
Automated Identification of Relevant Worked Examples for
Programming Problems
Muntasir Hoq1, Atharva Patil1, Kamil Akhuseyinoglu2, Bita Akram1 and Peter Brusilovsky2

1North Carolina State University
2University of Pittsburgh

Abstract
Novice programmers can greatly benefit from using worked examples demonstrating the implementation of programming concepts
that are challenging to them. Although large repositories of effective worked examples have been generated by CS education experts,
one main challenge is identifying the most relevant worked example in accordance with the particular programming problem assigned
to a student and their unique challenges in understanding and solving the problem. Previous studies have explored similar example
recommendation approaches. Our work takes a novel approach by employing deep learning code representation models to extract
code vectors, capturing both syntactic and semantic similarities among programming examples. Motivated by the challenge of offering
relevant and personalized examples to programming students, our approach focuses on similarity assessment approaches and clustering
techniques to identify similar code problems, examples, and challenges. We aim to provide more accurate and contextually relevant
recommendations to students based on their individual learning needs. Providing tailored support to students in real-time facilitates
better problem-solving strategies and enhances students’ learning experiences, contributing to the advancement of programming
education.

Keywords
problem-solving support, program examples, code structure, code similarities

1. Introduction
Example-based problem solving is the cornerstone of intel-
ligent tutoring systems (ITSs) within the programming do-
main [1]. When students encounter difficulties in problem-
solving, such systems aim to provide relevant examples to
aid in comprehension and resolution. Traditionally, select-
ing these examples has relied heavily on domain experts,
a time-consuming and resource-intensive process, particu-
larly as the volume of learning content expands. However,
alternative approaches have emerged, seeking to link prob-
lems and examples dynamically without expert intervention.
Content-based methodologies, such as keyword-based ap-
proaches, analyze surface-level similarities but often lack
the depth necessary to discern truly relevant content [2, 3].
In contrast, knowledge-based approaches investigate the
semantic understanding of content, offering higher-quality
links by focusing on the underlying concepts [4, 5].

The motivation for exploring innovative example selec-
tion methodologies arises from recognizing the significant
benefits novice programmers can gain from worked exam-
ples that illustrate challenging programming concepts. Hos-
seini et al. [6] demonstrated the engagement and perfor-
mance benefits of directly connecting worked examples and
similar completion problems into a “bundle” by a tool called
Program Construction Examples (PCEX). A more recent
study [7] demonstrated that semantic similarity between
connected problems and examples is one of the keys to bet-
ter problem-solving performance and persistence achieved
when this connection is provided by the domain expert.
In cases where worked examples and problems are not ex-
plicitly linked, it is essential to provide clear guidance to
students, such as recommending semantically similar exam-
ples following a failed problem-solving attempt [8]. Despite
the availability of extensive repositories of such examples

CSEDM’24: 8th Educational Data Mining in Computer Science Education
Workshop, July 14, 2024, Atlanta, GA
Envelope-Open mhoq@ncsu.edu (M. Hoq); aspatil2@ncsu.edu (A. Patil);
kaa108@pitt.edu (K. Akhuseyinoglu); bakram@ncsu.edu (B. Akram);
peterb@pitt.edu (P. Brusilovsky)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

curated by computer science (CS) education experts, a funda-
mental challenge persists: How to identify the most relevant
worked example tailored to each student’s specific learning
needs and the nuances of the programming problem at hand
with a scalable and reliable approach.

In response to this challenge, we aim to develop an au-
tomated recommender system to recommend the most rel-
evant problems and examples to students when they face
difficulty solving programming problems. We undertake
a vector-based approach where we embed problems and
examples into vector representations, preserving their struc-
tural and semantic information. To this end, we leverage
a deep learning code representation model, Subtree-based
Neural Network (SANN) [9], to extract nuanced similarities
among programming problems and examples. We applied
this model to problems and examples available in PCEX [6].

