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Abstract
After fact finding on the disruption bought by today’s Generative AI tools to the education system, we
outline the advantages of joining the disruption, motivated by the natural synergies between today’s
Generative AI and Logic Programming Languages, derived from both their similar and complementary
reasoning mechanisms.

We explore engagement strategies for AI assistants with specifics on Prolog teaching and also in the
wider context of online teaching and automation of teaching processes, including AI-assisted evaluation
strategies for student success. In particular, we overview and explore in some detail AI-based Prolog
code generators, gamification, computational thinking in logic-focussed natural language, and the use of
multi-agent AI systems.
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1. Introduction

We will focus on technical aspects for engaging the AI disruption. It is however of paramount
importance to parallel and evaluate our pragmatic fact finding and entailed reasoning steps with
alignment to legal, ethical and moral values, integrity, fairness and equity which are not covered
in this paper.

2. The Facts on the Generative AI Disruption of Education

2.1. The Domain-independent disruption

Our current educational technologies have over the last 50 years incrementally refined the closely
interrelated aspects of training, testing and student evaluation and, to a much lesser extent, the
real-world outcomes of the teaching process. At the same time, leftovers for its 2000+ years
baggage focussed on replicating memorized content rather than actionable generalization and
creativity are still present in the evaluation mechanisms of of educational processes.

With the focus on verifiable metrics, our often over-automated grading processes, driven by
market-dictated cost reduction on human grader involvement, have created a perfect breading
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ground for Generative AI induced gaming opportunities against typical grading systems1.
Some key facts on the impact on evaluation of student success can be summarized as follows:

• The advanced capabilities of AI models make it nearly impossible to detect AI-generated
essays or multiple choice problems, rendering traditional plagiarism detection methods
ineffective.

• Educators might need to reconsider the purpose and structure of assignments, including
essays and problem sets, in light of AI’s ability to generate content and solve complex
problems.

• The rapid changes brought by AI in education demand immediate adjustments from
instructors and the creation of clear policies regarding AI use to preserve educational
integrity while embracing its potential benefits.

Let’s follow up with an instance of a pragmatic (notwithstanding its ethical aspects!) decision
that a typical average student faces.

The cheating paradox The following case study (with kind assistance from GPT-4o on
obvious details) puts on the table an aspect of the a commonly used grading process, that an
average student focusing on passing a course with as high grades as possible faces:

Example 1. After submitting the following set of assumptions to the GPT-4o assistant, actually
as a simple math word problem to solve:

Assume that we grade courses with
40% home work,
30% Midterm Exam
and 30\% Final Exam.

It is known that AI-assisted cheating on homework reduces
exam performance by around 5%.

Assuming that AI-assisted cheating on home works gives 95% on them and
that under honest hard work the student would obtain a 70% grade.

Which of the AI-assisted cheating and the honest strategy would give the
highest grade to the student? Give me a short final answer just citing
the grades and their difference in %.

we get:

With AI-assisted cheating:

- Homework:
- Exams (Midterm and Final): 65 % (due to a 5% reduction)
- Final grade: 0.40 * 95 + 0.30 * 65 + 0.30 * 65 = 76%

1https://www.oneusefulthing.org/p/post-apocalyptic-education
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With honest hard work:

- Homework: 70%
- Exams (Midterm and Final): 70%
- Final grade: 0.40 * 70 + 0.30 * 70 + 0.30 * 70 = 70%

Difference:

- AI-assisted strategy gives 6%
higher final grade than the honest strategy.

2.2. The Domain Specific Disruption : Prolog

Let us now focus, by taking advantage of GPT-4o’s Prolog programming skills, to solve a
beginner-level Prolog assignment testing list processing.

Example 2. We start with the query:

Write a Prolog program that removes each element in an
odd position of a list of terms. Sort the result in reverse order.
Show me how it works on [l, o, g, c, is, fun]

we get a first shot correct program:

% Base case: An empty list has no elements
% to remove, so return an empty list.
remove_odd_positions([], []).

% Recursive case: If the list has at least two elements,
% remove the first element and keep the second.
remove_odd_positions([_, X | T], [X | Rest]) :-

remove_odd_positions(T, Rest).

