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Abstract
Social networks such as TikTok, Facebook, or X introduce techniques to inform users if the content they
are consuming may be fake. This, together with the account banning for hate speech or disinformation
spread, is leading more and more pseudo-media in Spain to use Telegram to communicate with their
audience. Thus, it is difficult to warn users about the veracity of the content, leading them to accept
political disinformation as true if it aligns with their beliefs, which ultimately promotes their polarization.
In this work, we want to identify the political messages that will have the greatest impact on people to
recommend when it is necessary to initiate a refutation strategy if it is disinformative, so that refutation
begins before disinformation is taken as true by a part of society. To estimate the impact of political
messages, we take into account the polarization generated by them and their virality. Our main hypothesis
is that this value is proportional to the time of publication, with the greatest impact in the most politically
and socially sensitive contexts. Hence, our goal is to compile a dataset of political messages disseminated
on Telegram (along with the generated responses) and its temporal context, in order to develop methods
and metrics to identify the expected impact and when they might have the greatest impact.
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1. Introduction

Disinformation is defined as “false information that is shared to intentionally mislead" and is one
of the main information disorders [1]. The different information disorders, shown in Figure 1,
are distinguished by the information they use (real or fake) and the intention with which the
news are generated (harm, mislead, other). The main problem with misleading fake news, the
ones that provoke disinformation, is that not only can they be of different types (hoax, rumor,
conspiracy theory, etc.), but they can spread very quickly and have a huge impact. This can
lead to major problems, in terms of health (e.g., suggesting methods of curing diseases ), as a
polarizer of society (e.g., creating hoaxes about the Spanish law on transgender rights ), and as
a way to promote hatred (e.g., against immigrants ), among others.

Disinformation presents a risk to political speech and democracy, the impact it has on citizens
is mainly due to the way it goes viral and the polarization it induces [2]. The more viral
and polarizing a news story is, the greater its impact. To mitigate this risk, [2] suggest that
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Figure 1: Information disorders based on [1].

the refutation should focus on high impact disinformation while omitting low impact cases.
In this paper, we present an approach to predict the impact of political messages on social
networks. The goal is to 1) help human annotators focus their resources on the most harmful
messages and 2) help refutation mechanisms before the message gets a big impact on social
media and biases public opinion. Furthermore, this method seeks to prevent the Streisand effect
by unintentionally highlighting messages that would otherwise remain insignificant.

The structure of the paper is as follows. Section 2 discusses the background and related
work. Section 3 details the proposed research, including assumptions, the research problem,
hypothesis, research questions, and the objectives. Section 4 explains the research methodology
adopted. Lastly, Section 5 summarizes the work done, the conclusions drawn, and suggests
directions for future research.

2. Background and Related Work

Due to its low moderation and group/community-centered structure, Telegram provides an
environment more prone to sharing political disinformation, which in turn implies a risk of
political radicalization of users [3]. In Spain, Telegram is one of the social networks used by most
of the main sources of disinformation. These pseudo-media, listed in [4], have their own public
Telegram groups that they use to share disinformation1. In fact, some of these pseudo-media
had accounts on other social networks that have been closed for spreading false information and
promoting hatred towards minorities. They claim that these acts are censorship and encourage
their readers to join their Telegram groups, making this social network one of the main channels
for the dissemination of disinformation.

To combat this disinformation, we can differentiate three refutation strategies according
to [5]: prebunking, debunking, and narrative counter. Prebunking focuses on protecting
individuals from disinformation and attempts to influence them. The main techniques focus on
analyzing the message and detecting its language intensity, identifying the source credibility,

1Have a Telegram group of their own: Contando Estrelas, Mediterráneo Digital, Mpr21, El Diestro, Alerta Nacional,
and Euskalnews. No known Telegram group of their own: El correo de España and Altavoz de Successos



improving individuals’ ability to deal with false information, etc. [6]. Debunking uses facts
and reliable information to refute disinformation. Fact-checking for debunk messages can be
done manually (with experts or crowd-sourcing) or with automated tools trained on reliable
knowledge bases [7]. Narrative counter generates an easy to understand explanation without
the need for empirical evidence. This strategy is also known as counterspeech and, although
it can be done manually, its complexity makes it difficult to scale; thus, generative models
represent a potential improvement [8]. Moreover, it is one of the most effective methods in
reducing the effect of disinformation on the beliefs, intentions, and attitudes of individuals [5].

However, there are too many communities and too many messages to fight them all. Choosing
the highest impact messages can maximize the effect of these refutation strategies without
being resource intensive and without giving importance to irrelevant messages. As the impact
of disinformation directly depends on its virality and the polarization it produces [2], it is
important to predict these aspects to make the best decision.