We aim to provide contextually relevant recommenda-
tions that enhance students’ problem-solving abilities and
enrich their learning experiences in programming education.
Using the extracted vectors from SANN, we recommend stu-
dents with similar worked examples for a problem based
on vector similarity. To demonstrate the effectiveness of
our recommendation system, we evaluated it using Top-N
accuracy metrics (N = 1, 3, and 5). This measures how often
the correct example, as labeled by experts, appears within
the top N recommendations. Additionally, we used cluster-
ing techniques such as DBSCAN and hierarchical clustering
to group similar problems and examples, aiming to reduce
the manual effort required by experts. Our results suggest
that this method effectively identifies similar problems and
examples, enabling us to provide guidance and support to
students facing similar challenges. Using these advanced
techniques, we aim to bridge the gap between the vast repos-
itory of programming examples and problems and the lack
of manual support for selecting resources according to the
specific needs of individual students, thus fostering more
effective and personalized learning experiences in program-
ming education [10].

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:mhoq@ncsu.edu
mailto:aspatil2@ncsu.edu
mailto:kaa108@pitt.edu
mailto:bakram@ncsu.edu
mailto:peterb@pitt.edu
https://creativecommons.org/licenses/by/4.0/deed.en


2. Related Work
The concept of automatically connecting similar content
items traces back to the pioneering work of Mayes and
Kibby in the realm of educational hypertext [2, 3]. Initially,
similarity-based navigation centered on keyword-level sim-
ilarity, but due to its limited quality, this approach has since
been supplanted by more robust semantic linking method-
ologies, often referred to as intelligent linking. One such
approach is metadata-based linking, which computes simi-
larity measures across various facets of metadata to generate
higher-quality links [11].

In recent years, the focus has shifted towards ontology-
based linking, particularly within the hypermedia research
community. Ontology-based linking involves indexing doc-
uments with ontology terms and then leveraging ontological
structures to identify similar documents [5, 12]. Although
early investigations primarily focused on hypermedia appli-
cations, the educational domain saw a subsequent adoption
of ontology-based linking methodologies [13].

In the programming domain, similarity assessment has
mainly relied on content-level information. For example,
Gross et al. [14] linked Java programming contents based on
the similarity of their Abstract Syntax Trees (ASTs), which
encompassed the entire body of examples and problems.
However, this approach may overlook finer-grained simi-
larities in smaller code fragments [15]. Recent approaches
have explored concept-based similarity methodologies [16],
that is, representing examples and problems as vectors of
domain concepts and measuring similarity between these
vectors. Furtherwork attempted to calculate ontology-based
similarity metrics for programming items [8].

With the advent of automated program representation
techniques that use deep learning methodologies [9], the
extraction of syntactic and semantic structural information
from programming code snippets has gained traction. These
techniques offer the potential to alleviate the reliance on
experts for designing isomorphic problem-example pairs,
instead enabling the discovery of relevant examples within
learning materials. While such similarity approaches hold
promise across a range of code-related programming prob-
lems [17, 9], our study focuses on code comprehension prob-
lems, wherein students are tasked with predicting the out-
put or final value of variables from a given program code
rather than on program composition problems requiring
code writing tasks.

3. Dataset
In this study, we used a Python programming dataset
sourced from the PCEX system [6]. PCEX offers online
access to working code examples and small completion
problems referred to as “challenges”. To increase learners’
motivation and improve overall learning outcomes, prob-
lems and examples are further organized into bundles by
domain experts, who group together problems and examples
that target similar programming constructs and patterns.
This combination approach was validated in previous re-
search [6, 7], demonstrating its value across various metrics
and stressing the importance of connecting learning and
assessment on the level of specific programming patterns
in addition to their traditional integration on the level of
broader course topics.

The PCEX dataset comprises 123 programming code prob-

Figure 1: Example 1 from the same bundle

Figure 2: Example 2 from the same bundle

Figure 3: Example 3 from a different bundle

lems and examples that span 13 topics, including Variables
and Operations, If-Else statements, Boolean Expressions,
For Loops, and Nested Loops. The problems and examples
in the dataset are organized into 52 bundles, with an aver-
age of 4 bundles per topic. Bundles start with a single fully
worked out example and are followed by 1 to 3 similar prob-
lems. On average, each bundle has 1.35 problems. We used
the current content organization in PCEX, which represents
expert knowledge, as the gold standard for the evaluation
of content recommendation approaches [18]. Figures 1 and
2 show two program examples from the same bundle under
the Variable and Operations topic. Figure 3 shows another
example of a different bundle within the same topic to show
the difference in the bundle structures.

