming problems through the 
homework assignments, as well as some live coding 
problems during four timed, proctored tests. Tests and 
quizzes comprise 52% of students' grades in the class. 

2.2. Textbook 

The textbook used in the course is called Introduction to 
Computing, first edition [25]. The textbook is published by 
McGraw Hill Education and is available in digital format. 
There are five units in the textbook with each unit compris-
ing between 2 and 5 chapters. The five units are Compu-
ting, Procedural Programming, Control Structures, Data 
Structures, and Object-Oriented Programming.  

For this study, we ingested the third unit covering 
Control Structures into an iTELL volume using iTELL’s 
content management system. The volume comprised an 
overview page that introduced iTELL and 5 additional 
pages with each page referencing a chapter from the unit. 
Each page followed the structure of the chapter in the book 
including learning objectives, key terms, the chapter prose, 
and any figures, graphs or tables. However, screenshots of 
integrated development environments (IDEs) in the 
textbook that demonstrated Python code and the code 
output were replaced with a Python interactive sandbox. 
The sandbox allowed students to enter in their own code 
and run the code within iTELL. The pages were separated 

into chunks (i.e., all content under a unique sub-heading) 
based on related content as selected by the page designer. 
On average, each page had around 6.6 chunks 
(SD=1.14). Only the first chunk on a page was visible to a 
user at the beginning with all subsequent chunks being 
blurred. Users were required to click on a “chunk reveal” 
button to unblur the next chunk. 

The content management system automatically 
generates constructed response questions and answers for 
each chunk with human-in-the-loop. Prior to publishing, 
the page designer ensured that the questions and answers 
were accurate. Each chunk had an accompanying 
constructed response item. There was a 1/3 chance of a 
constructed response item being presented to a user for 
each chunk. 

2.3. Participants and Procedure 

There was a total of 476 students enrolled in the class. Of 
those enrolled, 121 students elected to use the iTELL 
version of the textbook and 356 did not. Students were 
given 1% extra credit (added to their overall course grade) 
for participating in the study.  

These 121 students first provided consent for their data 
to be used. If the student did not provide consent or was 
under the age of 18, they were sent directly to the iTELL 
volume, but no data was collected. If they provided 
consent, they then completed an intake survey that 
collected demographic information and individual 
difference data including age, sex, race/ethnicity, first 
language, and reading habits and technology use. They 
were then sent to the iTELL volume. If the student finished 
the five pages in the volume, participants were asked to 
complete an outtake survey to describe their experience of 
working with the iTELL volume. The outtake survey 
focused on students’ perceptions of the digital text’s 
layout, organization, annotation features, and the 
effectiveness of the summary and short answer tasks.   

Of these 121 students, 101 consented to having their 
data used for analysis. Of those 101 students, 82 completed 
iTELL including the outtake survey. However, of the 82 
students that completed iTELL, 79 reported test scores for 
units 2 and 3. Of the 356 students that did not use iTELL, 
277 reported test scores for units 2 and 3. 

2.4. Surveys 

2.4.1. Intake Survey 

Before interacting with iTELL, students completed a short 
intake survey to collect demographic data such as age, 
gender, race or ethnicity, and first language background. In 
this intake survey, students were also asked to provide 
information about their interactions with technology and 
they provided input about their reading habits on 
electronic and traditional texts. Finally, students provided 
information about the types of features that they have used 
before in intelligent texts. 

2.4.2. Outtake Survey 

Upon completion of the intelligent texts, users completed 
an outtake survey which included user feedback questions 
on each feature of iTELL including annotation and 



notetaking, the section summary tasks, constructed 
response items, and overall feedback about the layout and 
organization of the intelligent text. This survey allowed us 
to collect data on users’ perceptions of how well each of the 
features stayed relevant to the text, worked correctly, was 
easy to interact with, and helped improve the users’ 
learning. Users were also prompted to provide short text 
feedback about each of the features. 

2.5. iTELL Data Extraction 

For this analysis, we extracted data related to participant 
focus time, click-stream events, constructed responses, and 
summaries. 

