
Efficient Compliance Computation in Probabilistic
Declarative Specifications
Mario Alviano

*
, Antonio Ielo and Francesco Ricca

DeMaCS, University of Calabria, 87036 Rende (CS), Italy

Abstract
In this paper, we investigate the measurement of trace satisfaction probabilities within probabilistic Declare

models, where Declare constraints are associated with probabilities. Each constraint, with a probability 𝑝, is

independently included in a model with probability 𝑝 or excluded with probability 1 − 𝑝. This probabilistic

framework creates multiple possible worlds, each corresponding to a specific selection of constraints, with the

probability of each world calculated as the product of the probabilities of its included constraints. A trace can be

satisfied by some of these worlds, and the probability that a trace is satisfied is the sum of the probabilities of

all satisfying worlds. We develop techniques to compute this satisfaction probability by integrating a tool that

determines trace satisfaction for crisp Declare models with an implementation of the inclusion-exclusion principle.

Our preliminary experiments compare the performance of our prototype with and without the inclusion-exclusion

principle, highlighting its impact on the efficiency and accuracy of the probability computations. The results

demonstrate the potential of our approach in enhancing the analysis of probabilistic Declare models, providing a

foundation for more sophisticated probabilistic reasoning in process mining.

Keywords
Process Mining, Declare, Probabilistic Reasoning

1. Introduction

The modeling and analysis of business processes are crucial for organizations seeking to improve

efficiency, compliance, and adaptability in a dynamic environment [1]. Traditional approaches to process

modeling often rely on deterministic frameworks where every aspect of the process is explicitly defined.

However, real-world processes are frequently subject to variability and uncertainty, necessitating the

incorporation of probabilistic elements into process models. Probabilistic Declare [2] is an extension of

the Declare [3] modeling language that addresses this need by associating constraints with probabilities,

thereby allowing for the representation of uncertainty in process execution.

Declare is a declarative process modeling language that allows the specification of constraints on the

execution of activities within a process. Unlike imperative process modeling languages that prescribe a

specific sequence of activities, Declare defines what must or must not happen, thereby offering greater

flexibility. Constraints in Declare can represent various types of conditions, such as precedence (an

activity must precede another), response (an activity must be followed by another), and exclusion

(two activities cannot occur together). This flexibility makes Declare particularly suitable for complex,

flexible, and dynamic processes.

In a probabilistic Declare model, each constraint is assigned a probability 𝑝 representing the likelihood

that the constraint is included in the model. This probabilistic nature acknowledges the inherent

uncertainty and variability in real-world processes, where constraints might not always be strictly

enforced or might only apply under certain conditions. The inclusion or exclusion of each constraint is

assumed to be independent, leading to a combinatorial explosion of possible worlds—each corresponding

to a unique subset of constraints. The probability of a particular world is the product of the probabilities

of the constraints it includes. For a given trace (a sequence of executed activities), the probability that

the trace is satisfied by the probabilistic Declare model is the sum of the probabilities of all worlds in

which the trace satisfies the constraints. This probabilistic framework introduces significant challenges

in measuring trace satisfaction probabilities due to the exponential number of possible worlds.

PLP 2024: 11th Workshop on Probabilistic Logic Programming, October, 2024, Dallas, USA.
*
Corresponding author.

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0

The primary objective of this paper is to develop and evaluate techniques for measuring the probability

that a trace is satisfied by a probabilistic Declare model. To achive this objective, we use an existing

logic-programming-based tool [4] capable of determining whether a trace satisfies a set of crisp Declare

constraints and apply the inclusion-exclusion principle [5] to efficiently compute the satisfaction

probabilities, mitigating the combinatorial complexity. By adapting tools for crisp Declare to work

within the probabilistic framework, we ensure that the underlying logic for constraint satisfaction

remains robust and accurate, and can evolve indepedenly from the probabilistic setting. Regarding the

inclusion-exclusion principle, it is a mathematical technique used to calculate the probability of the union

of multiple events. By applying this principle, we can systematically account for the overlaps between

different sets of constraints, thus avoiding the need to explicitly enumerate all possible worlds. This

significantly reduces the computational burden and improves the efficiency of probability calculations.

Our preliminary experiment involves testing the prototype implementation on a set of example traces

and probabilistic Declare models also belonging to classical declarative process mining benchmarks

from the literature. The experiment compares the performance and accuracy of the prototype with and

without the inclusion-exclusion principle. The results indicate that the inclusion-exclusion principle

greatly enhances computational efficiency.

2. Preliminaries

2.1. Process Mining

A process is a sequence of interrelated activities performed to achieve specific goals. In stark contrast

to projects, processes are recurrent and have well-defined inputs and outputs. Due to the fact that

processes are repeated over time, understanding, optimizing and improving processes is an appealing

problem of practical interest, as each future enactment of the process benefits of these improvements. In

the case of a manufacturing process, this could mean a faster execution speed, requiring less resources,

or being overall cheaper.

Process Mining [6, 7] emerges as an interdisciplinary research field, encompassing tools and tech-

niques from computer science, formal methods, data science and business process management to study

processes. The central objects of Process Mining techniques are the event log and the process model.
Event logs consist of all the activities that have been performed in order to execute a process, and can

be naturally partitioned into traces, that is, group together all events produced by the same execution

of the process. Process models, on the other hand, are mathematical abstractions that allow to study

processes and their properties. Process models can be either described by a domain expert, or learned

from event logs, which is referred to as performing the process discovery [8] task. Another classic task is

the conformance checking [9] task, which amounts to compute whether a trace is compliant to a given

process model or not. There exist different formalisms to express process models. In particular, there’s

a distinction between declarative process models and procedural (or imperative) process models [10].

Procedural models aim to explicitly describe compliant traces. The most common process models in

Process Mining literature are variants of the Petri Net, an automaton-like computational structure

which is procedural in nature. Declarative process models, on the other hand, consist usually of

high-level specifications that shrink the space of valid traces, by forbidding invalid behavior. It is

well-known in the process mining literature that, in practice, imperative process models and declarative

process models are effective in different contexts [11]: imperative process easily model well-structured

processes while declarative process models are more apt for loosely structured processes [12]. Among

declarative process modeling languages, Declare [3] has been the most successful one. The Declare

language consists of a set of templates based on a set of temporal patterns which frequently arise when

writing specifications [13]. Each Declare template describes a temporal relationship between some

activities occurring in the same process trace — and, implicitly, defining what should not happen in a

given trace for it to be considered compliant to the template. Thus, a process model in Declare is a

set of constraints, obtained by instantiating some templates with specific activities. This has enabled

process mining practitioners to exploit formal techniques grounded in LTL
f

to provide specifications for

processes, without the hassle and intricacies [14] of writing a complete LTL
f

specification from scratch.

Furthermore, it has also provided effective techniques to tackle Declare reasoning problems. Declare-

based reasoning tasks are usually dealt either with ad-hoc procedures scanning each trace [15], regular

expressions [12], or by reasoning on their corresponding automaton (as in the case of monitoring [16]),

which is obtained from their corresponding LTL
f

definition through established techniques [17].