4. Methodology
In this study, we used the Subtree-based Attention Neural
Network (SANN) [9] to encode programs into vector rep-
resentations. We computed the cosine similarity between
these vectors to recommend the closest examples for a given
problem. To further analyze and group similar problems
and examples, we employed clustering techniques such as
DBSCAN and Hierarchical clustering.

SANN is our primary model for encoding programs in



vector format. It has demonstrated its efficiency in captur-
ing both syntactic and semantic information from programs
in an interpretable manner and understanding the intricate
code structure [9, 17, 19]. SANN operates by encoding the
source code into vector representations using subtrees ex-
tracted from the Abstract Syntax Tree (AST) representation
of the code. These subtrees undergo a two-way embedding
process in which each subtree and its constituent nodes are
individually embedded. The resulting embeddings are then
merged into a single embedded vector. Subsequently, the
embedded vectors from both approaches are concatenated
and passed through a time-distributed, fully connected layer,
generating subtree vectors that incorporate both node-level
and subtree-level information.

After the generation of subtree vectors, an attention neu-
ral network is employed to condense all subtree vectors into
a singular source code vector. The attention mechanism
assigns scalar weights to each subtree vector, facilitating the
aggregation of all subtree vectors into a weighted average.
These weights are determined through a normalized inner
product between each subtree vector and a global attention
vector, followed by applying a softmax function to ensure
that the weights sum up to 1. The resulting weighted av-
erage of subtree vectors, as determined by the attention
mechanism, encapsulates the entire source code snippet.
The SANN model leverages attention weights to prioritize
the most important subtrees when generating the source
code vector. We recursively extract all subtrees from an
AST, ensuring comprehensive coverage of the code struc-
ture during the encoding process.

Following the extraction of code vectors, we calculated
cosine similarity to find the closest example for a given
problem for the recommendation. Furthermore, we utilized
various clustering techniques, including DBSCAN and Hier-
archical clustering, to group similar problems and examples.
DBSCAN is adept at identifying clusters of varying shapes
and sizes while being robust to noise, while hierarchical
clustering provides insights into the clustering structure
through dendrogram analysis. Using these techniques, we
aim to comprehensively explore the similarity structure
within our dataset and facilitate the identification of cohe-
sive groups of programming problems and examples.

5. Experiments and Results

5.1. Code Vector Extraction and Example
Recommendation

We employed the Python AST parser1 to parse Python pro-
gramming code into ASTs. For SANN training, we par-
titioned our dataset into 80% training data and 20% test-
ing data. During the splitting process, we ensured that
no bundle was excluded from the training set to retain all
the diverse structural variations for comprehensive train-
ing. The embedding size for both subtree-based and node-
based embeddings was set to 64, chosen from {64, 128, and
256}. Consequently, each source code vector was of size 128.
Throughout the model training phase, we employed the
Adamax optimizer [9] with a default learning rate of 0.001
to learn the weights of the matrices. The batch size was
set to 32, and the maximum number of epochs was capped
at 200, with an early stopping patience of 20, to prevent
overfitting of the model.