2.5.1.  Focus Time 

For each page focus time was extracted in two different 
ways. First, focus time was recorded bey subtracting the 
time that users opened the page and the time the user 
moved onto the next page. The focus time included all the 
time spent on constructed responses and on summary 
scoring. Second, focus time was recorded by how long each 
chunk in a page was viewed. From this, a total time for all 
chunks per page and an average time for all the chunks on 
a page was derived. 

2.5.2.  Events 

A number of events are calculated in iTELL that can be 
instrumented into predictive variables. These include 
chunk reveal events (for chunks with and without 
constructed response items), general clicks on items within 
the system, periods of time when learners are focusing on 
the page, and when scrolling. The chunk reveals without 
constructed responses is not the inverse of the chunk 
reveals after constructed responses because many students 
reread chapters either as a choice or as a function of 
needing to reset the chapter because of a bug in the iTELL 
system. Around 40% of chapters had some type of 
rereading (i.e., scrolling upwards of more than 3% of the 
page content) on the part of students. 

2.5.3.  Constructed Responses 

As part of the iTELL integration, an accompanying 
constructed response item is generated for each chunk 
using GPT-3.5-turbo with human-in-the-loop. End users do 
not see all constructed response items when reading an 
iTELL volume; instead, each chunk has a 1/3 chance of 
spawning an accompanying constructed response item, 
with a minimum of one constructed response item per 
page. Users are required to submit at least one response to 
a spawned item before proceeding to the next chunk. 
Readers’ constructed responses are scored for correctness 
using two separate fine-tuned LLMs, Bilingual Evaluation 
Under-study with Representations from Transformers 
(BLEURT) [26] and Masked and Permutated Language 
Modeling (MPNet) [27], both of which report an accuracy 
of ~ .80 [28] on question/answer pairs in the Multi-Sentence 
Reading Comprehension (MultiRC) dataset [29]. The same 
BLEURT and MPNet models are used to provide feedback 
to readers who are given the opportunity to revise their 
constructed responses if needed.  

For each participant, we calculated the number of 
constructed responses they produced and the average score 
they received for the constructed response on a scale of 1-
3 with a 1 representing when the two LLMs agreed the 
answer was incorrect, a 2 representing when one of the 
LLMs classified the answer as incorrect and the other 
classified as correct, and a 3 representing when the two 
LLMs agreed the answer was correct. Figure 1 
demonstrates the interface and the feedback returned for a 
constructed response scored a 2 by the model. Because of a 
bug in the code connecting iTELL to its database, a number 
of constructed responses were not logged and were omitted 
at random. Of the 395 pages completed by the 79 iTELL 
participants, 130 of those pages did not have constructed 
response data logged. 

 

Figure 1:  Constructed Response Interface. 

2.5.4. Summaries 

After reading each page, students were prompted to write 
a summary of what they read. Algorithmic filters in iTELL 
ensure that the summaries are between 50 and 200 words 
long, are written in English, do not include inappropriate 
language. The iTELL interface does not allow copying and 
pasting directly from the text. When a student submits a 
summary, they receive a score on Language Borrowing by 
calculating the proportion of overlapping trigrams between 
the summary and the source [30]. They also receive a score 
on Relevance using cosine similarity between the text 
embedding of the summary and the text embedding of the 
source. If they pass these tests, they are scored by two 
encoder LLMs introduced by Morris et al. [31-[32] on 
Content (i.e. does the summary reproduce the content of 
the source) and Wording (i.e. does the summary use correct 
grammar/syntax and paraphrasing). 

These models, based on the Longformer pretrained 
model [33], were finetuned on a large dataset of sources 
and summaries that were scored on a six-criteria analytic 
rubric by expert raters. The six criteria were distilled into 
two principal components [32]. The Content PCA score 
includes how well the summary reproduced the main idea 
and details of the text, how well the summary was 
organized, and how well the summary used objective voice. 
The Wording PCA score includes grammar/syntax and how 
well the summary paraphrased the source using original 
language. The score predictions are normalized so that 0 
represents the mean of the scores in the original training 
set, with a standard distribution of 1. In a held-out test set 
of sources that the models had not encountered during 
training, they reported R2 values of 0.82 for Content and 0.7 
for Wording [32]. An example of the summary interface is 
provided in Figure 2 for a summary that passed all scoring 
metrics. 



