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Abstract
Allowing students to practice a programming task multiple times fosters resilience and improves learning. However, it is challenging to
measure their programming skills in the dynamic and adaptive learning environment, in terms of determining the maximum allowed
number of attempts, measuring progress during learning, and producing a fair performance score for different student groups. It is
particularly challenging to do so when different students adaptively practice different sets of programming tasks. In this study, we
leveraged data collected from an online learning platform in a pilot study and applied psychometric models to address two research
questions: 1) How to measure students’ progress in an adaptive practice setting that allows for multiple attempts and inform grading
policies? and 2) How do different scoring rules affect bias analysis of the programming tasks? From the log data, we extracted two
practice features (numbers of attempts and number of passed test cases), created six different scoring rules for scoring student’s
intermediate responses and final responses based on these practice features. We then used psychometric models and best practices to
create a common scale to measure the dynamic performance that were comparable within individual students who made different
attempts and across students who practiced different sets of programming tasks. This common scale ensured the comparability of
performance within and across different student groups. It furthered enabled us to evaluate potential task biases between gender groups
using the differential item functioning (DIF) analysis. Our preliminary results suggest that the final-attempt-based scoring rule not only
boosted students’ performance, but it also reduced the potential bias of programming tasks. This study contributes to methodologies in
using log data to measure the dynamic programming skills and evaluate task biases in the adaptive online practice setting.
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1. Introduction
As with any skill, practice makes perfect for programming
skills in computer science (CS) education. Decades of re-
search in learning theory has demonstrated the importance
of deliberate practice and having a ”coach” who provides
feedback for ways of optimizing performance, no matter
whether it is learning a new language, a new math topic, or
a new programming skill [1]. With advances in technolo-
gies, many online learning platforms and computer science
courses have been developed to align with the learning
theory by allowing learners to practice a problem multiple
times while providing immediate feedback, which encour-
age students to learn from their mistakes and strive for
success [2]. A recent large-scale randomized control study
[3] showed that students who used such a math learning
platform learned significantly more, and the impact was
greater for students with lower prior mathematics achieve-
ment. The benefit of timely feedback for programming as-
signments in CS education is also evident in a recent review
[2].

However, repeated attempts in online practice pose chal-
lenges to assess students’ skills. For example, how many
attempts should be allowed? How to measure progress in
practice? How can we generate fair scores for diverse stu-
dent groups in CS learning contexts? These questions are
especially important for assessing programming skills, since
there are many different potential approaches to assessing
students’ performance when multiple attempts are allowed,
while some methods may unintentionally further marginal-
ize students from non-dominant groups in CS education
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[4, 5]. To examine the validity and fairness in CS assess-
ments, a few recent research studies applied the established
psychometric approaches such as the differential item func-
tioning (DIF) analysis methods [6], but on students’ final
responses and fixed test format. For example, using data
collected from a paper-and-pencil-based CS exam in a large
CS1 course, Davidson and coauthors applied DIF methods to
evaluate whether the tasks on the exammight potentially fa-
vor one student group over the other [7]. Xie and colleagues
investigated potential bias in an online CS curriculum using
DIF analysis and expert interpretations [8]. These studies
highlighted the relevance of psychometrics and DIF analysis
in the context of CS education.

It is particularly challenging to measure student’s
progress in an adaptive online learning environment (such
as personalized learning), where students with different
levels of skills are recommended to practice programming
tasks with different levels of difficulties. The measurement
needs to quantify both progress within a student and across
student groups in such a learning environment.

In the current study, we framed our investigation with
two preliminary two research questions to address the chal-
lenges: 1) How to measure students’ progress in an adaptive
practice setting that allows for multiple attempts and in-
form grading policies? and 2) How do different scoring
rules affect bias analysis of the programming tasks?

To address the above two research questions, we investi-
gate how rigorous educational measurement methods (i.e.
statistical and psychometric models) can be used to create
comparable performance scores that are comparable within
and across students during practice. For this, it is necessary
to create a common scale, which reflects the dynamic/in-
termediate programming processes with different numbers
of attempts within individual students. It is critical as well
that the common scale ensures that performance scores are
comparable across students who practiced different sets of
programming tasks. We created and examined six scor-
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ing rules based on different maximum numbers of allowed
attempts. Under the different scoring rules, we applied rig-
orous statistical and psychometric methods [9] to create
comparable performance scores, which further allowed for
psychometric analysis of task biases [7, 10, 11, 8] between
the men (the dominant CS student group) and the non-men
groups.