% If the list has only one element left,
% skip it (since it's in an odd position).
remove_odd_positions([_], []).

% To get the desired result, first remove odd positions,
% then sort in reverse order.
remove_and_reverse(List, Result) :-

remove_odd_positions(List, ListWithoutOdds),
reverse(ListWithoutOdds, Result).

with the results on the given example list, as returned by the LLM:

You can use the program on the list [l, o, g, c, is, fun] as follows:

?- remove_and_reverse([l, o, g, c, is, fun], Result).
Result = [fun, c, o].



Next, let’s push ahead with a midlevel problem.

Example 3. This example shows clear, efficient and well explained Prolog code on a less trivial
problem:

Write a Prolog program that finds the first 5 pairs of twin primes
and show the Result it returns.

The LLM returns the following code:

% Define a predicate to check if a number is prime
is_prime(2).
is_prime(3).
is_prime(N) :-

N > 3,
N mod 2 =\= 0,
\+ has_factor(N, 3).

% Helper predicate to check if a number has a factor
has_factor(N, F) :-

N mod F =:= 0.
has_factor(N, F) :-

F * F < N,
F2 is F + 2,
has_factor(N, F2).

% Define a predicate to find twin primes
twin_prime(X, Y) :-

is_prime(X),
Y is X + 2,
is_prime(Y).

% Find the first N pairs of twin primes
find_twin_primes(0, _, []) :- !.
find_twin_primes(N, X, [(X, Y)|Rest]) :-

N > 0,
twin_prime(X, Y),
N1 is N - 1,
X2 is X + 1,
find_twin_primes(N1, X2, Rest).

find_twin_primes(N, X, Result) :-
X2 is X + 1,
find_twin_primes(N, X2, Result).

% Predicate to get the first 5 pairs of twin primes
first_5_twin_primes(Result) :-

find_twin_primes(5, 2, Result).

with the correct results computed by the AI’s implicit Prolog reasoning engine:

?- first_5_twin_primes(Result).
Result = [(3, 5), (5, 7), (11, 13), (17, 19), (29, 31)].



Note also a limitation here: the program will not manage a very large number of twin prime pairs
as AI’s math skills are still imperfect on computations with large values.

The AI-assisted code generation quality extends to puzzles stated in natural language, reacha-
bility problems, transitive closure, graph coloring and combinatorial problems, with often first
shot correct and elegant, well documented Prolog programs.

Our conclusion here is that today’s top Generative AI models (e.g. OpenAI GPT-4o, Anthropic’s
Claude, Google’s Gemini, etc.,) know more than enough Prolog coding for covering at least the
teaching domain and specifically its student evaluation subdomain.

We encourage the reader to try out similar examples for intuition on the domain coverage of the
Prolog Generative AI coder, both when restricted to teaching and also on snippets of industrial
strength code covering Prolog based knowledge graphs, Definite Clause Grammars, networking,
planning and constraint-solving problems, Prolog-based Web apps, and so on.

2.3. On the logic of joining the disruption

Generative AI-denial is a natural, partly rational, partly emotion-driven reaction of practitioners
of symbolic AI, Natural Language Processing and classic Machine Learning that are prime
disruption targets of it, as it suddenly deprecates years of hard work on significant academic and
industrial achievements.

While keeping this in mind, we will explore here a rational and pragmatic path for joining the
disruption motivated by the natural synergies that Logic Programming and Generative AI have
together. In fact, it became obvious to this author much earlier, at the time of pure text completion
models like GPT3 and and declarative image builders like DALL.E that the disruption enables the
use of Prolog tools like Definite Clause grammars as generators for prompt and image synthesis
[1].

As a recent proof of concept, illustrating the fast progress in the field, we refer to [2] as a
prototypical example for the impressive performance gains brought by interleaving Prolog and
AI steps on a set of difficult reasoning benchmarks.

The more than 100 entries of the leaderboard at lmsys.org of a competition between LLMs,
based on an ELO tournament that pairs them to be judged by thousands of user votes on the
quality of their output, testifies on the accelerated evolution of today’s Generative AI systems2.

3. Engagement strategies with AI Assistants

We will next explore several engagement strategies with Generative AI-based teaching assistants.