 

Figure 2: Summary Interface. 

For each participant, we calculated the number of 
summaries they produced and the average score they 
received on each summary for Content, Wording, 
Language Borrowing, and Relevance. 

2.5.5. Python IDE 

The iTELL volume of the Introduction to Computing 
textbook included an integrated development environment 
(IDE) sandbox that exhibited Python code and allowed 
students to enter and run their own code. However, logging 
features for the sandbox data were not implemented at the 
time of data collection. 

2.6. Analyses 

We ran three different analyses to address our research 
questions. For the first research question related to 
whether users think iTELL is easy to interact with, is 
understandable, helps them learn, and provides accurate 
feedback, we ran simple descriptive statistics and graphed 
out the results. For the second research question related to 
whether students who completed the iTELL volume show 
gains from chapter 2 to chapter 3 test scores compared to 
students who did not use the iTELL, we ran statistical tests 
to assess differences between the two groups’ delta values. 
Our main statistical metrics are a p value to indicate if an 
effect exists and a Cliff’s Delta value to examine the 
strength of the effect. For the third research question 
related to whether data points collected from the iTELL 
volume related to click-stream data, focus time, and 
summary scores are predictive of delta values, we 
conducted a stepwise linear regression using iTELL data as 
predictors of the delta values. We included a categorical 
performance variable on the chapter 2 test based on 
whether students scored above the mean (high) or below 
the mean (low). This variable was included as a predictor 
and as a possible interaction to see if there was an effect of 
iTELL on lower or higher-performing students. 

3. Results 

3.1. User Survey Data 

For the user survey data, we were most interested in 
student responses to the summarization task, the 
constructed response items, and their overall satisfaction 
with iTELL. To provide a simpler representation for survey 
item visualizations, we combined scores of 4 and 5 into a 
single category (agree) and all scores of 1 and 2 into a single 

category of disagree. Scores of 3 were labeled neutral. We 
conducted follow up ANOVAs to examine if any differences 
were noted across survey responses by ethnicity or reading 
frequency. 

For the summary task, the mean responses were 
generally positive (M > 4). The lowest responses were for 
the accuracy of feedback (M = 4.18) while the highest 
responses were for ease of understanding (M = 4.29). 
Students felt that the summary tasks helped them learn 
(M = 4.18). There were no significant differences noted 
across survey items by race or ethnicity or by reading 
frequency. Data for this analysis are presented in Figure 3. 

 
Figure 3:  Summary Task Survey Results. 
For the constructed response task, the mean responses 
were generally positive (M > 4). The lowest responses were 
for the accuracy of feedback (M = 4.01) while the highest 
responses were for ease of interaction (M = 4.32). Students 
felt that the summary tasks helped them learn (M = 4.20). 
There were no significant differences noted across survey 
items by race or ethnicity or by reading frequency. Data for 
this analysis are presented in Figure 4. 

 
Figure 4:  Constructed Responses Survey Results. 

For the overall feedback response (Overall, how 
satisfied were you with this digital text?), the mean 
responses were generally positive (M > 4.14). Additionally, 
there were no significant differences noted across survey 



items by race or ethnicity or by reading frequency. Data for 
this analysis are presented in Figure 5. 

 
Figure 5: Overall Feedback Survey Results. 

3.2. Test Score Differences 

For our test score difference analysis, we examined the 
Delta score between test 2 and test 3 for students who used 
iTELL and those that did not. Descriptive statistics 
indicated greater gains in learning for test 2 and 3 by the 
students who used iTELL (M = .032, SD = .304 than the non-
iTELL students (M = -.018, SD = .248). Visual examinations 
of the data indicated that it was not normally distributed 
(see Figure 6 histogram). Thus, we conducted a Mann-
Whitney U test on delta scores across conditions (iTELL vs. 
non-iTELL). The differences approached significance 
(p=0.067; U=12,386) indicating that an effect size is likely. 
The Cliff’s Delta = .132, 95% CI [-0.029, 0.286]) reported a 
small effect suggesting that students in the iTELL condition 
scored higher on test 3 (after using iTELL) than they did on 
test 2 (no iTELL use). 