On the one hand, virality in social networks is a phenomenon that has been widely studied
in the literature. Studies have been conducted on its propagation structure, measurement and
prediction. First, there are two main types of propagation structures according to [9]: diffusion,
when virality increases as more people adopt and share the message; and broadcast, when
virality is gained by sharing a single message that reaches many individuals. Second, the main
approaches for measuring virality use engagement metrics: number of reposts, number of likes,
number of followers of the author, combination of several, etc. [10]. Finally, for automatic
prediction of virality, the content of the message and its characteristics (whether it contains
media, whether the author is verified, has positive or negative sentiment, etc.) are usually used
[10].

On the other hand, we refer as generated polarization to the polarization generated in the
responses to the message and not in the content of the message itself. Therefore, to know this
feature, it is necessary to simulate the discussion generated by the message, to later measure
the polarization of the responses. This approach ties into the broader topic of dialogue systems
(DS), where the generation of responses to a message is widely discussed. These systems are
usually divided according to their main specific features [11]: approach (architecture of the
system), purpose (general type of system) and model (underlying technique used).

The first feature (approach) depends on how the different components of a DS interact. The
components form the architecture of a DS, and according to [12, 13], there are four main ones:
natural language understanding (to identify user intents and key information), tracking of the
dialogue (to monitor user belief states based on dialogue history), learning the dialogue policy
(to decide the next action), and natural language generation (to produce the response of the
system in the dialogue). If they are trained separately and interact with each other, the DS
follows a pipeline approach (also referred to as modular approach). However, it is possible to
use a single trained model playing the role of all components, in this case the DS follows an
end-to-end approach. The second feature (purpose), depends on the capability of the DS to work
in certain domains. If the DS is designed to be flexible and not limited to a particular task, it is
open-domain. In contrast, if it is specialized in solving a specific task, it is task-oriented.

The last feature (model), constitutes the main technique used to build the DS. There are many
different techniques, but for the latter purpose (task-oriented), which is in line with our work,
the most promising ones are those based on reinforced learning (RL) [11] and large language



models (LLM) [12]. We consider LLMs to be the best option for this domain because of their
ability to understand and generate natural language and their ability to adapt to a context
with few examples [12]. Nevertheless, it is necessary to fine-tune them with domain-specific
information [12, 13] and combine them with RL [13] and quality prompts [11] to improve the
quality of the results.

In the literature, applications of LLM to generate responses are usually related to detecting
fake news because comments provide an important social context for the task [14, 15]. The main
papers in this field provide LLMs with the content of the news item and additional information to
generate comments, this additional information can be: an example comment [14], a description
of a user profile to be emulated by the model [15], both [16], etc. However, in an approach
that has to work with continuous data streams to detect the impact of political disinformation,
extracting the content of all the news items to be analyzed is an inacceptable resource-intensive
process. To optimize resources, we believe the best approach for this type of information is
to use only the news headline, which limits the context that can be given to the model and
makes the problem analogous to generating responses to social media messages. Within this
other domain, we find several resources (fine-tuned LLMs [17], datasets [18], frameworks [19],
etc.) and different methods for providing context to the LLM in generating responses, such
as: specifying which sentiment to focus on [20]; evidence on which to base the response [21];
intention or emotion of the speaker or of the response [19]; etc. In short, all these approaches
try to generate responses that are as real as possible, based on a piece of text and a context.

The realism of the responses generated is crucial for measuring polarization, as this
phenomenon occurs when individuals form opinion groups that interact little or no with
each other (also known as cyberbalkanization) [22]. It is common to find works that measure
polarization manually, both at the user level, by surveying users and asking them about their
position on a predefined set of issues (e.g. [23]); and at text level, analyzing the content following
steps defined in a framework (e.g. [24]). Increasing efforts are being made to automate this
measurement. For example, at the user level, there is a method that assesses the polarization
of users and groups by analyzing interactions between users, the content of their discussions,
and the opinion leaders or sources to which they refer [25]. We also found a study that
estimates content polarization through sentiment analysis. The general sentiment of all content
is calculated and the sentiment of each content is taken individually; the greater the difference
between these two values, the greater the polarization of the content [26].

In short, to help fight against political disinformative messages and prevent further polariza-
tion of society, sophisticated tools are needed. Tools capable of managing the different elements
of the political discourse to prevent radicalization. For this, it is essential to know the impact of
political messages on people, a task that requires measuring the virality of the messages and the
polarization of individuals reactions to them. In this way, disinformative political messages can
be refuted before having a major impact, avoiding the bias that exposure to false information
creates in people’s beliefs.