Early approaches to Declare and Declare-like patterns are based on logic programming [18, 19, 20, 21].

Recent works also apply Answer Set Programming to tackle conformance checking and query checking

of Declare models [4].

2.2. Linear Temporal Logic over Finites Traces

Linear Temporal Logic (LTL; [22]) is an extension of propositional logic where the addition of temporal
operators enables to reason over an infinite sequence of states (finite sets of propositional symbols),

called trace. Linear Temporal Logic over Finite Traces (LTL
f
; [23]) is a finite variant of LTL, where

traces are finite sequences. Let 𝒜 be a finite set of propositional symbols. An LTL
f

formula 𝜙 over 𝒜 is

defined according to the following grammar:

𝜙 := 𝜙 ∧ 𝜙 | X 𝜙 | 𝜙 U 𝜙 | ¬𝜙 | 𝑎 | F 𝜙 | G 𝜙

where 𝑎 ∈ 𝒜. A trace is a finite sequence 𝜋 = 𝜎0 . . . 𝜎𝑘, where 𝜎𝑖 ⊆ 𝒜 is the 𝑖-th state of 𝜋, denoted

by 𝜋(𝑖) and 𝑘 + 1 is the trace length, denoted by 𝑙𝑒𝑛(𝜋). Given a trace 𝜋, an integer 0 ≤ 𝑖 < 𝑙𝑒𝑛(𝜋)
and formula 𝜙, the satisfaction relation is denoted by 𝜋, 𝑖 |= 𝜙 (to be read “𝜋 satisfies 𝜙 at time 𝑖”) and

defined as follows:

• 𝜋, 𝑖 |= ⊤ if 0 ≤ 𝑖 < 𝑙𝑒𝑛(𝜋);

• 𝜋, 𝑖 |= 𝑎 ∈ 𝒜 if 𝑎 ∈ 𝜋(𝑖);
• 𝜋, 𝑖 |= X 𝜓 if 𝜋, 𝑖+ 1 |= 𝜓 and 𝑖+ 1 < 𝑙𝑒𝑛(𝜋);

• 𝜋, 𝑖 |= 𝜑 ∧ 𝜓 if 𝜋, 𝑖 |= 𝜑 and 𝜋, 𝑖 |= 𝜓;

• 𝜋, 𝑖 |= ¬𝜑 if it is not true that 𝜋, 𝑖 |= 𝜑;

• 𝜋, 𝑖 |= 𝜑 U 𝜓 if there exists 𝑖 ≤ 𝑗 < 𝑙𝑒𝑛(𝜋) such that 𝜋, 𝑗 |= 𝜓 and for all 𝑖 ≤ 𝑘 < 𝑗 it holds that

𝜋, 𝑘 |= 𝜑;

• 𝜋, 𝑖 |= F 𝜙 if there exists 𝑖 ≤ 𝑗 ≤ 𝑙𝑒𝑛(𝜋)− 1 such that 𝜋, 𝑗 |= 𝜙;

• 𝜋, 𝑖 |= G 𝜙 if for all 𝑖 ≤ 𝑗 ≤ 𝑙𝑒𝑛(𝜋)− 1 we have that 𝜋, 𝑗 |= 𝜙.

If 𝜋, 𝑖 |= ¬𝜑, we also write 𝜋, 𝑖 ̸|= 𝜑. Whenever 𝜋, 0 |= 𝜙, we say that 𝜋 is a model of 𝜙. Classic

propositional shorthands (e.g.→,∨, . . .) are defined as usual.

Example 1. Consider the following formulae 𝜑1, 𝜑2, 𝜑3, 𝜑4, along with an informal explanation of their
intended semantics:

𝜑1 = (¬𝑎 U 𝑏) ∨ G ¬𝑎 𝜑2 = G (𝑏→ X 𝑐)

𝜑3 = F 𝑐→ F 𝑎 𝜑4 = 𝑐

𝜑1 states that either 𝑎 never happens (G ¬𝑎) or that it never happens before the first occurrence of
𝑏 (¬𝑎 U 𝑏). 𝜑2 states that whenever 𝑏 occurs, 𝑐 will occur in the next state. 𝜑3 states that whenever 𝑐
happens, 𝑎 happens as well — without any constraint about their relative order in the trace. 𝜑4 states
that 𝑐 must occur in the first state of the trace. An example of model for 𝜑1 ∧ 𝜑2 ∧ 𝜑3 would be the trace
𝜋 = {𝑏, 𝑐} · {𝑐, 𝑎}, while an example of violating trace would be 𝜋′ = {𝑐}, as 𝑐 occurs but 𝑎 does not (thus
violating 𝜑3) or 𝜋′′ = {𝑏} · {𝑐, 𝑎} (which violates 𝜑4).

2.3. Declare

LTL
f

has been widely applied to domains where reasoning about finite executions is more natural [23]

than the infinite traces counterpart of LTL. However, despite LTL
f

being an expressive logic to write

temporal specifications, it is seldom the case that LTL
f

is directly applied, especially by people without

a background in formal methods, due to intricacies and pitfalls [14] of writing correct declarative

specifications. In particular, a template language known as Declare [3] has become particularly relevant

in the process mining [7, 24] community. Although Declare has not originally been developed using

LTL
f

logic, a very successful stream of research is based on Declare-as-LTL
f

formalization [25]. The

success of Declare as process modeling language is due to the fact that, although it can be formally

grounded in terms of LTL
f
, each template that is part of the language has an intuitive meaning, that can

be understood by non-experts in temporal logic. This enables process mining practitioners and domain

experts to compose specifications as set of small and easily-understandable LTL
f

formulae, without

being logic experts, while getting all the benefits of the LTL
f

formalization of Declare.

The Declare language is composed by a set of templates. Each template corresponds to an LTL
f

definition, and can be “instantiated” into a constraint (an LTL
f

formula) by specifying which activities

the template relates to.

Example 2. The formulae 𝜑1, 𝜑2, 𝜑3, 𝜑4 are respectively instances of the Precedence, Chain Response,
Responded Existence and Init Declare templates, 𝜑1 ≡ Precedence(𝑎, 𝑏), 𝜑2 ≡ Chain Response(𝑏, 𝑐),
𝜑3 ≡ Responded Existence(𝑎, 𝑐), and 𝜑4 ≡ Init(𝑐).

3. Probabilistic Declarative Specifications

One of the limits of declarative process specifications, not specifically related to Declare or LTL
f
, is

that a given process execution trace is either compliant or not to a given specification. Since typically

declarative specifications are understood as a conjunction of constraints, this means that a single

violated constraints causes the whole model to be violated. This does not allow to reason, handle and

address uncertainty, which is intrinsic in process executions. Recently, probabilistic extensions of Declare

and LTL
f

have been proposed [26, 27, 28]. One limitation of these approaches it that the semantic of

these probabilistic extensions interprets the probability associated to each constraint as its expected
support on an event log. Recall that the support of a constraint over a log is defined as the percentage

of traces satisfying the constraint contained in the log. This has counterintuitive side-effects, which

are discussed in more detail in [2]. Most importantly, it is not possible to measure how much a single
trace is compliant w.r.t. a specification. Authors of [2] tackle this issue by introducing the notion of

probabilistic declarative specifications, which encompasses a probabilistic extension of Declare, whose

semantics is inspired to the popular distribution semantics in probabilistic logic programming [29, 30].