 
Figure 6: Histogram for delta values between tests 

Upon inspection of the data, we noticed that almost 
every single student who reported delta values of 0 did so 
because they received 100% on the chapter 2 test and 100% 
on the chapter 3 test. For the entire class, 36% of the 
students showed a delta value of zero. For the non-iTELL 
students, 42% showed a delta value of zero while 18% of the 
iTELL students showed a delta value of zero. Presuming the 
students showing delta values of zero were at ceiling, we 
conducted a post-hoc analysis where we removed these 
students. 

Removing these students dropped the sample size to 
227, of which 162 were non-iTELL students, and 65 were 
iTELL students. Visual examination of the delta scores 
indicated a normal distribution. An independent samples t-
test between the iTELL students (M = .039, SD = .336) and 
the non-iTELL students (M = -.030, SD = .324) showed no 
statistical difference, t(114.52) = 1.426, p = .157. However, a 
small effect size was reported (Cohen's d = .213, 95% CI [-
0.077, 0.503]), suggesting that students in the iTELL 

condition may have improved their test scores after using 
iTELL more than students who did not use iTELL 

3.3. Delta Value Predictions 

Table 1 
Linear model to predict delta scores (test 2 and test 3) 

Variable Estimate SE t 

(Intercept) -0.085 0.047 -1.852 
Number scrolls -0.099 0.032 -3.111** 
Wording score -0.077 0.031 -2.499* 
Testing level (low) 0.216 0.064 3.382** 

* p < .05, ** p < .010 
Three variables were significant predictors in our 
regression model: number of scrolls, Wording scores on 
summaries, and the categorical variable related to whether 
the student scored high or low on test 2. The linear model 
reported r = .501, R2 = .251, F (3, 75) = 8.362, p < .001 (see 
model parameters summarized in Table 1). The coefficients 
indicated that higher delta scores between test 2 and 3 
were predicted by fewer scrolls, lower Wording scores, and 
performance on test 2 with lower performers on test 2 that 
used iTELL showing greater gains between test 2 and 3. 

4. Discussion and conclusion 
In the modern economy, computing skills are increasingly 
important for students to acquire effectively. 
Understanding computational thinking and computer 
programming enables students to solve important, real-
world problems in a number of complex ways across a 
number of domains. However, learning computer skills is 
difficult and requires sustained efforts, specialized teaching 
environments, and diverse skills, making success difficult. 
As a result, many computer science curricula have suffered 
from high failure and dropout rates [3]. While many 
supports have been developed to help students succeed, 
there is some consensus that traditional textbooks are less 
than effective for acquiring computing skills because 
computing is a dynamic process that is not captured well 
in static texts [7]. The goal of this study was to assess the 
efficacy of interactive intelligent texts in a computer 
science class to help students understand and process 
information about computational thinking and 
programming. Specifically, we assessed an iTELL volume of 
an introduction to computing textbook that focused on a 
section related to control structures. 

Our assessment of the iTELL volume was an A/B test 
where about 25% of the class volunteered to use the iTELL 
volume (for extra credit) and the remainder of the class 
used a plain digital version of the text. We used test scores 
from the previous chapter where all students used the 
digital textbook as a baseline measure of student skills. We 
then examined students’ survey data to better understand 
their experiences with the iTELL volume. Additionally, we 
compared delta scores calculated as the difference between 
the scores on the control structures test and scores on the 
baseline test to assess potential gains for students who 
used iTELL. Lastly, we ran a regression model to better 
understand what features explained gains by students who 
used the iTELL volume. 



The survey results indicated that students’ experiences 
with the AI tools within iTELL were positive. Overall, 
students felt that the constructed response items and 
summary tasks were easy to work with and helped them 
improve their learning. Students also felt the AI feedback 
was accurate. Student surveys also indicated that the 
students were satisfied with the iTELL volume overall. 