3. Proposed Research

Based on the previous analysis of the background and related work, we assume that political
disinformation carries multiple risks to society, such as political radicalization and normalization
of hate speech toward minorities. To mitigate its effects, there are different manual and automatic
refutation strategies, but, due to the large volume of messages created every day, analyzing
and refuting all of them is not viable. In this work, we want to solve the research problem
of identifying political messages that will have a great impact on people. For this, our research
hypothesis is that the impact of a political message is greater when it is published during times
of high social or political sensitivity, such as elections, social movements, national crises, etc.
The different research questions (RQ) that arise as a result of the above are:

RQ1: How does the virality of a political message vary according to the temporal context in
which it is published?

RQ2: How can LLMs emulate and predict the dynamics of the social media debate provoked by
a political message?

RQ3: How can the social impact of political message be measured at different points in time?
RQ4: What are the periods of high social or political sensitivity during which the publication

of a political message has the greatest impact?

To address the above RQs, we define several objectives (O) and sub-objectives (SO) to be
satisfied. Although the first objective is to generate the necessary resources and is a requirement,
the rest are related to the following RQs, O2 to RQ1, O3 to RQ2, and O4 to RQ3 and RQ4. The
list of objectives is as follows:

O1: Generate the resources needed.

SO1-1: Build a corpus of disinformative political messages in Spanish spread on Telegram.
SO1-2: Represent the social and political context when each message was published.

O2: Predict the virality of political messages.

SO2-1: Train a baseline model to predict the virality of political message in the SO1-1 corpus
relying only in the content of the message.

SO2-2: Explore which elements of the context captured in SO1-2 improve the performance
of the model.

SO2-3: Build a model to predict virality with the best configuration found.

O3: Emulate the debate that could be provoked by political messages.

SO3-1: Evaluate the performance of LLMs in predicting existing responses to the resource
built in O1S1.

SO3-2: Explore which elements of the context captured in SO1-2 improve the performance
of the best LLM analysed.

SO3-3: Build a DS that injects the selected context elements in SO3-2 together with the
political message into the LLM to generate the responses.



O4: Create a method to automatically estimate whether or not a political message will have a
great impact and when it is expected to have the greatest impact.

SO4-1: Estimate the polarisation of the emulated conversation in O3 for each message item.
SO4-2: Calculate the impact of the message with the virality calculated in O2 and the

polarity it generates in the responses produced in O3.
SO4-3: Divide the messages into topics and analyze whether their impact follows a temporal

or social pattern.
SO4-4: Group the above steps together to generate a system that estimates the impact of

political messages at given moments.

4. Methodology

We organize the research in four main phases: 1) analysis and study of the domain and existing
solutions, 2) defining the problem, the research and its objectives, and 3) experimentation and
evaluation. In the first phase, we study the domain of knowledge representation (for O1), the
evaluation of virality in social networks (for O2), the generation of responses to posts and news
(for O3), and the analysis of the temporal evolution of knowledge (for O4). In addition, we also
analyze the main existing solutions, such as Knowledge Graphs for knowledge representation,
engagement metrics to measure virality, LLM to generate responses to comments, and concept
drift to analyze the evolution of information. In the second phase, we define the problem
and the research line that we will follow to solve it, establishing the hypotheses, the research
questions and the objectives. Finally, in the third phase, we design the experiments to be
carried out and their evaluation to meet the objectives and answer the research questions. The
organization of work to meet the objectives is shown in Figure 2.

5. Conclusions and Future Work

The main work done is focused on generating the necessary resources (O1). The main difficulty
of this objective is to represent the social and political context of each news item. Our approach
is to generate an ontology (to be published) and build a Knowledge Graph so that the social
and political context at a specific moment in time can be obtained through queries. We are
also working on predicting the virality of political messages on social networks. We conduct
experiments to analyze which elements of the context are the most useful to improve the
accuracy of the prediction (ideology of the speaker, presence of hate speech, if it is tagged as
disinformative, whether it is published during the election campaign, etc.).

Context has proven to be a key element in our preliminary analysis of virality prediction
and we believe it will also be a key element in the generation of responses. As mentioned
above, responses to political messages are essential to understand the impact they have on
society, so we believe that this work can improve existing systems in the fight against political
disinformation. Although the research may be ambitious, we hope to have a system capable
of recommending when to refute a disinformative political message and when a message is
expected to have the greatest impact.



We are now past the halfway point of the 2nd year and will continue in accordance with
Figure 2. The next steps will be the prediction of virality and the generation of responses to
news. In both objectives, the state of the art will be further explored, and the best approach to
tackle the tasks will be decided. We will explore how context affects the models used and what
information is most relevant to achieve quality results.
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Figure 2: Timeline of the research.
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