Most importantly, [2] also introduces a notion of compliance of a trace w.r.t. a probabilistic declarative

specification, that quantitatively measures the probability of a trace satisfying a declarative specification

without referring to an event log.

The main contribution of this paper is to revise, refine and build upon ideas introduced in [2] to

provide a definition of probabilistic declarative specification and trace compliance which is grounded in

standard notions of discrete probability spaces. This yields an equivalent characterization of probabilistic

declarative specifications, aligned with standard notions of probability, that results in a more efficient

implementation of the compliance computation. We briefly recap definitions and concepts introduced

in [2].

Traces & logs. Let 𝒜 be a finite set of activities. A process execution trace (or just trace) is a string over

𝒜. (In applications of LTL
f

to declarative process mining, it is customary to assume that for each state

|𝜋| = 1, e.g. exactly one event occurs at each time-step. Hence, traces can be modeled as strings over

𝒜 rather than over 2𝒜.) An event log is a multi-set of traces. Although declarative specifications are

usually expressed in LTL
f
, characterization herein introduced are more general than LTL

f
. Thus, we

rely on an abstract notion of constraint (similar to [31]).

Constraints & satisfaction. A constraint 𝑐 is a function with signature 𝑐 : 𝒜* ↦→ {⊤,⊥}. Given a

trace 𝜋, a constraint is satisfied if 𝑐(𝜋) = ⊤ (also denoted by 𝜋 |= 𝑐) and violated if 𝑐(𝜋) = ⊥ (also

denoted by 𝜋 ̸|= 𝑐). We respectively say that the trace satisfies or violates the constraint.

Declarative specifications (DS). A DS (or simply specification) is a set of constraints. A trace 𝜋
violates a specificationℳ = {𝑐1, . . . , 𝑐𝑘} if there exists 1 ≤ 𝑖 ≤ 𝑘 such that 𝜋 ̸|= 𝑐𝑖; it complies with a

specificationℳ if it does not violate it (i.e. if 𝜋 |= 𝑐𝑖 for all 1 ≤ 𝑖 ≤ 𝑘). With a slight abuse of notation,

we denote these scenarios by 𝜋 ̸|=ℳ and 𝜋 |=ℳ respectively. Declarative specifications satisfy the

following monotonicity property: If 𝜋 violates a constraint 𝑐, then 𝜋 violates any specification that

includes 𝑐.

Probabilistic declarative specifications (PDS). The idea of PDS, as introduced in [2], is to associate to

each constraint in a specificationℳ a probability, to be understood as the strength (or relevance) of the

constraint. The underlying idea, inspired from distribution semantics, is that a probabilistic specification

defines a probability distribution over standard (non-probabilistic) declarative specifications, where

constraints are independently sampled from each other. Constraints with probability 1 (or 0) are certain,

mandatory, crisp and should always be satisfied (or ignored) in order for a trace to be compliant with

the specification. On the other hand, true probabilistic constraints (0 < 𝑝 < 1) are not mandatory, and

a trace can violate them while still overrall satisfying the declarative specification. Thus, rather than

satisfying traces and violating traces, authors of [2] propose a quantitative notion of compliance, the

probability that a trace is accepted by a declarative specification sampled from a probabilistic declarative

specification. The intution is that if a constraint gets associated to a high probability, being compliant

to that constraint yields higher compliance to the overall specification.

Probability space. We ground the notion of PDS and compliance in terms of a discrete probability

space over subsets of a declarative specification. The following provides an alternative characterization

of PDSs as introduced in Definitions 5-10 of the original article [2].

Lemma 1. Let 𝑈 be a finite, nonempty set, 𝜎 : 𝑈 ↦→ [0, 1]. Let 𝑓 : 2𝑈 ↦→ [0, 1] be the function:

𝑓(𝑆) =
∏︁
𝑥∈𝑆

𝜎(𝑥) ·
∏︁

𝑦∈𝑈∖𝑆

1− 𝜎(𝑦)

It holds that
∑︀

𝑆∈2𝑈 𝑓(𝑆) = 1.

Proof. By induction on 𝑛 = |𝑈 |. If 𝑈 = {𝑥1}, then it has two subsets ∅ and 𝑈 , with respectively

𝑓(∅) = 1 − 𝜎(𝑥1) and 𝑓(𝑈) = 𝜎(𝑥1), thus the property holds. Assume the property holds for

𝑈 = {𝑥1, . . . , 𝑥𝑛}. We need to prove it holds for 𝑈 ′ = 𝑈 ∪ {𝑥𝑛+1}.

∑︁
𝑆∈2𝑈′

𝑓(𝑆) =
∑︁

𝑆∈2𝑈′
:

𝑥𝑛+1∈𝑆

𝑓(𝑆) +
∑︁

𝑆∈2𝑈′
:

𝑥𝑛+1 ̸∈𝑆

𝑓(𝑆) (1)

=
∑︁
𝑆∈2𝑈

𝑓(𝑆 ∪ {𝑥𝑛+1}) + 𝑓(𝑆) (2)

=
∑︁
𝑆∈2𝑈

𝜎(𝑥𝑛+1)𝑓(𝑆) + (1− 𝜎(𝑥𝑛+1)) · 𝑓(𝑆) (3)

=
∑︁
𝑆∈2𝑈

(𝜎(𝑥𝑛+1) + 1− 𝜎(𝑥𝑛+1)) · 𝑓(𝑆) (4)

=
∑︁
𝑆∈2𝑈

𝑓(𝑆) = 1 (5)

Thus, 𝑓 is a probability mass function, and the pair (2𝑈 , 𝑓) is a discrete probability space.

Definition 1 (Probabilistic Declarative Specification; PDS). A probabilistic declarative specification
(PDS) is a pair (ℳ, 𝜎) whereℳ is a set of constraints and 𝜎 :ℳ ↦→ [0, 1]. We call 𝜎(𝑐) the relevance of
the constraint 𝑐 ∈ℳ.

Let𝒲 = 2ℳ be the set of worlds associated to a PDS. By the previous lemma, (𝒲, 𝑓) is a discrete

probability space. With a slight abuse of notation, we will refer to the PDS and the underlying probability

space as PDS. Intuitively, the outcome of the stochastic event is a standard declarative specification.

Let 𝐶(𝑐) be the event “the constraint 𝑐 belongs to the declarative specification”. We show that

P(𝐶(𝑐)) = 𝜎(𝑐), where P(·) denotes the probability function.

Lemma 2. Let (ℳ, 𝜎) be a PDS. Let 𝑐 ∈ℳ. It holds that P(𝐶(𝑐)) = 𝜎(𝑐).