The following sections provide a more in-depth descrip-
tion of our approaches. We first introduce the study design
and data collection, and present our proposed methodolo-
gies to create a common scale for producing comparable
performance scores and for detecting potential task bias.
We conclude the study with a discussion section on our
preliminary findings, the study limitations, as well as our
future direction.

The current work explores an emerging terrain in adap-
tive learning and assessment in CS education. Our work
is pioneering in integrating educational data mining (i.e.,
creation of programming practice features extracted from
log data) and the innovative applications of psychometric
models to build a common scale, measure processes, and
evaluate potential task bias on online practice platforms.

2. Methodologies
This study was approved by an Institutional Review Board
(IRB) prior to engagement with participants for data collec-
tion.

2.1. Study Design and Data Collection
The online learning platform we used for data collection
is capable of providing immediate feedback on test cases
(showing pass or fail) [12]. More importantly, in this study,
the research team implemented an adaptive learning/assess-
ment approach to recommend programming task sets that
are suitable to students with different programming skills
for effective learning and meaningful engagement [13].

To answer our research questions, we conducted a pilot
study and recruited about college students on a compen-
sated, volunteer basis from universities in North American
who were enrolled in introductory Python programming
courses currently or prior to participation. The participating
students majored in different fields and varied in the num-
ber of programming related courses and years of experience
in programming. For the bias analysis, we focus on self-
described gender, which included categories such as men,
women, non-binary, and free response options. In order to
produce reliable bias analysis results, large samples are rec-
ommended; thus, we compromised on two student groups:
men (N=91), the dominant gender group in computer sci-
ence (CS) learning contexts who tend to be privileged in
CS, and non-men (N = 63), including women, non-binary
students, and students who reported other gender identi-
ties (exclude missing responses). This allowed us to study
whether any programming task favored men over students
with other gender identities, but did not allow us to do more
fine-grained analysis in the pilot study.

Students practiced Python programming tasks on an on-
line learning platform designed by researchers to facilitate
research on programming language learning [12]. CS con-
tent experts on our team developed 21 Python coding tasks
with 7 to 8 test cases per task. The tasks vary in their mea-
surement specifics and difficulty level, which allowed for an
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Figure 1: The Adaptive design with two stages and three item
blocks

implementation of an adaptive two-stage test design (refer
to Figure 1).

This adaptive design has been gaining attention and pop-
ularity in learning and, particularly assessment field, mainly
because it takes into account the differences in student skill
levels and provides different tasks or different sets of tasks
to suit students’ skill levels ([14, 15, 13]). All students an-
swered a common task set of medium difficulty at the first
stage and were routed to either an easy or a hard task set
at the second stage depending on how well they did in the
first stage (refer to Figure 1). Based their final submitted
responses on the common task set, students who scored in
the lower half of the score distribution were routed to the
easy block, those who scored in the upper half were routed
to the hard task set. The task sets at the second stage were
more aligned to students’ skill levels, and hopefully students
would be more engaged with the practice.

The task delivery platform provides students with imme-
diate feedback on which test cases they passed. Students
were allowed to attempt a task as many times as they like,
or until they passed all the test cases. Students were given
a 2-week window to complete all the tasks, and were given
$80 in recognition of their time and effort upon complet-
ing the tasks. Students who invested a mean of less than
3 minutes of effort into each problem set were not com-
pensated as this indicated either no effort to seek correct
solutions or use of external aids to generate solutions. This
was roughly 5% of the initial set of the participants, and
some of these participants confirmed that they were just
seeking compensation.

2.2. Data Preparation
2.2.1. Practice Features

Log data were collected from the online platform, which
contained fine grained information on what codes students
produced, what actions they took, and for how long, etc..
The fine-grained data have shown to be very useful in un-
derstanding students’ problem-solving processes and per-
formance [16]. In this preliminary study, we focused on
two practice features that capture students’ intermediate
steps before they submitted their final codes: the number of
attempts (i.e., number of running/testing their codes ) and
how many test cased were passed in each attempt (please
also refer to Table 1 below for coding rules). More compre-
hensive analysis of the log data will be conducted in further
studies and in the next phase when larger samples are col-
lected. Note that in the following, a programming task is
also referred to as an item in psychometric modeling.