3.1. A basic AI engagement strategy

• Learn underlying concepts, try to solve the problem.
• If stuck, iterate a few times with alternative ways to look at it.
• If still stuck, call the AI-assistant using the instructor-provided prompt or your own.

2https://lmarena.ai/
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• After reading the solution, answer to a set of multiple choice questions about the AI’s code.
The instructor can use the results of your answers for grading.

Note that this could be still automated by the instructor’s code asking the LLM to grade the
resulting code if submitted and grading the answers to the follow-up AI generated question. See
our WebApp3 for a (recursive) follow-up question generator.

In the case of Prolog, this AI-assisted coding pipeline can be refined by requiring the students
to run the AI’s code and explain the results of a few spy points by tracing the execution.

On more interactive online engagement on platforms like Canvas4, engaging in discussion
groups on the AI generated code can provide a richer learning experience that is also gradable by
the instructor or an AI assistant.

3.2. Gamification

Gamification5 relies on borrowing elements from the gaming world students are naturally exposed
to. An example of AI assisted gamified learning process looks as follows:

• an assignment requests a small group of students to compare a Prolog problem given by
each to a different AI of their choice

• the students will be timed on testing and possibly debugging the AI-provided solutions and
gain points, banners etc. for their performance

• the students discuss the merits and demerits of each in a Canvas forum with a partial grade
originating from their participation in the forum, possibly evaluated by an AI-agent if we
want a fully automated grading process.

A refinement to the grading would be that allowing AI-assistance (seen as the equivalent of
“magic spells” in a game) will have a point cost. Thus, it will need, like in the gaming world,
some extra work to refill the player’s “strength level”, with clear learning benefits in this case.

Another approach, easy to implement in practice, would be organizing student coding contests
with participation of (possibly artificially weakened) AI antagonists. This is particularly effective
when the problems’ solution is is already known to the learner or it has even been previously
implemented in a different language.

3.3. Engagement with Natural Language and Logic Programming

Given its syntactic and semantic features, it makes sense, when teaching Prolog, to focus on
closeness to natural language while keeping in mind the importance of learnability, presence of
flexible execution mechanisms and exposure to Prolog’s highly expressive language constructs.

Good barometers for learnability are the learning curves of newcomers (including children in
their early teens), the hurdles they experience and the projects they can achieve in a relatively
short period of time. Another observable to watch is how well one can pick up the language
inductively, simply by looking at coding examples.

3https://auto-quest.streamlit.app/
4https://www.instructure.com/canvas
5https://uwaterloo.ca/centre-for-teaching-excellence/catalogs/tip-sheets/gamification-and-game-based-learning
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When thinking about what background can be assumed in the case of newcomers, irrespectively
of age, natural language pops up as a common denominator. As logic notation originates in
natural language, there are conspicuous mappings between verbs and predicates and nominal
groups as their arguments, especially relevant when solving knowledge representation problems.

That hints toward learning methods and language constructs easily mapped syntactically and
semantically to natural language equivalents.

Along these lines, our Natlog system6 [3, 4] enforces closeness to Natural Language by a
simplified, flat Prolog syntax while opening access to Python’s rich finite set and coroutining
primitives, while ensuring its smooth integration in the Python-based deep learning ecosystem.

The reader is invited to try out Natlog programs online7.
The following code snippets give a hint about Natlog’s code focusing on learnability while

keeping in mind a focus on expressiveness as a key programming language feature.

Example 4. Natlog as a syntactically lighter Prolog equivalent:

mother of X M: parent of X M, female M.

father of X M: parent of X M, male M.

grand parent of X GP: parent of X P, parent of P GP.

ancestor of X A : parent of X P, parent or ancestor P A.

parent or ancestor P P.
parent or ancestor P A : ancestor of P A.

Example 5. Natlog as expressive code defining at source level a the primitive findall/3:

stack S : l̀ist S.

push S X : #meth_call S append (X).
pop S X : m̀eth_call S pop () X.

findall X G Xs: listof X G S, to_cons_list S Xs.

listof X G S: stack S, collect_ X G S.

collect_ X G S : call G, c̀opy_term X CX, push S CX, fail.
collect_ _X _G _S.