Proof. A subset ofℳ either contains 𝑐 or not. Thus, 2ℳ =
⋃︀

𝑆⊆ℳ∖{𝑐}
{𝑆, 𝑆 ∪ {𝑐}}. We are interested in

worlds that contain 𝑐, i.e. 𝑊 of the form {𝑐} ∪ 𝑆, where 𝑆 ⊆ℳ∖ {𝑐}.

P(𝑊) = 𝜎(𝑐) ·
∏︁
𝑥∈𝑆

𝜎(𝑥) ·
∏︁

𝑦∈ℳ∖(𝑆∪{𝑐})

1− 𝜎(𝑦)

By summing up over such worlds 𝑊 , we obtain 𝜎(𝑐), hence P(𝐶(𝑐)) = 𝜎(𝑐).

Similar reasoning yields that𝐶(𝑐) and𝐶(𝑐′), for 𝑐 ̸= 𝑐′, are independent events. This is not surprising:

we can recognize 𝑓 as the joint probability mass function of 𝑛 independent Bernoulli variables. These

facts, that follow from the underlying discrete probability space structure of (ℳ, 𝜎), indeed reconcile

our definition of PDS with the one provided in [2]. Thus with a slight abuse of notation we can also

talk about probability of a constraint 𝑐, although the probability space is defined over worlds.
Let 𝜋 be a trace, (ℳ, 𝜎) a PDS. For each specification 𝑊 ⊆ ℳ, either 𝜋 |= 𝑊 or 𝜋 ̸|= 𝑊 ; thus

𝜋 effectively behaves like a binary random variable Π : 2ℳ ↦→ {0, 1}, where Π(𝑊) = 1 if and only

if 𝜋 |= 𝑊 . With a slight abuse of notation, we will use 𝜋 both to denote the string over 𝒜 and its

associated random variable Π.

Compliance [2] is understood as a measure for “how likely it is for 𝜋 to satisfyℳ”. It is defined in

[2] as the sum of probabilities of worlds 𝑊 such that 𝜋 |= 𝑊 . By treating traces as binary random

variables, compliance naturally emerges as the expected value of the random variable 𝜋:

compliance((ℳ, 𝜎), 𝜋) = E(𝜋) = 0 · P(𝜋 = 0) + 1 · P(𝜋 = 1) (6)

= P(
⋃︁

𝑊⊆ℳ:
𝜋|=𝑊

𝑊) (7)

= 1− P(
⋃︁

𝑊⊆ℳ:
𝜋 ̸|=𝑊

𝑊) (8)

To compute compliance(ℳ, 𝜋), we need to reason about composite events. First, we establish that:

1 If 𝜎(𝑐) = 1 and 𝜋 ̸|= 𝑐, then the probability of a satisfying world for 𝜋 is zero;

2 If 𝜎(𝑐) = 1 and 𝜋 |= 𝑐, then 𝑐 does not affect the overall compliance, compliance(ℳ, 𝜋) =
compliance(ℳ∖ {𝑐}, 𝜋);

These facts easily follow from the probability associated to each world. We provide a numeric example

of this fact, which will serve as a running example through the rest of the section. To ease computations,

in the rest of the sections whenever 𝑧 is a real number in [0, 1] we denote by 𝑧′ the value 𝑧′ = 1− 𝑧.

Example 3 (Compliance is unaffected by crisp constraints). Consider the specification ℳ =
{𝜑1, 𝜑2, 𝜑3, 𝜑4} of the previous example, with 𝜎(𝜑1) = 1, 𝜎(𝜑2) = 𝑝, 𝜎(𝜑3) = 𝑞, 𝜎(𝜑4) = 𝑘. This
yields 16 possible worlds 𝑊1, . . . ,𝑊16, with corresponding probability P(𝑊𝑖):

𝑊1 = {} P(𝑊1) = 0 · 𝑝′ · 𝑞′ · 𝑘′ = 0

𝑊2 = {𝜑1} P(𝑊2) = 1 · 𝑝′ · 𝑞′ · 𝑘′ = 𝑝′𝑞′𝑘′

𝑊3 = {𝜑2} P(𝑊3) = 0 · 𝑝 · 𝑞′ · 𝑘′ = 0

𝑊4 = {𝜑3} P(𝑊4) = 0 · 𝑝′ · 𝑞 · 𝑘′ = 0

𝑊5 = {𝜑4} P(𝑊5) = 0 · 𝑝′ · 𝑞′ · 𝑘 = 0

𝑊6 = {𝜑1, 𝜑2} P(𝑊6) = 1 · 𝑝 · 𝑞′ · 𝑘′ = 𝑝𝑞′𝑘′

𝑊7 = {𝜑1, 𝜑3} P(𝑊7) = 1 · 𝑝′ · 𝑞 · 𝑘′ = 𝑝′𝑞𝑘′

𝑊8 = {𝜑1, 𝜑4} P(𝑊8) = 1 · 𝑝′ · 𝑞′ · 𝑘 = 𝑝′𝑞′𝑘

𝑊9 = {𝜑2, 𝜑3} P(𝑊9) = 0 · 𝑝 · 𝑞 · 𝑘′ = 0

𝑊10 = {𝜑2, 𝜑4} P(𝑊10) = 0 · 𝑝 · 𝑞′ · 𝑘 = 0

𝑊11 = {𝜑3, 𝜑4} P(𝑊11) = 0 · 𝑝′ · 𝑞 · 𝑘 = 0

𝑊12 = {𝜑2, 𝜑3, 𝜑4} P(𝑊12) = 0 · 𝑝 · 𝑞 · 𝑘 = 0

𝑊13 = {𝜑1, 𝜑2, 𝜑3} P(𝑊13) = 1 · 𝑝 · 𝑞 · 𝑘′ = 𝑝𝑞𝑘′

𝑊14 = {𝜑1, 𝜑2, 𝜑4} P(𝑊14) = 1 · 𝑝 · 𝑞′ · 𝑘 = 𝑝𝑞′𝑘

𝑊15 = {𝜑1, 𝜑3, 𝜑4} P(𝑊15) = 1 · 𝑝′ · 𝑞 · 𝑘 = 𝑝′𝑞𝑘

𝑊16 = {𝜑1, 𝜑2, 𝜑3, 𝜑4} P(𝑊16) = 1 · 𝑝 · 𝑞 · 𝑘 = 𝑝𝑞𝑘

The only worlds with a non-null probability are 𝑊𝑖, 𝑖 ∈ {2, 6, 7, 8, 13, 14, 15, 16}, and we can easily observe the
bijection between this set of worlds and the power set of {𝜑2, 𝜑3, 𝜑4} (e.g., the specification obtained by discarding
crisp constraints):

𝑊 ′
1 = {} P(𝑊 ′

1) = 𝑝′𝑞′𝑘′ = P(𝑊2)

𝑊 ′
2 = {𝜑2} P(𝑊 ′

2) = 𝑝𝑞′𝑘′ = P(𝑊6)

𝑊 ′
3 = {𝜑3} P(𝑊 ′

3) = 𝑝′𝑞𝑘′ = P(𝑊7)

𝑊 ′
4 = {𝜑4} P(𝑊 ′

4) = 𝑝′𝑞′𝑘 = P(𝑊8)

𝑊 ′
5 = {𝜑2, 𝜑3} P(𝑊 ′

5) = 𝑝𝑞𝑘′ = P(𝑊13)

𝑊 ′
6 = {𝜑2, 𝜑4} P(𝑊 ′

6) = 𝑝𝑞′𝑘 = P(𝑊14)

𝑊 ′
7 = {𝜑3, 𝜑4} P(𝑊 ′

7) = 𝑝′𝑞𝑘 = P(𝑊15)

𝑊 ′
8 = {𝜑2, 𝜑3, 𝜑4} P(𝑊 ′

8) = 𝑝𝑞𝑘 = P(𝑊16)

Crisp constraints with a null probability have a similar behavior.