1https://docs.python.org/3/library/ast.html

Table 1
Top-N accuracy for recommending worked examples

Top-N Accuracy (%)
Top-1 70.97
Top-3 83.10
Top-5 87.32

The dataset has problems/challenges and examples bun-
dled together based on similarity (these are called bundles),
and different bundles are combined under different topics
by the experts. Therefore, the dataset shows a hierarchy
of topics and bundles. Each topic has some bundles, and
each bundle has some similar challenges and examples. If a
student faces difficulty in a problem, an example from the
same bundle will be recommended. We trained the SANN
model using only the topic information for challenges and
examples, intentionally omitting any bundle information.
Although bundles encapsulate more detailed and granular-
level information about the program structures, our objec-
tive was for SANN to learn this granular insight exclusively
from the superficial and abstract topic information. We aim
to enable SANN to generalize effectively across diverse pro-
gram structures by training on topics alone and trying to
reconstruct underlying bundles based on their similarity
in program pattern and structure to evaluate their effec-
tiveness compared to expert-identified bundles. There are
13 topics and 52 bundles in the dataset. After the training,
we tested the trained model on the test data to predict the
associated topics. SANN showed a testing accuracy of 88%.
Afterward, we extract the source code vectors for the prob-
lems and examples from SANN further study. Finally, we
investigated the effectiveness of these vectors in forming
groups of similar examples and problems that can serve as a
recommending tool. We calculated the cosine similarity to
find the closest example for a given problem. If the closest
example is also from the same original expert-identified
bundle as the challenge, the recommended example is cor-
rect. We calculated the Top-N accuracy, where N = 1, 3,
and 5 as stated in Table 1. The experimental result sug-
gests that our recommendation can effectively find similar
worked examples for a given problem when a student is
facing difficulty. However, we speculate that this accuracy
can be improved with a bigger dataset to train SANN since
the current dataset has only 123 challenges and examples,
where the average number of examples per problem is only
0.73. We want to investigate the impact of dataset size on
improving performance in the future.

We further hypothesize that since the bundles represent
very similar challenges and examples, the corresponding
vectors should show these similarities by being closer to
the programs of the same bundle than others. The same hy-
pothesis is applicable to topics. However, the topics contain
slightly less similar challenges and examples. Hence, the
vectors of a topic should be close to each other but not as
close as those of a bundle. According to our hypothesis, the
vectors in these bundles and topics should show patterns
in their tightness. Tightness refers to the average distance
between points of a bundle or topic. To calculate the tight-
ness, we used the expert labels from the dataset as the gold
standard to show the effectiveness of our method and verify
the hypothesis. For each topic/bundle, first, we calculated
the pairwise distances for all the points within it. Then, we
calculated the mean of these pairwise distances, which is



the tightness within the vectors of the topic/bundle. Figure
4 shows the scatter plot of the bundles using PCA = 2.

Figure 4: Bundle clusters

Figure 5: Average tightness of topics

Figure 6: Average tightness of bundles

To verify our hypothesis, we calculated the degree of
tightness for (1) vectors of the same bundle, (2) vectors of
the same topic, and (3) all vectors in the data set (entire
course). Figure 5 shows the topic-level tightness, and Figure
6 shows the bundle-level tightness. Here, we can see that
bundles have lower distances, whereas topics have higher
distances. We plotted the mean degree of tightness for
topics, bundles, and the whole dataset in Figure 7 to get
a clearer comparative view. For topics and bundles, the
average tightness measures for all individual topics and
bundles were calculated. The average tightness of bundles
was found to be 0.4 units, and the average tightness of topics
was found to be 0.8. This implies that points of a bundle

are much closer to each other than those in a topic. Finally,
the average distance between all dataset samples was found
to be 2.7 units. This result suggests that samples belonging
to the same bundle are semantically very similar to each
other; samples belonging to the same topic might have more
variations than bundles but still more similar than any other
sample from other topics in the course.

Figure 7: Average tightness of topics and bundles

5.2. Clustering Similar Examples
We investigated the effectiveness of multiple clustering ap-
proaches in identifying bundles of similar problems and
examples. Firstly, we employed DBSCAN clustering for top-
ics, given its capability to handle irregularly shaped clusters
when the number of clusters (topics) is unknown and dif-
ferent structured problems and examples can be set under
the same topic. Setting the epsilon value to 0.85 and the
minimum points parameter to 2, we successfully identified
13 distinct clusters based on topics, with only 2 points clas-
sified as noise. This is because we assume each topic cluster
must have at least 2 points, and if some point is not in the
vicinity of any other, it is best to consider it as noise rather
than part of some cluster. Figure 8 shows the scatter plot
visualization that highlights the nonspherical nature of the
clusters, indicating their irregular shapes.