Table 1
Six scoring rules based on different number of attempts on a task.

S1: 𝑥 = 1 if 𝐸 = 𝑇 𝑟𝑢𝑒 in the 1st attempt, otherwise 0.
S2: 𝑥 = 1 if 𝐸 = 𝑇 𝑟𝑢𝑒 in the 2nd attempt, otherwise 0.

If they did not have the 2nd attempt, S2=S1.
S3: 𝑥 = 1 if 𝐸 = 𝑇 𝑟𝑢𝑒 in the 3rd attempt, otherwise 0.

If they did not have the 3rd attempt, S3=S2.
S4: 𝑥 = 1 if 𝐸 = 𝑇 𝑟𝑢𝑒 in the 4th attempt, otherwise 0.

If they did not have the 4th attempt, S4=S3.
S5: 𝑥 = 1 if 𝐸 = 𝑇 𝑟𝑢𝑒 in the 5th attempt, otherwise 0.

If they did not have the 5th attempt, S5=S4.
SF: 𝑥 = 1 if 𝐸 = 𝑇 𝑟𝑢𝑒 in their last attempt, otherwise 0.

2.2.2. Different scoring rules

In preparing the data to create a common scale, we dichoto-
mously scored each programming task for each student
in each attempt. This choice was constrained by the two
facts: the sample size in the pilot study was relatively small,
which could only support the use of the simplest psychome-
tric model with dichotomouse responses (i.e, Rasch model;
[6]), and the empirical data showed that the numbers of
passed cases concentrated in the two ends (either a very
low number or a very high number). Please refer to the
Results section and Figure 3. In this study, we experimented
with six scoring/grading rules based on the process features.
Table 1 provides a detailed description for each scoring rule
on an item, where 𝑥 stands for the item score of a student,
and 𝐸 for the event that the student passed at least half of
the test cases.

2.3. Data Modeling
In this section, we provide concise and conceptual descrip-
tions of the used psychometric and statistical methods. Inter-
ested readers are recommended to refer to the cited papers
for technique details of these methods.

2.3.1. Item Response Models

Because of the adaptive study design, there was missing
data by design. The total sum of passed cases of all tasks
is not comparable across students as some students took
the harder task set and some took the easier one. It was
necessary to create a common (base) scale for comparabil-
ity. We applied the Item Response Theory (IRT) models [6]
in psychometrics that uses information from the observed
task responses for task difficulty calibration (i.e., estima-
tion). Due to the relatively small sample size (N = 159) we
applied Rasch model, the IRT model with the least number
of parameters, to obtain reliable parameter estimates [6]. In
a Rasch model (i.e., a latent logistic regression model), the
probability for Student i to get a correct answer on Task j
(i.e., 𝑥𝑗 = 1) depends on the student’s latent ability 𝜃𝑖 and
the item difficulty 𝑑𝑗:

𝑃(𝑥𝑗 = 1|𝜃𝑖, 𝑑𝑗) =
1

1 + exp{−(𝜃𝑖 + 𝑑𝑗)}
. (1)

A student with higher programming proficiency (i.e., larger
𝜃) has a higher probability of getting the item correct, but
a harder item (indicated by a lower value of 𝑑) decreases
that chance. Note that in the following, to be consistent
with psychometric terminology, a programming task is also
referred to as an item.

Item Set Sample Item difficulty
Common set Every Student 𝑑𝑐𝑜𝑚𝑚𝑜𝑛
Easy set Lower half scorers 𝑑𝑒𝑎𝑠𝑦
Hard set Upper half scorers 𝑑ℎ𝑎𝑟𝑑

Table 2
Item calibration samples

2.3.2. Item calibrations

Because the sample sizes were relatively small, and they
were even smaller in the second stage of the study design,
we used a two-step approach to conduct item calibrations.
There are three sets of items and associated item difficulty
estimates (refer to Table 2 below).