Example 4 (Compliance computation - Enumerating Worlds). Consider a trace 𝜋 = {𝑏, 𝑐, 𝑎}. It satisfies
the constraints 𝜑1, 𝜑3 and 𝜑4. Thus, compatible worlds are all the ones that do not contain 𝜑2, namely
𝑊𝑖, with 𝑖 ∈ 𝐼 = {1, 2, 4, 5, 7, 8, 11, 15}. Computing

∑︀
𝑖∈𝐼 P(𝑊𝑖) according to worlds’ probabilities in

Example 3 yields 𝑝′𝑞′𝑘′ + 𝑝′𝑞𝑘′ + 𝑝′𝑞′𝑘 + 𝑝′𝑞𝑘 = 𝑝′(𝑞′𝑘′ + 𝑞𝑘′ + 𝑞′𝑘 + 𝑞𝑘) = 𝑝′ (ignoring null terms).

Thus, since we have shown that compliance of a trace 𝜋 is not affected by crisp constraints inℳ, in

the rest of the section we assume without loss of generality that (ℳ, 𝜎) consists solely of probabilistic

constraints (e.g., for all 𝑐, 0 < 𝜎(𝑐) < 1). Furthermore, without loss of generality, we assume that

constraints in ℳ are indexed in such a way that 𝜋 ̸|= 𝑐𝑖 if 1 ≤ 𝑖 ≤ 𝑘 and 𝜋 |= 𝑐𝑖 if 𝑘 < 𝑖 ≤ 𝑛,

for some 1 ≤ 𝑘 ≤ |ℳ|. We define the composite events 𝑉 (𝑖) = 𝐶(𝑐𝑖), worlds that contain the

violating constraint 𝑐𝑖; VIO =
⋃︀

1≤𝑖≤𝑘 𝑉 (𝑖) the event that corresponds to worlds violating at least one

constraint, thus yielding worlds for which 𝜋 is not compliant. Similarly, we define 𝑆(𝑖) as the worlds

that contain the satisfied constraint 𝑐𝑖 and none of the violating constraints, thus 𝑆(𝑖) = 𝐶(𝑖) ∩ VIO,

with SAT =
⋃︀

𝑘+1≤𝑖≤𝑛 𝑆(𝑖) =
⋃︀

𝑘+1≤𝑖≤𝑛𝐶(𝑖) ∩ 𝑉 𝐼𝑂. Furthermore, the 𝑛𝑢𝑙𝑙 event is the event that

includes no satisficing constraints.

Example 5. Consider the PDS ({𝜑1, 𝜑2, 𝜑3, 𝜑4}, 𝜎) and the trace 𝜋 = {𝑏, 𝑐, 𝑎} as by Example 4. First, we
would ignore the crisp constraint 𝜑1, and re-indexℳ as above, obtainingℳ′ = {𝑐1, 𝑐2, 𝑐3}where 𝑐1 = 𝜑2,
𝑐2 = 𝜑3 and 𝑐3 = 𝜑4. In this case, we have 𝑘 = 1. The event 𝑉 (1) is the set of worlds that include 𝜑2.
Referring to Example 3, that is worlds {𝑊3,𝑊6,𝑊9,𝑊10,𝑊12,𝑊13,𝑊14,𝑊16} . The event 𝑆(2) are the
set of worlds that do not contain 𝜑2 and include 𝜑3, namely {𝑊4,𝑊7,𝑊11,𝑊15} and 𝑆(3) by analogous
reasoning is the set of worlds that do not contain 𝜑2 and include 𝜑4, namely {𝑊5,𝑊8,𝑊11,𝑊15}. 𝑆(2)
and 𝑆(3) are not disjoint events since they both include the worlds 𝑊11 and 𝑊15.

Since VIO and SAT are defined as the union of non-disjoint events, their probabilities can be computed

by applying the inclusion-exclusion principle [5]. In the rest of the section, to simplify the notation, we

denote 𝐶(𝑐𝑖) by 𝐶(𝑖). In particular:

P(VIO) = P(
⋃︁

1≤𝑖≤𝑘

𝑉 (𝑖)) (9)

P(SAT) = P(
⋃︁

𝑘+1≤𝑖≤𝑛

𝑆(𝑖)) (10)

= P(
⋃︁

𝑘+1≤𝑖≤𝑛

𝐶(𝑖) ∩ VIO) (11)

= P(
⋃︁

𝑘+1≤𝑖≤𝑛

𝐶(𝑖) ∩ (
⋃︁

1≤𝑖≤𝑘

𝑉 (𝑖))) (12)

= P(
⋃︁

𝑘+1≤𝑖≤𝑛

𝐶(𝑖) ∩ (
⋂︁

1≤𝑖≤𝑘

𝑉 (𝑖))) (13)

= P(
⋂︁

1≤𝑖≤𝑘

𝑉 (𝑖)) · P(
⋃︁

𝑘+1≤𝑖≤𝑛

𝐶(𝑖)) (14)

= (
∏︁

1≤𝑖≤𝑘

1− P(𝑉 (𝑖)))·P(
⋃︁

𝑘+1≤𝑖≤𝑛

𝐶(𝑖)) (15)

The definition of VIO and SAT events rely on the monotonicity assumption of the semantics underlying

the constraints in the specificationℳ. Thus, we can compute compliance by applying the inclusion-

exclusion principle [5] either to the collections {𝐶(𝑖) : 𝑘 + 1 ≤ 𝑖 ≤ 𝑛} or {𝐶(𝑖) : 1 ≤ 𝑖 ≤ 𝑘}:

P

(︃
𝑛⋃︁

𝑖=1

𝐶(𝑖)

)︃
=

𝑛∑︁
𝑘=1

⎛⎜⎝(−1)𝑘−1
∑︁

𝐼⊆{1,...,𝑛}
|𝐼|=𝑘

P

⎛⎝⋂︁
𝑗∈𝐼

𝐶(𝑗)

⎞⎠
⎞⎟⎠ (16)

P

(︃
𝑛⋃︁

𝑖=1

𝐶(𝑖)