Figure 8: Topic clusters using DBSCAN

We calculated the accuracy of the topic clustering using
DBSCAN by determining a clustering error, which was as-
sessed by comparing the assigned clusters to gold standard



clusters based on predefined topics. Specifically, we calcu-
lated how many items were incorrectly assigned to clusters
compared to their actual topic labels. The clustering error
demonstrated an average of 11.69% (std dev 0.15) over all
the problems and examples. The highest clustering error
for a topic was 44%. The topic with 44% error was the topic
“Strings.” This can be considered an outlier because the code
for string programs is likely similar to other topics where
some string operations are also required. It is important to
note that three topics, including “For Loops,” “Nested Loops,”
and “Lists,” were assigned to the same cluster. We found
that these topics are very similar in structure and have over-
lapping, i.e., using loops to traverse a list, hierarchical For
Loops in Nested Loops.

Hierarchical clustering was utilized for bundles inside
topics as it allows for the exploration of hierarchical struc-
tures within the data and accommodates scenarios where
the number of clusters is uncertain. DBSCAN may not be
ideal for this because the plotted points for bundles are un-
likely to have irregular shapes, since problems and examples
inside a bundle tend to be the most similar. Hierarchical
clustering starts by treating each sample as a separate clus-
ter. Then, it repeatedly executes the following two steps: (i)
identify the two clusters that are closest together, and (ii)
merge the two most similar clusters. This iterative process
continues until all the clusters have merged together.

The dendrogram from hierarchical clustering illustrated
that samples sharing similar bundles and topics clustered
closely together, with their parent clusters predominantly
aligning with their respective topics. In addition, we as-
sessed the closest sample for each item, categorizing them
based on bundle name and topic similarity. Based on this
closest sample data, we evaluated the number of items for
which their closest sample had (1) the same bundle name, (2)
a different bundle name but the same topic, and (3) a differ-
ent bundle name and topic. As evident in Figure 9, 43.9% had
their closest sample from the same bundle and 30.9% had
their closest pair from the same topic. However, there were
25.2% samples whose closest pair was from a different topic
and bundle. This result suggests that samples of the same
topic are closer and contained within the same local region.
In addition, samples belonging to the same bundle are even
closer to each other. However, discrepancies between the
clustering results and expert labels emerged when problems
and examples involved multiple topics or multiple bundles,
for example, the use of loops in For Loops, Nested Loops,
List, and Strings.

Figure 9: Hierarchical clustering summary

6. Discussion
In this study, we tried to address the long-standing challenge
of dynamically recommending relevant programming exam-
ples tailored to individual student needs within the context
of computer science (CS) education. Our approach centered
on leveraging the Subtree-based Neural Network (SANN)
model to extract nuanced syntactic and semantic similarities
among programming examples, thus facilitating the identi-
fication of analogous examples crucial for problem-solving
support. In this study, SANN was trained only on the topic
information of the examples. However, the dataset used
also contains bundle information, where similar problems
and examples are bundled together under a topic. We used
topic-level information about the problems and examples
to get deeper structural insight using SANN, which helps
to identify similar worked examples for struggling students.
Using the extracted code vectors, we recommend students
with worked examples for a given problem based on vector
similarity. The experiment suggests that the recommenda-
tion has an accuracy of 70.97%, 83.10%, and 87.32% with the
Top-1, Top-3, and Top-5 recommendations, respectively.

In addition, we show the effectiveness of these vectors
by showing the tightness of each topic and bundle in the
course. The results suggest that the bundles represent very
similar problems and examples, as reflected by the proxim-
ity of their corresponding vectors. In contrast, the topics
contain multiple bundles with slightly less similar problems
and examples. Consequently, the vectors within a topic
are close to each other but not as tightly clustered as those
within a bundle. We further employed advanced clustering
techniques, including DBSCAN and hierarchical clustering,
to effectively group similar programming problems and ex-
amples and alleviate the expert effort in bundling similar
problems and examples. This outcome highlights the initial
effectiveness of our approach in organizing and understand-
ing the structural and semantic relationships inherent in
programming education datasets. However, with the lim-
ited training data (the current dataset has only 123 problems
and examples, where the average number of examples per
problem is only 0.73), our clustering and performance did
not fully align with the expert labels. We hypothesize that
minor structural changes and overlapping topics in smaller
problems and examples could be captured more accurately
with a larger dataset. Exploring this possibility is an inter-
esting direction for future research.