As saliently emphasized in [5] there’s an important distinction to be made between Prolog as
a programming language and Prolog as knowledge representation language. This will become
relevant both for deciding the content of teaching materials and the AI-assistant teaching strategies.

6https://github.com/ptarau/natlog
7https://natlog.streamlit.app
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When focusing on the latter, AI-assistance will express its results in the form of a Propositional
Horn Clause program, with facts and the rules connecting them consisting of natural language
statements or noun groups describing concepts and their details. This involves a recursive descent
processes starting with a knowledge exploration initiator expressed as a sentence or a key concept,
that returns executable Prolog programs that can be evaluated with a simple fixpoint iteration or
in tabling-enabled Prolog system like XSB [6] or SWI-Prolog [7].

We refer to [8] and [9] for details of this process and invite the reader to interact with our
online deepllm streamlet app8 illustrating it.

Figure 1: Exploring a concept as a Propositional Horn Clause Program

Fig.1 shows an example exploring the concept of “inductive definition”. Note that, besides the
uses for actually introducing a student to Prolog programming, the close connection to natural

8https://deepllm.streamlit.app/
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language exposes the student to a Prolog-inspired computational thinking processes, involving
task decomposition, with its complementary aspects of refinement and exploration of alternatives.

As an additional instructional tool, the deepllm app also builds an extended concept graph to
expose deeper, LLM-generated relations to similar concepts.

Figure 2: Visualization of the concept graph related to “inductive definitions”

Fig.2 illustrates this relation graph for the concept of “inductive definition” as extracted from
the minimal model of the Propositional Horn Clause program.

3.4. Teaching with multi-agent AI systems

A strong trend in today’s large scale, industrial strength AI API based applications is the the use
of multi-agent architectures9 chaining together custom code, vector store and database calls as
well as LLM API calls.

An AI-driven multi-agent online course architecture could involve a society of specialized AI
agents, that in its Prolog instance would look like the following:

• Prolog code generator assistant
• Prolog code critique and bug finder
• natural language to/from executable Prolog translator
• conversation animator AI bot as part team projects or forums
• instructor representative as performance evaluator

9https://python.langchain.com/v0.1/docs/modules/agents/
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The multi-agent society’s members could watch and react to unblock students based on the
Agents’ specific skills and available tools using a publish-subscribe architecture while keeping
track of each student progress in a student-specific memory track.

3.5. AI-assisted teaching with human in the loop

We have focussed so far on scenarios involving AI-assisted automated and scalable online teaching
tools that are (slowly but firmly) becoming prevalent in the education system. However even in
the context, the presence of the human in the loop10 is of paramount importance.

Real time or asynchronous presence of the human instructor can be naturally integrated when
unexpected events are likely to occur in the process. Ideally, in a large scale online teaching
system this could be an instant real-time intervention by an instructor, possibly assisted by an
AI-generated summary of the blockers a given student faces. At a smaller scale, help ticket-style
event queues and blackboards could be made available soliciting instructor intervention with
well-defined status details.

3.6. Some “out of The box” ideas on on reshaping upcoming AI-assisted
Teaching Methodologies

We sketch here a few possible refinements and adaptations given the availability of large scale
generative AI to the two sides of the educational process: students and their instructors.

Transition from penalty-based to reward-based teaching systems Similarly to the
success of Reinforcement Learning in the training loops of the today’s user-facing LLMs, possibly
also seen as part of a gamification process, reward-based engagement has plenty of room to
replace or complement today’s penalty-based student-evaluation mechanisms.

Spontaneous social network study groups among remote online friends exposed to a
diversity of teaching systems With physical colocation loosing some of its relevance to joint
interests on social network co-presence and exposure to a wider diversity of teaching methods,
often crossing country borders, is an opportunity to acquire intuitions about key concepts learned
in the conventional school systems and synchronize terminological barriers.

Facilitate curiosity-driven AI-assisted self study With personalized, user aware generative
AI (e.g., Character AI’s agents11), individual curiosity on a school topic can be explored directly
and turned into a learning process while interacting with the customized agent aware of past
interactions with its owner.