)︃
=

𝑛∑︁
𝑘=1

⎛⎜⎝(−1)𝑘−1
∑︁

𝐼⊆{1,...,𝑛}
|𝐼|=𝑘

∏︁
𝑗∈𝐼

P(𝐶(𝑗))

⎞⎟⎠ (17)

P

(︃
𝑛⋃︁

𝑖=1

𝐶(𝑖)

)︃
=

𝑛∑︁
𝑘=1

⎛⎜⎝(−1)𝑘−1
∑︁

𝐼⊆{1,...,𝑛}
|𝐼|=𝑘

∏︁
𝑗∈𝐼

𝜎(𝑗)

⎞⎟⎠ (18)

Computing such probabilities boils down to the probability of independent events, which are input

values provided in 𝜎 for the PDS (ℳ, 𝜎) (as it follows from Lemma 2). We can choose either one of the

sets, eventually complementing the result. In practice, due to the exponential number of subsets to be

considered, we prefer the one with the least cardinality (e.g., compute based on {𝐶(𝑖) : 1 ≤ 𝑖 ≤ 𝑘} if 𝜋
has less violated constraints inℳ than satisficing ones; viceversa, {𝐶(𝑖) : 𝑘 + 1 ≤ 𝑖 ≤ 𝑛} if there are

less satisficing constraints than violating ones).

Algorithm 1 Computing compliance

1: procedure ComputeCompliance(𝜋, (ℳ, 𝜎))
2: Arguments:
3: 𝜋: An execution trace

4: (ℳ, 𝜎): A PDS over set of constraintsℳ, where 𝜎(𝑐) is the probability of 𝑐 ∈ℳ
5: Return value:
6: Compliance of 𝜋 wrt (ℳ, 𝜎)
7:

8: VIOLATED← {𝑐 ∈ℳ : 𝜋 ̸|= 𝑐}
9: if ∃𝑐 : 𝑐 ∈ VIOLATED and 𝜎(𝑐) = 1 then

10: return 0

11: end if
12: SATISFIED← {𝑐 ∈ℳ ∖ VIOLATED : 𝜎(𝑐) < 1}
13: if |VIOLATED| ≤ |SATISFIED| then
14: return 1− InclusionExclusion(VIO, 𝜎)

15: else
16: 𝑝no_vio ←

∏︀
𝑐∈VIOLATED 1− 𝜎(𝑐)

17: 𝑝no_sat ←
∏︀

𝑐∈SATISFIED 1− 𝜎(𝑐)
18: return 𝑝no_vio · (InclusionExclusion(SATISFIED, 𝜎) + 𝑝no_sat)
19: end if
20: end procedure

Algorithm 2 Applying inclusion-exclusion principle

1: procedure InclusionExclusion(𝒞, 𝜎)

2: Arguments:
3: 𝒞: A set of constraints

4: 𝜎: A function that maps each constraint to its probability

5: Return value:
6: 𝑝: Probability of the set 𝒞
7:

8: 𝑝← 0
9: for 𝑘 ← 1 to |𝒞| do

10: for each 𝐸 in {𝑆 ∈ 2𝒞 : |𝑆| = 𝑘} do
11: 𝑝𝐸 ←

∏︀
𝑐∈𝐸 𝜎(𝑐)

12: if 𝑘 is odd then
13: 𝑝← 𝑝+ 𝑝𝐸
14: else
15: 𝑝← 𝑝− 𝑝𝐸
16: end if
17: end for
18: end for
19: return 𝑝
20: end procedure

This suggests a straightforward 2-phase technique to compute compliance of a trace wrt a PDS, shown

as Algorithm 1, where InclusionExclusion is a procedure (reported as Algorithm 2) that iterates over

subsets of a finite set and computes probabilities according to the above considerations. Specifically,

the first phase comprises only line 8 of Algorithm 1 and uses an external tool (as for example the

one presented in [4]) to identify all the violated constraints and store them in the set VIOLATED. The

external tool is not further used afterward, in the second phase of the proposed procedure, which starts

by checking the presence of crisp constraints in VIOLATED (lines 9–10). If all the violated constraints

are probabilistic, then the set SATISFIED of satisfied probabilistic constraints is computed (line 12)

and inclusion-exclusion is applied on the smaller among the two sets of constraints (lines 13–19). The

quantities 𝑝no_vio and 𝑝no_sat (lines-16–17) denote respectively the probability of a world not containing

any violated constraint, and the probability of a world not containing any satisfied constraint — recall

that the empty specification trivially accepts all traces.

Example 6 (Computing compliance - Inclusion Exclusion). In the same setting as Example 4, the
satisficing non-crisp constraints are 𝜑3 and 𝜑4. Since we have a single violated constraint and two satisfied
non-crisp constraints, the algorithm would apply the inclusion-exclusion computation over the singleton set
of constraint {𝜑2}, yielding 𝜎(𝜑2) = 𝑝, and return its complement 1− 𝑝 = 𝑝′, matching results obtained
by enumrating worlds in Example 4. Similarly, applying the algorithm on the set of satisficing constraints
{𝜑3, 𝜑4} would yield the following quantities:

𝑝no_vio = (1− 𝜎(𝜑2)) = 𝑝′

𝑝no_sat = (1− 𝜎(𝜑3))(1− 𝜎(𝜑4)) = 𝑞′𝑘′

applying the inclusion-exclusion principle over the set {𝜑3, 𝜑4} yields the probability:

𝑃 = 𝜎(𝜑3) + 𝜎(𝜑4)− 𝜎(𝜑3)𝜎(𝜑4) = 𝑞 + 𝑘 − 𝑞𝑘

Hence, returning the value:

𝑝no_vio(𝑝no_sat + 𝑃) = 𝑝′(𝑞′𝑘′ + 𝑞 + 𝑘 − 𝑞𝑘)
= (1− 𝑝)((1− 𝑞)(1− 𝑘) + 𝑞 + 𝑘 − 𝑞𝑘)
= (1− 𝑝)((1− 𝑘 − 𝑞 + 𝑞𝑘 + 𝑞 + 𝑘 − 𝑞𝑘)) = (1− 𝑝)

Also in this case, this matches the result obtained by worlds enumeration.

4. Experiments

We perform some experiments to assess scalability and feasibility of our approach. Code for our

prototype and to reproduce these experiments is available in a public repository
1
.

4.1. Inclusion-exclusion scalability

By applying the inclusion-exclusion principle, according to the previous section, computing compli-

ance of a trace wrt a PDS is exponential in the number min(|VIO|, |SAT|). Hereinafter, the number

min(|VIO|, |SAT|) is referred to as the number of effective constraints. Computing compliance does not

depend altogether on the nature and underlying semantics of the constraints to be checked against the

trace, nor on the length of the trace. Similarly, the size (number of constraints) in the PDS does not

affect complexity, but merely provides an upper bound on the number of effective constraints (in the

worst case, the number of effective constraints is half of the number of probabilistic constraints).