In the first step, we used Rasch model to estimate 𝑑𝑐𝑜𝑚𝑚𝑜𝑛
for items in the common item set that everyone practiced
at stage one; in the second step, we used the fix-parameter
calibration method [17, 18] to obtain 𝑑𝑒𝑎𝑠𝑦 and 𝑑ℎ𝑎𝑟𝑑 esti-
mates for items at stage two in the easier set and hard set,
respectively. In the second step, 𝑑𝑐𝑜𝑚𝑚𝑜𝑛 estimates were
fixed, so that all 𝑑s were on the same scale. The two-step
item calibration approach can help to obtain more reliable
and accurate estimates of parameters 𝑑s (refer to [18] and
references therein).

Note that the item calibrations were conducted on the
first attempt only; that is, items were scored using S1 in
Table 1. These item difficulty parameters (𝑑s) were used
as our common (based) scale for the subsequent analyses,
which ensured that all subsequent performance scores based
on different scoring rules were comparable.

2.4. Performance Scores
For a test form consisting of 𝐽 = 21 items, the true score 𝑇𝑖
[9] for Student 𝑖 is defined as

𝑇𝑖 =
𝐽
∑
𝑗=1

𝑃(𝑥𝑗 = 1|𝜃𝑖, 𝑑𝑗) =
𝐽
∑
𝑗=1

1
1 + exp{−(𝜃𝑖 + 𝑑𝑗)}

. (2)

However, again, because different students took different
test forms, either Form 1 (common item set plus the easy
item set; 𝐽1 = 15 ), or Form 2 (common item set plus the
hard item set; 𝐽2 = 15), the true score on different test forms
are not comparable either. Thus, it is necessary to ”equate”
true scores from one form to the other form to produce com-
parable scores. The equating process was realized through
the IRT equating procedure [9] to produce an equated score
for each student through the common scale determined by
item parameters 𝑑s obtained in the above item calibration
steps.

In our study, for each of the six scoring rules, two IRT
equatings were conducted: one from Form 1 to Full Form
(the full set; J=21), and the other from Form 2 to Full Form.
As such, the IRT equating acted as an imputing method, and
the equated score was set on Full Form to reflect a student’s
true score as if the student took the full set of 21 items.

Applying the six different scoring rules in Table 1 for item
score 𝑥 in Equation 1, we produced six equated scores for
each student. Because item parameters 𝑑s were the base
scale and used in all IRT equatings, the equated scores were
comparable across students and scoring rules. The equated
scores can, therefore, be used as performance scores for
comparison and the changes in these performance scores
(based on different scoring rules) reflect skill progress during
the programming processes on the tasks.



Figure 2: Architecture

2.5. Item Bias Detection
It is sensible to evaluate biases at the item level since perfor-
mance score is a function of aggregated item scores (using
the psychometric models as described above). For each item,
we conducted differential item functioning (DIF) analyses
using the average item scores between the non-men (focal)
group to the men (reference) group [19]. There are various
statistical approaches for DIF analyses [6, 19]. In this study,
we applied a DIF approach that can evaluate the difference
in the average item scores (standardized mean difference,
SMD), as well as the difference in the average attempt (differ-
ential number of attempts), conditioning on students who
have similar programming skills.

More specifically, let 𝑋 be the item score (0 or 1), and 𝑇 be
the total performance score [20]. To assess whether an item
functioned differently for students in two different groups,
a studied/focal group (Group 𝑓) and a comparison/reference
group (Group 𝑟), comparison is made between the expected
item scores for given total scores, 𝐸𝑓(𝑋 |𝑇 ) and 𝐸𝑟(𝑋 |𝑇 ). The
SMD is a weighted sum of the differences of conditional
expectations between the focal and reference groups for an
item; that is

SMD = ∑
𝑡
𝑤𝑓 𝑡[𝐸𝑓(𝑋 |𝑇 = 𝑡) − 𝐸𝑟(𝑋 |𝑇 = 𝑡)],

where 𝑤𝑓 𝑡 is the proportion of the focal group members in
the 𝑡-score group. In practice, 𝐸(𝑋 |𝑇 ) is estimated by the
average item scores in the 𝑡-score group. In the DIF context,
𝑇 is often called the matching variable [11, 10, 20].