Industry-inspired project-driven learning with AI assistance It is by now standard
practice in industrial code development to use tools (e.g., Github Copilot12) that revise or even
create and inject new code in the coder’s development pipeline.

10https://hai.stanford.edu/news/humans-loop-design-interactive-ai-systems
11https://character.ai/
12https://github.com/features/copilot
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This is particularly useful in project-based courses like terminal undergrad classes or in-depth
graduate classes involving software artifacts as deliverables.

Focus on spending teaching time on the “why” besides the “how” in problem solving
The “why” part has often been skipped over in the teaching process partly to keep the focus
on the topic at hand and partly because its extent is often too wide to be presented under the
time-constraints of the teaching time and the student evaluation process. Nevertheless, presenting
the “ontology” covering not only the taxonomical relations between concepts but also their
historical origins can be enlightening and Generative AI assistants can complement the course
content with them, without a significant burden on instructor time.

Extend the narrow domain-specific teaching to encompass the spectrum of related
concepts to which students might have been already exposed This ranges from text
simplification and a jargon removal using classic prompts like “explain me X such that a 9 years
old can understand it” to using AI-generated relation graphs exposing similarities, generalizations
and analogies to concepts in nearby fields. In particular, one can use AI-assistants to help “connect
the dots” by forming solid intuitions of the concepts hiding beyond domain-specific taxonomies.

Moving from canned routines and memorized factoids to actionable knowledge out-
comes This is an uphill battle against a 2000+ years tradition, but it might be facilitated by
appropriate AI-assistance to encourage immersive content-driven learning.

It also involves rethinking of deadline-driven assignments, with focus on quality vs. quantity,
as well as prioritizing of the learning outcomes vs. the convenience of assigning and grading the
work.

There are also the usual market pressures exercised on “teaching as a business”, but dropping
the AI-cheatable canned multiple-choice questions in favor of AI-assisted engagement in actual
content creation looks feasible given the technical competence of today’s a generative AI systems.

Design course materials to include video presentations of AI-assisted teaching Finally,
the wide availability of high quality multi-media teaching materials suggest producing content
that describes not just the topic at hand, but also the instructor’s interaction with Generative AI
agents, to build, clarify and present the content creation process and its outcomes.

4. A brief Related Work Overview

The domain is fast shifting to the point that even a few months old related work, covering different
tools or assuming deprecated limitations and features of now out of use AI models loses its
informational value. We focus here on some work on Logic Programming and Generative AI that
show a long term vision and development plans or some possibly out of the box thinking about
the topic.

Goal-directed ASP systems like s(CASP) [10], have provided forms of non-monotonic and
co-inductive reasoning. With enhanced constructive constraint programming algorithms, going



back to [11] and presenting also explanations covering the reasons of negative outcomes, they
show synergies between these extensions to Prolog and Generative AI induced logic program
snippets [12].

A more direct approach is recursion on LLM queries, by chaining the LLM’s distilled output
as input to a next step and casting its content and interrelations in the form of logic programs, to
automate and focus this information extraction with minimal human input [8, 9]. Like in the case
of typical RAG architectures [13, 14], this process can rely on external ground truth but it can also
use new LLM client instances as “oracles” deciding the validity of the synthesized rules or facts.
We refer to [8] for an extensive list of LLM-generated Horn clause programs and [9] for a wider
variety of them, including DCG encodings of recursive descents driven by AI-generated follow-up
questions on a given topic as well as nicely visualized knowledge representation outputs.

5. Conclusion and Future Work

We have, hopefully, made it clear that it is widely beneficial to join the disruption that Generative
AI assistance brings into teaching processes and also discussed the specifics of teaching Prolog in
the context.

In fact, we can see Prolog teaching as a “Goldilocks” case, given the natural, reasoning-induced
synergies between Prolog and Generative AI-based tools.

With this in mind, automated online teaching and student-testing tools based on Prolog code
generation and natural language dialog threads expressed as logic representations ranging from
propositional Horn clause or Datalog forms to specialized Prolog code and Definite Clause
Grammars have the potential to be extended to similar teaching and student-testing techniques
for logic languages like ASP and s(CASP) as possibly also refined to support other programming
paradigms.
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