Thus, to assess scalability of this approach, we measure time to compute compliance as the number

of effective constraints increases. In particular, we analyze runtimes of compliance checking varying

the number of effective constraints from 1 to 30, sampling 5 PDSs for each number, and 10 traces for

each PDS. This yields 50 compliance measurements for each number of effective constraints. Table 1

reports the average runtime and the standard deviation for number of constraints handled within the

timeout of 120s (i.e., from 21 to 27). We can observe that runtime doubles with the increment of the

number of effective constraints, which is expected due to inclusion-exclusion being applied. However,

1

https://www.github.com/ainnoot/pds-compliance

https://www.github.com/ainnoot/pds-compliance

of Effective Constraints Average Runtime Standard Deviation

21 1.39149 0.03111
22 2.93617 0.06001
23 6.01178 0.13515
24 12.97994 1.57132
25 25.84984 0.62080
26 54.67553 1.20554
27 109.37013 5.09600

Table 1
Average runtimes and standard deviation for compliance checking over a PDS with a given number of effective
constraints. All measurements are in seconds. We omit statistics with less than 20 effective constraints as they
result in less than 0.5 seconds of runtime.

it is important to note that the number of effective constraints is, in the worst case, half of the number

of probabilistic constraints. It turns out that an enumeration of possible worlds has to deal with 2𝑛

subsets of constraints, while our approach only consider 2
𝑛
2 subsets in the worst case.

2
We leave the

comparison with the original implementation provided in [2] as a future work, but we observe here that

[2] reports times in the order of 104 seconds of computation to process models with 14 crisp constraints

and 7 probabilistic constraints, while our implementation can handle up to 54 probabilistic constraints

in less than 2 minutes (120 seconds), with crisp constraints not affecting times at all; these times regard

only compliance computation, and crisp conformance checking has to be performed separately, with

times in the order of minutes.

4.2. Use on a real-world log

We also make some preliminary tests of our approach on real-world logs. As an example, we compute

compliance for traces of the Sepsis event log, a well-known process mining event log dealing with health-

care data. First, we extract a Declare modelℳ using MINERful [12] default parameters, interpreting the

support of each constraint as its associated probability. Then, we use an ASP-based tool [4] to perform

conformance checking ofℳ over each trace of ℒ. The resulting modelℳ contains 36 constraints.

Upon projecting the input traces onto the constraints (e.g., computing the sets SAT and VIO for each

trace), we obtain 28 unique traces. Thus, we are to perform 28 compliance checking tasks on a PDS of

at most 18 effective constraints. This is well within the capacity of our approach. Indeed, the whole

process takes about 2 seconds on a standard laptop, with roughly 1 second spent parsing input and

performing crisp conformance checking, and the rest of time computing compliance of the 28 traces.

5. Conclusion

Probabilistic extensions of LTL
f

[26, 27, 28] and LTL
f
-based pattern languages are increasingly gaining

attraction in process mining applications. A recent work by [2] proposes a novel probabilistic semantic

for declarative specifications, inspired by distribution semantic from probabilistic logic programming.

This approach disentangles the probability associated to a constraint in the declarative specification

from the notion of expected relative frequency observed in an event log, which is the approach of other

probabilistic extensions of LTL
f
and Declare. In this paper, we propose an alternative approach to address

compliance computation, based on standard discrete probability notions and combinatorial principles,

which has the potential to significantly improve the performance of the logic programming-based

approach introduced in [2].

2

Intuitively, if
𝑛
2

constraints are satisfied (thus,
𝑛
2

violated) we are forced to apply inclusion-exclusion over
𝑛
2

items.

Acknowledgments

This work was partially supported by Italian Ministry of University and Research (MUR) under PRIN project

PRODE “Probabilistic declarative process mining”, CUP H53D23003420006, under PRIN project PINPOINT “exPlaInable

kNowledge-aware PrOcess INTelligence”, CUP H23C22000280006, under PNRR project FAIR “Future AI Research”, CUP

H23C22000860006, under PNRR project Tech4You “Technologies for climate change adaptation and quality of life im-

provement”, CUP H23C22000370006, and under PNRR project SERICS “SEcurity and RIghts in the CyberSpace”, CUP

H73C22000880001; by Italian Ministry of Health (MSAL) under POS projects CAL. HUB.RIA (CUP H53C22000800006)

and RADIOAMICA (CUP H53C22000650006); by Italian Ministry of Enterprises and Made in Italy under project

STROKE 5.0 (CUP B29J23000430005); and by the LAIA lab (part of the SILA labs). Mario Alviano and Francesco

Ricca are members of Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta Matematica (GNCS-INdAM).

References
[1] P. Trkman, The critical success factors of business process management, Int. J. Inf. Manag. 30 (2010) 125–134. URL:

https://doi.org/10.1016/j.ijinfomgt.2009.07.003.

[2] M. Vespa, E. Bellodi, F. Chesani, D. Loreti, P. Mello, E. Lamma, A. Ciampolini, Probabilistic compliance in declarative

process mining, in: Proceedings of the 3rd International Workshop on Process Management in the AI Era (PMAI 2024),

volume 3779 of CEUR Workshop Proceedings, CEUR-WS.org, 2024, pp. 11–22.

[3] M. Pesic, H. Schonenberg, W. M. P. van der Aalst, DECLARE: full support for loosely-structured processes, in: EDOC,

IEEE Computer Society, 2007, pp. 287–300.

[4] F. Chiariello, V. Fionda, A. Ielo, F. Ricca, A direct ASP encoding for declare, in: M. Gebser, I. Sergey (Eds.), Practical

Aspects of Declarative Languages - 26th International Symposium, PADL 2024, London, UK, January 15-16, 2024,

Proceedings, volume 14512 of Lecture Notes in Computer Science, Springer, 2024, pp. 116–133. URL: https://doi.org/10.

1007/978-3-031-52038-9_8.

[5] S. S. Sane, The inclusion-exclusion principle, Hindustan Book Agency, Gurgaon, 2013, pp. 57–79. URL: https://doi.org/10.

1007/978-93-86279-55-2_4. doi:10.1007/978-93-86279-55-2_4.

[6] W. M. P. van der Aalst, Process mining: A 360 degree overview, in: W. M. P. van der Aalst, J. Carmona (Eds.), Process

Mining Handbook, volume 448 of Lecture Notes in Business Information Processing, Springer, 2022, pp. 3–34. URL:

https://doi.org/10.1007/978-3-031-08848-3_1.

[7] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second Edition, Springer, 2016. URL: https://doi.org/10.

1007/978-3-662-49851-4.

[8] W. M. P. van der Aalst, Foundations of process discovery, in: W. M. P. van der Aalst, J. Carmona (Eds.), Process

Mining Handbook, volume 448 of Lecture Notes in Business Information Processing, Springer, 2022, pp. 37–75. URL:

https://doi.org/10.1007/978-3-031-08848-3_2.

[9] J. Carmona, B. F. van Dongen, M. Weidlich, Conformance checking: Foundations, milestones and challenges, in:

W. M. P. van der Aalst, J. Carmona (Eds.), Process Mining Handbook, volume 448 of Lecture Notes in Business Information
Processing, Springer, 2022, pp. 155–190. URL: https://doi.org/10.1007/978-3-031-08848-3_5.