In terms of learning differences between the iTELL and 
non-iTELL students, a Mann-Whitney U test approached 
significance and reported a meaningful, but small, 
relationship between score differences between the 
baseline test and the test on the control structures chapter 
(see reported effect sizes). A number of students showed 
ceiling effects across both tests and removing these 
students led to similar results. While a p value can indicate 
whether an effect exists, the Cliff’s Delta size shows the 
magnitude of the differences between the iTELL and non-
iTELL groups (a small but meaningful effect) and is the 
main quantitative consideration of the study [34]. The 
mean score differences indicated that students that used 
iTELL showed gains of ~5% versus the students that did not 
use iTELL and the Cliff’s Delta indicated that this 
difference was meaningful. The standard deviation was 
quite high for both groups, though. 

The regression analysis of the iTELL student data 
indicated that students who showed a greater number of 
scrolls showed lower delta scores. This may indicate that 
students who are non-linear readers or students who scroll 
in smaller increments performed worse. However, much 
deeper analysis of scrolling needs to be performed to 
support any meaningful conclusions. Additionally, the 
regression model indicated that students who scored 
higher in Wording for their summaries showed lower delta 
score gains. This may indicate that students who focused 
on Wording in their summaries at the expense of content 
may have performed worse. It may also be that students 
that are better writers gain less from using iTELL then 
students who are worse writers. This may be supported by 
the final feature of the regression model which was testing 
level. The coefficients for testing level indicated that 
students that performed lower on the baseline test showed 
greater gains when using iTELL. This indicates that iTELL 
may work better for low level students, but, again, much 
more fine-grained testing is needed to support this notion. 

Overall, this study finds evidence that intelligent 
textbooks are an advanced learning technology that can 
use AI to improve student learning outcomes in an 
introduction to computing class. This finding builds on 
previous studies that have argued that traditional, static 
textbooks may be ineffective in computer science 
instruction [7]. However, intelligent texts that are 
interactive and allow for dynamic assessments and greater 
student engagement may be effective, especially intelligent 
texts that integrate read-to-write tasks known to lead to 
increased learning gains [22-24] based on generation 
effects [35]. 

While the learning gains are small (see reported effect 
sizes), it is unlikely that a single text-based intervention 
would lead to stronger gains in a computer science class. 
However, in combination with other AI powered tools help 
computer science students effectively use debuggers and 
compilers or guide students through complex, multi-step, 

open-ended problems, intelligent texts may lead to greater 
gains. 

There were a number of limitations to the analyses 
conducted. First, we were looking at a convenience sample 
and one in which students were rewarded for using iTELL, 
so there is likely a self-selection bias [36]. While it is 
difficult to know the type of students that volunteered for 
the iTELL condition, Figure 4 indicates that many more 
students that were at ceiling on scores for Tests 2 and 3 did 
not volunteer to use iTELL. So, it is likely that students who 
needed extra credit volunteered versus students who are 
highly motivated in general. Regardless, a randomized 
control trial is needed to truly assess iTELL effects in the 
computer science classroom. There were also problems in 
iTELL with data documentation. A bug in the constructed 
response items led to data for over half of the items not 
being logged. Additionally, no data from the Python 
sandbox was logged. Thus, it is difficult to disaggregate the 
effects of these tools on learning in the iTELL environment. 
We also had a relatively small sample size for the iTELL 
condition compared to the non-iTELL condition, which 
makes it difficult to generalize the findings to different 
populations. Additionally, the standard deviation in scores 
was quite high for both groups indicating much variation 
in learning gains. Lastly, the students in the class all come 
from a technical background (i.e., they are studying at a 
technical university), which may have affected the 
outcomes. 

Overall, though, the study provides a promising first 
step in understanding how the use of intelligent texts may 
lead to learning gains for computer science students. 
Knowing the importance of computer science skills in the 
modern economy and the difficulty in obtaining those 
skills, a variety of educational tools will be needed to 
address potential learning deficits in the computer science 
classroom. Intelligent texts may prove to be one of those 
tools. 
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