The significance of our study lies in addressing a key
challenge in CS education: identifying relevant and contex-
tually appropriate programming examples [1]. By offering a
methodological framework for dynamically recommending
personalized examples, our study provides a scalable solu-
tion to the resource-intensive process of example selection
traditionally reliant on domain experts. Our approach ef-
fectively connects the extensive collection of programming
examples with the unique needs of individual students, im-
proving programming education by promoting more effi-
cient and personalized learning experiences [6, 20].

7. Limitations and Future Work
There are a few limitations that need to be addressed in
this study. Firstly, SANN was trained on the topics associ-
ated with each problem and examples labeled by experts.
This current setup limits our ability to use a vast corpus of



worked examples and programming problems that are not
labeled with topics. In the future, we want to eliminate this
limitation by training the SANN model in a topic-agnostic
way. We propose training the model not on explicit topic
information but instead on the underlying code structure
using an encoder-decoder architecture. In this approach, the
encoder would process the source code to generate a latent
representation that captures the structural and semantic
nuances of the code. The decoder would then reconstruct
the code from this latent representation. This unsupervised
learning method aims to enable the model to understand
and encode the intricate structure of the code more effec-
tively, leading to better generalization and more accurate
recommendations based on structural similarities rather
than predefined topic labels.

Additionally, when we explored clustering techniques,
we observed that some worked examples are similar, though
they are from different topics. It happens because some top-
ics overlap with previously learned topics. For example,
when dealing with List problems, they might require knowl-
edge of loops. In such cases, in the future, wemight consider
sub-categories of these bundles to recommend previous top-
ics when necessary based on the difficulty progression of
a student. For example, if a student struggles with travers-
ing a list due to difficulties using loops, they would benefit
from revisiting similar examples that focus on loops from
previously covered topics.

Another future direction of this work is to make the rec-
ommendations more personalized based on student knowl-
edge. We want to track students’ learning at various stages
of the course and incorporate that information in recom-
mending examples for the current problems they face. The
tracing of student learning can also be on a topic level. If a
student faces difficulty in a particular topic, this can be im-
portant information along with the problem code structure
for the recommender system. In addition, struggling with
the same topic can also act as an alarm for instructors, indi-
cating that a student needs personalized intervention and
support. We also intend to add some baselines from the lit-
erature to do a study to show the comparative effectiveness
of our framework in the future.

8. Conclusion
In this study, we used the Subtree-based Neural Network
(SANN) model to recommend relevant programming ex-
amples tailored to individual student needs in computer
science (CS) education. Through clustering techniques, in-
cluding DBSCAN and hierarchical clustering, we effectively
organized the structural and semantic relationships of prob-
lems and examples to guide the recommendation of similar
practices to programming students. Our approach offers a
scalable solution to the resource-intensive process of exam-
ple selection, providing contextually appropriate learning
resources tailored to individual student needs.

References
[1] P. Brusilovsky, C. Peylo, Adaptive and intelligent web-

based educational systems, International Journal of
Artificial Intelligence in Education 13 (2003) 156–169.

[2] M. Kibby, J. Mayes, Towards intelligent hypertext,
Hypertext: Theory into Practice (1989) 164–172.

[3] J. T. Mayes, M. R. Kibby, H. Watson, Strathtutor©:
The development and evaluation of a learning-by-
browsing system on the macintosh, Computers &
Education 12 (1988) 221–229.

[4] K. R. Koedinger, A. T. Corbett, C. Perfetti, The
knowledge-learning-instruction framework: Bridging
the science-practice chasm to enhance robust student
learning, Cognitive Science 36 (2012) 757–798.

[5] L. Carr, W. Hall, S. Bechhofer, C. Goble, Concep-
tual linking: ontology-based open hypermedia, in:
Proceedings of the 10th International Conference on
World Wide Web, 2001, pp. 334–342.