A statistically significant and negative SMD may indicate
that the studied item favors the reference group, and a sta-
tistically significant and positive one the focal group. The
choice of this DIF method was based on the small sample
sizes in our pilot data and the intuitive interpretation of the
DIF effect size (i.e. SMD). Similarly, differential number of
attempts is the difference in the weighted average attempt
numbers between the two groups after matching on the
performance score.

Figure 2 summarizes the architecture of modeling and
analyses used in the study.

In the study, we used the R package mirt [21] to conduct
IRT item calibrations and programmed R codes to run the
other statistical and psychometric analysis. Interested read-
ers are referred to the references cited for technical details.
Some useful R codes for item calibration and score equating
are also available in [18].

Figure 3: Distribution of numbers of passed cases on one item. In
each panel from left-to-right and top-to-bottom, the plot shows
the frequency Distribution of passed cases based on the first one,
first two, first three, first four and first five attempts, respectively,
on one task that had eight test cases. Note that in the first two
attempts, no students got all 8 cases correct.
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Figure 4: Dimensionality Analysis

3. Results

3.1. Data Summary
As discussed earlier, if students kept trying a programming
task, they were most likely to pass all the test cases. Figure
3 shows the typical data pattern on one task. Most students’
numbers of passed cases were either close to 1 or close to
7, and the counts around 1 shifted to 7 or 8 as they made
more attempts on the task. The same pattern was observed
on most of the tasks, and thus they supported the choice of
scoring the tasks dichotomously.

The preliminary PCA analysis on the common item set
showed that the dichotomously scored responses had one
dominant dimension (i.e., uni-dimensionality was accept-
able. Refer to Figure 4).

3.2. Item Difficulty Distribution
Figure 5 presents item difficulty, calibrated on the first at-
tempt (S1) from the Rasch model. It was observed that item
difficulty of the 21 programming tasks had a good spread:
Tasks 8, 19, 20 and 21 were challenging to the participants,
Task 10 was very easy, and the rest tasks were somewhere
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Figure 5: Item difficulty (𝑑) estimates of the 21 tasks based on
the first scoring rule (S1). A positive bar indicates that the item
was less difficult for the non-men group.
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Figure 6: The six score distributions produced by the six different
scoring rules, respectively, from S1 to S5, and to SF. The distribu-
tions shifted to higher scores as more attempts were allowed.

in between.

3.3. Performance Score Distributions
Performance score distributions based on different scoring
rules (S1 to S5, and SF as in Table 1) are shown in Figure 6. As
expected, as students practiced more on the programming
tasks, they made progresses and their performance became
better (except for a few students on the left tails of the
distributions who were likely to give up early). Overall,
students’ performance scores based on the final attempts
(SF) are clearly better than the other intermediate scores
(the solid black curve as shown in Figure 6).

3.4. Potential Item Bias
Item bias analysis results show that there was an overall
trend of reduced bias as students attempted more times on
the tasks. Using an effect size of 0.1 as a threshold, the com-
monly used cut point to flag a meaningful difference in SMD
(refer to [11] and references therein), Figure 7 shows that,
in the first attempts (denoted as the solid orange circles),
Items 12 and 14 were easier, but Items 2, 11, 16 and 21 were
harder for the non-men group. However, the magnitude of
SMD dropped close to zero after the final attempt (denoted
as pink stars). In fact, the mean absolute error (MAE) of
the SMDs based on the final attempt had the smallest value
(0.036) compared to those based on the first 1 to 5 attempts
(0.07 ∼ 0.08).

Note that, because of the relatively small sample sizes,
these SMDs are not statistically significant, except for Item
21 (which had a sample size of 46 for the men group and
19 for the non-men group). Item 21 (a task that involved
programming skills such as loops, nested branching, and
string manipulation) seems to be much harder for the non-
men group in all the first 5 attempts, particularly when we
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Figure 7: Standardized mean differences (SMDs) between the
non-men and men groups after matching on performance scores
on Item 1 to Item 21, respectively. The x-axis stands for items
(from 1 to 21), and the y-axis on the left stands for SMD (each
item has six SMDs based on the six scoring rules). Those six
SMDs are reported in different colors and point types (refer to
the keys on the right side of the panel ). A positive SMD indicates
that the item scored by the associated scoring rule may favor the
non-men group.
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Figure 8: Differential number of item attempts between the
non-men and men groups from Item 1 to Item 21. A positive bar
indicates that the non-men group made more attempts on the
item.

only count the first 4 attempts. However, similar to the
other items, the SMD of Item 21 was reduced to almost zero
after the final attempt.