[10] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, H. A. Reijers, Imperative versus declarative process modeling

languages: An empirical investigation, in: F. Daniel, K. Barkaoui, S. Dustdar (Eds.), Business Process Management

Workshops - BPM 2011 International Workshops, Clermont-Ferrand, France, August 29, 2011, Revised Selected Papers,

Part I, volume 99 of Lecture Notes in Business Information Processing, Springer, 2011, pp. 383–394. URL: https://doi.org/10.

1007/978-3-642-28108-2_37.

[11] W. M. P. van der Aalst, M. Pesic, H. Schonenberg, Declarative workflows: Balancing between flexibility and support,

Comput. Sci. Res. Dev. 23 (2009) 99–113. URL: https://doi.org/10.1007/s00450-009-0057-9.

[12] C. D. Ciccio, M. Mecella, On the discovery of declarative control flows for artful processes, ACM Trans. Manag. Inf. Syst.

5 (2015) 24:1–24:37. URL: https://doi.org/10.1145/2629447.

[13] M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Patterns in property specifications for finite-state verification, in: B. W. Boehm,

D. Garlan, J. Kramer (Eds.), Proceedings of the 1999 International Conference on Software Engineering, ICSE’ 99, Los

Angeles, CA, USA, May 16-22, 1999, ACM, 1999, pp. 411–420. URL: https://doi.org/10.1145/302405.302672.

[14] B. Greenman, S. Saarinen, T. Nelson, S. Krishnamurthi, Little tricky logic: Misconceptions in the understanding of LTL,

Art Sci. Eng. Program. 7 (2023).

[15] I. Donadello, F. Riva, F. M. Maggi, A. Shikhizada, Declare4py: A python library for declarative process mining, in: BPM

(PhD/Demos), volume 3216 of CEUR Workshop Proceedings, CEUR-WS.org, 2022, pp. 117–121.

[16] G. D. Giacomo, R. D. Masellis, M. Grasso, F. M. Maggi, M. Montali, Monitoring business metaconstraints based on LTL

and LDL for finite traces, in: S. W. Sadiq, P. Soffer, H. Völzer (Eds.), Business Process Management - 12th International

Conference, BPM 2014, Haifa, Israel, September 7-11, 2014. Proceedings, volume 8659 of Lecture Notes in Computer
Science, Springer, 2014, pp. 1–17. URL: https://doi.org/10.1007/978-3-319-10172-9_1.

[17] G. D. Giacomo, M. Favorito, Compositional approach to translate ltlf/ldlf into deterministic finite automata, in: S. Biundo,

M. Do, R. Goldman, M. Katz, Q. Yang, H. H. Zhuo (Eds.), Proceedings of the Thirty-First International Conference on

https://doi.org/10.1016/j.ijinfomgt.2009.07.003
https://doi.org/10.1007/978-3-031-52038-9_8
https://doi.org/10.1007/978-3-031-52038-9_8
https://doi.org/10.1007/978-93-86279-55-2_4
https://doi.org/10.1007/978-93-86279-55-2_4
http://dx.doi.org/10.1007/978-93-86279-55-2_4
https://doi.org/10.1007/978-3-031-08848-3_1
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-031-08848-3_2
https://doi.org/10.1007/978-3-031-08848-3_5
https://doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1007/978-3-642-28108-2_37
https://doi.org/10.1007/s00450-009-0057-9
https://doi.org/10.1145/2629447
https://doi.org/10.1145/302405.302672
https://doi.org/10.1007/978-3-319-10172-9_1

Automated Planning and Scheduling, ICAPS 2021, Guangzhou, China (virtual), August 2-13, 2021, AAAI Press, 2021, pp.

122–130. URL: https://ojs.aaai.org/index.php/ICAPS/article/view/15954.

[18] E. Bellodi, F. Riguzzi, E. Lamma, Statistical relational learning for workflow mining, Intell. Data Anal. 20 (2016) 515–541.

[19] E. Bellodi, F. Riguzzi, E. Lamma, Probabilistic declarative process mining, in: KSEM, volume 6291 of Lecture Notes in
Computer Science, Springer, 2010, pp. 292–303.

[20] F. Chesani, E. Lamma, P. Mello, M. Montali, F. Riguzzi, S. Storari, Exploiting inductive logic programming techniques for

declarative process mining, Trans. Petri Nets Other Model. Concurr. 2 (2009) 278–295.

[21] E. Lamma, P. Mello, F. Riguzzi, S. Storari, Applying inductive logic programming to process mining, in: ILP, volume

4894 of Lecture Notes in Computer Science, Springer, 2007, pp. 132–146.

[22] A. Pnueli, The temporal logic of programs, in: FOCS, IEEE Computer Society, 1977, pp. 46–57.

[23] G. D. Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on finite traces, in: IJCAI, IJCAI/AAAI, 2013,

pp. 854–860.

[24] W. M. P. van der Aalst, J. Carmona (Eds.), Process Mining Handbook, volume 448 of Lecture Notes in Business Information
Processing, Springer, 2022.

[25] C. D. Ciccio, M. Montali, Declarative process specifications: Reasoning, discovery, monitoring, in: Process Mining

Handbook, volume 448 of Lecture Notes in Business Information Processing, Springer, 2022, pp. 108–152.

[26] A. Alman, F. M. Maggi, M. Montali, R. Peñaloza, Probabilistic declarative process mining, Inf. Syst. 109 (2022) 102033.

[27] F. M. Maggi, M. Montali, R. Peñaloza, Probabilistic conformance checking based on declarative process models, in:

CAiSE Forum, volume 386 of Lecture Notes in Business Information Processing, Springer, 2020, pp. 86–99.

[28] F. M. Maggi, M. Montali, R. Peñaloza, Temporal logics over finite traces with uncertainty, in: AAAI, AAAI Press, 2020,

pp. 10218–10225.

[29] T. Sato, A statistical learning method for logic programs with distribution semantics, in: ICLP, MIT Press, 1995, pp.

715–729.

[30] E. Bellodi, The distribution semantics in probabilistic logic programming and probabilistic description logics: a survey,

Intelligenza Artificiale 17 (2023) 143–156.

[31] V. Fionda, A. Ielo, F. Ricca, Logic-based composition of business process models, in: KR, 2023, pp. 272–281.

A. Online Resources
We provide an open-source prototype which implements the techniques herein described, which can be found at the following

public repository.

https://ojs.aaai.org/index.php/ICAPS/article/view/15954
https://www.github.com/ainnoot/pds-compliance

	1 Introduction
	2 Preliminaries
	2.1 Process Mining
	2.2 Linear Temporal Logic over Finites Traces
	2.3 Declare

	3 Probabilistic Declarative Specifications
	4 Experiments
	4.1 Inclusion-exclusion scalability
	4.2 Use on a real-world log

	5 Conclusion
	A Online Resources