[6] R. Hosseini, K. Akhuseyinoglu, P. Brusilovsky,
L. Malmi, K. Pollari-Malmi, C. Schunn, T. Sirkiä, Im-
proving engagement in program construction exam-
ples for learning python programming, International
Journal of Artificial Intelligence in Education 30 (2020)
299–336.

[7] K. Akhuseyinoglu, A. Klašnja-Milićević, P. Brusilovsky,
The impact of connecting worked examples and com-
pletion problems for introductory programming prac-
tice, in: European Conference on Technology En-
hanced Learning (EC-TEL 2024), Lecture Notes in Com-
puter Science, Springer International Publishing, 2024.

[8] R. Hosseini, P. Brusilovsky, A study of concept-based
similarity approaches for recommending program ex-
amples, New Review of Hypermedia and Multimedia
23 (2017) 161–188.

[9] M. Hoq, S. R. Chilla, M. Ahmadi Ranjbar,
P. Brusilovsky, B. Akram, SANN: Programming code
representation using attention neural network with
optimized subtree extraction, in: Proceedings of the
32nd ACM International Conference on Information
and Knowledge Management, 2023, pp. 783–792.

[10] K. Muldner, J. Jennings, V. Chiarelli, A review of
worked examples in programming activities, ACM
Transactions on Computing Education 23 (2022) 1–35.

[11] D. Tudhope, C. Taylor, Navigation via similarity: au-
tomatic linking based on semantic closeness, Informa-
tion Processing & Management 33 (1997) 233–242.

[12] M. Crampes, S. Ranwez, Ontology-supported and
ontology-driven conceptual navigation on the world
wide web, in: Proceedings of the 11th ACM on Hyper-
text and Hypermedia, 2000, pp. 191–199.

[13] P. Dolog, N. Henze, W. Nejdl, Logic-based open hy-
permedia for the semantic web, in: Proceedings of
the International Workshop on Hypermedia and the
Semantic Web, Hypertext 2003 Conference, 2003.

[14] S. Gross, B. Mokbel, B. Hammer, N. Pinkwart, How to
select an example? a comparison of selection strate-
gies in example-based learning, in: Proceedings of
the Intelligent Tutoring Systems: 12th International
Conference, ITS 2014, Springer, 2014, pp. 340–347.

[15] G. Weber, A. Mollenberg, Elm-pe: A knowledge-based
programming environment for learning lisp. (1994).

[16] R. Hosseini, P. Brusilovsky, Example-based problem
solving support using concept analysis of program-
ming content, in: Proceedings of the Intelligent Tutor-
ing Systems: 12th International Conference, ITS 2014,
Springer, 2014, pp. 683–685.

[17] M. Hoq, Y. Shi, J. Leinonen, D. Babalola, C. Lynch,
T. Price, B. Akram, Detecting chatgpt-generated code
submissions in a cs1 course using machine learning
models, in: Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1, 2024,



pp. 526–532.
[18] A. J. Sabet, I. Alpizar-Chacon, J. Barria-Pineda,

P. Brusilovsky, S. Sosnovsky, S. Sosnovsky,
P. Brusilovsky, A. Lan, et al., Enriching intelli-
gent textbooks with interactivity: When smart
content allocation goes wrong, in: Proceedings of the
4th International Workshop on Intelligent Textbooks,
volume 3192, 2022.

[19] M. Hoq, J. Vandenberg, B. Mott, J. Lester, N. Norouzi,
B. Akram, Towards attention-based automatic miscon-
ception identification in introductory programming
courses, in: Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 2, 2024,
pp. 1680–1681.

[20] M. Hoq, P. Brusilovsky, B. Akram, Analysis of an
explainable student performance prediction model in
an introductory programming course, in: Proceedings
of the 16th International Conference on Educational
Data Mining, 2023, pp. 79–90.


	1 Introduction
	2 Related Work
	3 Dataset
	4 Methodology
	5 Experiments and Results
	5.1 Code Vector Extraction and Example Recommendation
	5.2 Clustering Similar Examples

	6 Discussion
	7 Limitations and Future Work
	8 Conclusion