Figure 8 shows the differential number of attempts be-
tween the two groups. The non-men group attempted more
times on Items 1, 3, 4, 16,17, 19, and 21. Particularly on Item
21, the non-men group attempted about 5 more times on
average (with a statistical significance) than the men group
with comparable programming skills. In other words, the
diminished SMD on Item 21 between the two groups might
be resulted from significantly more effort and more attempts
on this item by the non-men group.

4. Discussion
In this pilot study, we attempted to address an emerging
research topic on how to measure learning progress in the
adaptive learning and practice platform. We leveraged log
data collected from the online learning platform to extract
programming practice features and developed a general ap-
proach to integrate statistical and psychometric methods
and best practice with log data features to measure students’
progress in programming practice. The statistical and psy-
chometric methods helped to create dynamic performance
scores that captured students’ progress during practice and
were comparable within individual students who made dif-
ferent attempts and across students who practiced different
sets of programming tasks. Such comparability of perfor-
mance scores not only helps to measure progress in pro-
gramming practice, but it also helps to evaluate potential



task biases between diverse student groups. The current
study contributes to methodologies in measuring learning
progress and evaluating programming tasks in the dynamic
and adaptive online practice setting, which is likely to be
applicable to other practice and assessment scenarios.

Our preliminary results may have implications for assess-
ing programming tasks in online practice. First, even in a
complex situation where multiple attempts are allowed and
different programming tasks are adaptively recommended
to students, we can still use features extracted from log
files to capture students’ programming processes and take
advantage of, and develop if necessary, statistical and psy-
chometric methods to assess students’ progress and produce
comparable performance scores. Most importantly, these
practice features and rigorous methods can help identify
what tasks may have potential bias and favor one student
group over the other. Overall, our preliminary results show
that repeated practice with immediate feedback improved
all students performance and reduced item biases.

These preliminary findings also suggest assessing stu-
dents’ performance on their final attempt, which gives con-
trol back to students and allows them decide how many
times they want to practice a task. This may boost students’
confidence and improve their performance. As long as stu-
dents keep trying on a task with feedback, they may even-
tually pass all test cases, and their effort may help mitigate
potential task bias. In addition, our preliminary findings in-
dicate that programming tasks that showed initial bias need
more investigation from content perspectives, especially if
they are used in contexts that do not allow repeated practice
and immediate feedback and that have high stakes.

In terms of recommending tasks for students with dif-
ferent skill levels to practice, performance scores based on
the first attempt, or the first few attempts, may have better
differentiability than those based on the final attempt, thus
they are recommended for targeted classroom instruction,
if needed.

One major limitation of the current study was the rela-
tively small sample sizes of the pilot data and limited num-
bers of programming tasks, which makes it challenging to
generalize the preliminary findings to broader CS educa-
tion scenarios. The team is preparing for a larger scale data
collection in the coming year to reexamine the research
questions and evaluate whether similar findings remain. In
particular, follow-up studies will investigate why some tasks
may be biased from content perspectives and aim to provide
guidelines for developing fair programming tasks. Further
studies will also make use of the fine-grained log data and
experiment with machine learning techniques in better un-
derstanding students’ learning behaviors and programming
styles, as well as their association with characteristics of
programming tasks.

Finally, we end with implications for CS educators. For
CS educators, these preliminary results clearly support for-
mative assessment policies that allow for repeated practice
and feedback, to encourage learning and mitigate potential
biases in task design that might advantage some groups in
CS education. They also suggest that restricting attempts
may limit the opportunity of observing students to demon-
strate their skills and learn from feedback. Future work
should further explore these recommendations, particularly
in other learning contexts (e.g., with different forms of feed-
back, such as auto-graders with hints), other identities (e.g.,
race, ethnicity, ability), and items (e.g., more complex pro-
gramming assignments often found in formal education).
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